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NEW RESULTS ON CYCLIC NONLINEAR CONTRACTIONS IN
PARTIAL METRIC SPACES
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ABSTRACT. In this paper we study the concept of non-linear cyclic Kannan and Chat-
terjea contractions in partial metric spaces and we prove some new theorems on fixed
point for these types of mappings extending some fixed point theorems in literature.
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1. Introduction and Preliminaries

In 1992, Matthews [1, 2] introduced the notion of partial metric space which is a gener-
alization of the usual metric space in which the distance between two elements is no longer
necessarily zero. After this remarkable contribution, many authors focused on partial met-
ric spaces and its topological properties (see, e.g. [3]-[9]). The existence of fixed point for
contraction type mappings on such spaces was considered by many authors [1]-[8]. In the
sequel we recall the notion of a partial metric space and some of its properties which will
be used later on.

Definition 1.1. A partial metric is a function p : X x X — [0, 00) satisfying the following
conditions

(PM1) p(x,y) = p(y, ) (symmetry).

(PM2) If p(z,x) = p(z,y) = p(y,y), then x =y (equality).

(PM3) p(z,x) < p(x,y) (small self-distances).

(PMY) p(z,2) + p(y,y) < p(x,y) + p(y, 2) (triangularity) for all z,y,z € X.

The pair (X, p) is then called a partial metric space (see, e.g. [1, 2]).
Notice that for a partial metric p on X, the function d, : X x X — [0, 00) given by

dy (z,y) = 2p (z,y) —p(z,2) —p(y,9)
is a usual metric on X. Observe that each partial metric p on X generates a Tj
topology 7, on X which has the family of open p—balls {B,, (z,¢) : x € X, € > 0}, where
By(z,e) ={ye X :p(z,y) <p(z,z)+e} for all z € X and € > 0 as a base. Matthews
observed in ([2], p. 187) that a sequence (z;) in a partial metric space (X,p) converges
to some x € X with respect to p if and only if p (z,z) = nli_)nglop (z,xy,) . It is clear that, if

p(x,y) = 0, then from (PM1), (PM2), and (PM3), x = y. But if z = y, p(z,y) may not
be 0.
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Example 1.1. (See, [2]). Consider X = R with p(z,y) = max{x,y}. Then (RT, p)
is a partial metric space. It is clear that p is not a (usual) metric. Note that in this case
dp (z,y) = [z —yl.

Definition 1.2. ([2],Definition 5.2). Let (X,p) be a partial metric space and (xy,) be a
sequence in X. Then (xy,) is called a Cauchy sequence if 1111)1 D (Tp, Tm) is both exists
7,M—00

and finite.

Definition 1.3. (' [2], Definition 5.3). A partial metric space (X, p) is said to be complete
if every Cauchy sequence (x,,) in X converges, with respect to 7, to a point x € X, such

that p (z,x) = . }rigloop (T @) -

Example 1.2. ( See, [2]). Let X :=1[0,1] U [2,3] and define p: X x X — [0,00) by

_ | max{z,y}, {z,y}nI[2,3] # ¢
p(l‘y)‘{ g, {r.9} € (0.1]

Then, (X,p) is a complete partial metric space.

It is a well known fact ( see, for instance [2], p.194) that a sequence in a partial metric
space (X,p) is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the
metric space (X, d,), and that a partial metric space (X, p) is complete if and only if the
metric space (X, d,) is complete. Furthermore,

T}L}H;O dy (z,z,) =0 if and only if p(x,z) = nl;rgop(x,mn) = nﬁlélgoop (Tny T -

Generalizations of the Banach contraction mapping principle [10] have been proposed in
various settings, see for example [11]-[14] and references therein. In [15], Kannan proved
a fixed point theorem which extends the well-known Banach’s contraction principle by
considering the following definition.

Definition 1.4. ( See, [15]). A mapping T : X — X where (X,d) is a metric space is
said to be a Kannan contraction if there exists o € [0, %) such that for all x,y € X, the
following inequality

d(Tz,Ty) < ald(z,Tz) +d(y,Ty)],
holds.

Kannan [15] proved that if X is complete, then every Kannan contraction has a unique
fixed point. Later on, a lot of papers were devoted to obtain fixed point theorems, following
the Kannan’s contraction, for various classes of contractive type conditions that do not
require the continuity of 7. One of them, which is a sort of dual to Kannan contraction,
is presented by Chatterjea [17] as follows.

Definition 1.5. ( See, [17]). A mapping T : X — X, where (X,d) is a metric space, is
said to be a Chatterjea contraction if there exists o € [O, %) such that for all z,y € X, the
following inequality

d(Tz,Ty) < ald(z,Ty) + d(y,Tz)],
holds.

Chatterjea [17] proved that if X is complete, then every Chatterjea contraction has a
unique fixed point.

The cyclical extensions for these fixed point theorems were obtained at a later time,
by considering non-empty closed subsets {A4;};", of a complete metric space X and a
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cyclical operator T : U A — U Aj, i.e., satisfies T (A;) C A;4q for all ¢ € {1,2,...,m},
=1 =1
where A,,+1 = A;. In [16], Rus presented the cyclical extension for the Kannan’s theorem,

and Petric in [18] presented cyclical extensions for Chatterjea theorem using fixed point
structure arguments.

Redefining the concept of Chatterjea contraction was introduced by Choudhury in [19]
as follows.

Definition 1.6. (See, [19]). A mapping T : X — X , where (X,d) is a metric space, is
said to be a weak Chatterjea contraction if for all x,y € X, the following inequality

d(Ta,Ty) < 5 [d (2, Ty) + (. Ta)) ~ (d (2, Ty)  d (3, T)),

holds, where 1 : [0,00)%> — [0,00) is a continuous function such that ¥ (z,y) = 0 if and
only if t =y = 0.

Choudhury [19] proved the following theorem.

Theorem 1.1. (See, [19]). If X s a complete metric space, then every weak Chatterjea
contraction T has a unique fized point.

A new category of fixed point problems with the help of a control function in terms
of altering distances was addressed by Khan et. al. [20]. Altering distances have been
used in metric fixed point theory in many papers, see for example [21]-[23] and references
therein.

We define in what follows, an altering distance function which will be used throughout
the paper to get new fixed point theorems.

Definition 1.7. The function ¢ : [0,00) — [0,00) is called an altering distance function,
if the following properties are satisfied.
1. ¢ is continuous and non-decreasing,

2. ¢(t) =0 if and only if t = 0.

The aim of this paper is to present a new general fixed point theorems of cyclic nonlinear
contractions that extend some theorems in the literature, by the use of the continuous
function ¢ given in Definition 1.6 and the altering distance function ¢ given in Definition
1.7.

2. Main results

We begin this section by giving definitions of what we call a cyclic (¢ — ¢)-Kannan
type contraction and a cyclic (¢ — ¥)-Chatterjea type contraction.

Definition 2.1. Let {A;}, be non-empty closed subsets of a partial metric space (X,p),

and suppose T : U A — U A; is a cyclical operator. Then T is said to be
=1

(1) a cyclic (¢ ))- Kannan type contraction if there exists nonnegative constants ., 3
with 0 < a+ B <1, a >0 such that for any x € A;,y € Air1,i=1,2,..., m, we have

¢ (p(Tx,Ty)) < ¢ (ap (x,Tx) + Bp (y, Ty)) — o (p (x,Tx) ,p (y,Ty)),
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(2) a cyclic (¢ — 1)-Chatterjea type contraction if there exists constants o, 8 with
O<a<pBand0<a+ p <1, such that for any x € A;,y € Ajr1,i=1,2,...,m, we have

¢ (p(Tz,Ty)) < ¢ (ap(x,Ty) + Bp (y, Tx)) =¥ (p(x, Ty),p (y, Tx)),

where ¢ : [0,00) — [0,00) is an altering distance function, and 1) : [0, 00)2 — [0,00) is
a continuous function with ¥ (t,s) = 0 if and only if t = s = 0.

Theorem 2.1. Let {A;};", be non-empty closed subsets of a complete partial metric space

m m
(X,p) and T : | A; — U A; be at least one of the following:
i=1 i=1
1. a cyclic (¢ — )-Kannan type contraction,

2. a cyclic (¢ — )-Chatterjea type contraction.
m

Then T has a unique fized point z € [ A;.
i=1

i=
Proof. Take zo € X and consider the sequence given by x,,+1 = T'x,,n > 0. If there exists
ng € N such that z,,1 = z,,, then the point of existence of the fixed point is proved. So,
suppose that x,1 # x, for any n = 0,1,.... Then there exists i,, € {1,...,m} such that
Tp_1 € A, and x, € A;, . Now, assume first that 7" is a cyclic (¢ — 1)-Kannan type
contraction. Then, we have

¢ (P (@n, Tnt1)) = & (p(Tap—1,Txy))
¢ (ap (xn—1,Trn-1) + Bp (vn, Tn))
= (p(@n—1,Txn-1) ,p (Tn, TTy))
¢ (ap (Tn-1,%n) + Bp (Tn, Tnt1))
= (p (Tn—1,2n) , P (Tn, Tnt1))
< ¢(ap(zn-1,2n) + BP (Tn, Tny1)) -

Since ¢ is a non-decreasing function, we get that

IN

P (@, Tny1) < ap (Tp—1, ) + B0 (Tn, Tnt1) ,

which implies
«a
p (xnywn—i—l) S (1 — 6) p(xn—la mn) ,Vn.

Now if a + 8 < 1, by induction we get
a n
P (Tn; Tny1) < -3 p (2o, 21)

and hence lim p(zp,2,11) =0. If @+ 8 =1 and since o > 0, we get
n—o0

p (l'nv xn+1) <p (xnfla xn) .
Consequently {p (xn,zn+1)} is a non-increasing sequence of nonnegative real numbers.
Hence, there is > 0 such that

Jim p (20, 2pp1) =7

Using the continuity of ¢ and v, we get

¢(r) < o(r)—1(rr),
which implies that v (r,r) = 0, and hence, r = 0.
Similarly, if 7" is a cyclic (¢ — 1)-Chatterjea type contraction, then we have
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¢ (p(Tzn-1,Txy))

¢ (ap (xn—1,Txn) + Bp (T, TTn-1))
= (p(@n—1,Txn) ,p (20, Top-1))

¢ (ap (Tn—1, Tnt1) + Bp (20, 7))
= (p (Tn—1,Tn41) , P (Tn, Tn))

< ¢(ap(Tn—1,Tnt1) + BP (Tn, Tn)) -

¢ (P (Tn, Tnt1))

IN

Since ¢ is a non-decreasing function, we get

D (xna JUn—i—l) <ap (l'n—lv xn—i—l) + Bp (xn’ xn) 5

and by triangular inequality, we have

P(Tn, Tnt1) < ap(Tn—1,Tnt1) + B (Tn, Tn)
< alp(@n-1,2n) + P (Tn, Tns1) = P (Tn, Tn)] + Bp (20, Tn)
= alp(@n-1,2n) +p(Tn, Tn1)] + (B )P (@n, Tn)
< alp@n-1,2) + P (Tn, Tnt1)] + (B )p(Tn,2n-1)  (by PM3)
= Bp(Tn-1,%n) + ap (T, Tni1)

—
—

which implies

)p(xn—laxn)'

p(l’n,.%'n_t,_l) < (1-&

Since 0 < a+ 8 < 1, then % < 1, and by induction, we have

P (2, Tpy1) < <1_ﬂa> p (zo, 1),

and hence, lim, 00 p (Zn, Tpny1) = 0.

In the sequel, we show that (z,) is a Cauchy sequence in X. To do so, we need to
prove first, the claim that for every e > 0, there exists n € N such that if p,q > n with
p—q=1(m), then p(x,,z,) < €. Suppose the contrary case, i.e., there exists € > 0 such
that for any n € N, we can find p,, > ¢, > n with p, —¢,, = 1 (m) satisfying p (zp,, z4,) > €.
Now, we take n > 2m. Then corresponding to ¢, > n, we can choose p, in such a way
that it is the smallest integer with p, > ¢, satisfying p, — g, =1 (m) and p (zp,, z4,) > €.
Therefore, p (an, l'pn_m) < €. Using the triangular inequality,

€ < p(xpqun)

m m

é p (xQn’$pn—m) + Zp (xpnfﬂ ajpn7¢+1) - Zp (‘,L‘pnfj7ajpnfj)
=1 7=1
m

IN

p (xQn7xpn—m) + Zp (‘/Epnfﬂ xpn7¢+1)
=1

m
< e+ ZP (xpn—i’ wpn—i+1) :
i=1
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Letting n — oo in the the last inequality, and taking into account that li_>m (Tny Tpy1) =
n oo

0, we obtain lim, o p (2, , Tq,) = €. Again, by triangle inequality, we have

e < plag,,rp,)
< P (T Tgurs) 2 (Tguins Tpasr) +P (Tposrs Tp,)
P (Tpnirs Tposs) = P (Tgusrs Tgnsn)
< P (%g0s Tguar) + 2 (Tgnins Tan) + 2 (2q,,2p,,)

+p (:L’pn,xan) +p (xpnﬂvxpn) -p (mpn+17xpn+1)
-D (an+1 ) an+1) — P (Tgp, Zq,) — P (Tp,, 7p,)
< 2p (l‘qn’ l‘qn+1) +p(2q,,Tp,) +2p ('rpn’ xpn+1) .
Taking the limit as n — oo, and taking into account that lim p(x,,z,+1) = 0, we get
n—oQ
nh_g)lo P (Tgpirs Tpoyy) = € Since zp, and g, lie in different adjacently labelled sets A; and

A1 for certain 1 < i < m, assuming that T is a cyclic (¢ — ¢)-Kannan type contraction,
we have

¢ (p(Tzq,, Tzp,))

¢ (ap (24, Txq,) + Bp (Tp,, TTp,))
¥ (p(2q,, T2q,) P (2p,, Tp,))

¢ (ap (mqn’%nﬂ) + Bp (xpnv xpn+1))
=0 (P (%g0: Tgnir) P (Tps Tpria)) -

Letting n — oo in the last equality, we obtain

¢ () < ¢(0) =4 (0,0) = 0.

Therefore, we get ¢ = 0 which is a contradiction.
Similarly, assuming that 7" is a cyclic (¢ — 1)-Chatterjea type contraction, we have

¢ (p (anﬂﬁxpnﬂ)) = ¢ (Taq,,Txp,))

¢ (ap (zg,, Txp,) + Bp (2p,. Txg,))

¥ (p(@g,, Txp,) , D (Tp,, T'Tq,))

= ¢ (ap (anafpnﬂ) + Bp (xpnv an+1))
—1 (p (ana xpn+1) D (%qunﬂ)) .

Letting n — oo in the last equality, we obtain

p(e) <o((a+p)e)—v(ee).

Therefore, since 0 < a + 3 < 1, we get ¥ (¢,¢) = 0, and hence, € = 0 which is a contradic-
tion.

From the above proved claim for both cases, i.e., the case when T is a cyclic (¢ — ©)-
Kannan type contraction and the case when T' is a cyclic (¢ — 1»)-Chatterjea type contrac-
tion, and for arbitrary € > 0, we can find ng € N such that if p,q > ng withp—qg=1(m),
then p (xp,z4) < e. Since JLH;OP (Tpn, Tnt1) = 0, we can find n; € N such that

¢ (p (anJrl » Lprya ))

IN

IN

p(Tn, Tnt1) < —, forn > ny.

€
m
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Now, for r,s > max {ng,n1} and s > r, there exists k € {1,2,...,m} such that s —r =
k (m). Therefore, s —r 4+ j = 1(m) for j = m — k 4+ 1. So, we have

p(rr,zs) < pl(ar, strj) +p (-Ts+j7 xs+j71)
J
+...+D (‘778-"-17 '7:8) - Zp (.CCS_H‘, 'rs-i-i)
=1

< P (@, Togs) + P (Torj Tsjm1) + oo + D (Tog1, ) -
This implies

m
€
p(xr’xs) §€+m21:26.
J:

m
Thus, (x,) is a Cauchy sequence in |J A; . Consequently, (z,) converges to some
i=1

m
z € () Ai. However in view of cyclical condition, the sequence (x,,) has an infinite number
i=1

m
of terms in each A;, for i = 1,2,...,m. Therefore z € [ A;.

=1
Now, we will prove that z is a fixed point of T. Suppose that z € A;,Tz € A; 41, and
we take a subsequence x,, of (x,) with x,, € A;_1. Then, assuming that T is a cyclic
(¢ — 1)-Kannan type contraction, we have

¢ (p (xnkH,Tz)) = ¢(p(Tan,,Tz))

< <Z5(Oép (xn;le'nk) + Bp (Z7TZ))
_¢ (p (xnkaTxnk) , P (Zv Tz))
< <Z5(Oép (xnkyTxnk) +ﬁp (Z,TZ)) :

Letting k — oo, we have
¢(p(2,Tz) < ¢ (ap(2,Tz) + Bp(2,1%2)),
since ¢ is a non-decreasing function, we get
p(z,T2) < (a+B)p(2,Tz).

Thus, since 0 < a+ 3 < 1, we have p(z,7z) = 0, and hence, z = T'z.
Similarly, assuming that 7" is a cyclic (¢ — 1)-Chatterjea type contraction, we have

10) (p (xnkH,Tz)) = ¢(p(Tzp,,T2))

< ¢(ap(zn,,T2)+ Bp(2,Txy,))
—1 (p (‘T”INTZ) » P (27 T‘rmc))
¢ (ap(xn,,Tz)+ Pp (2, Txy,)).

IN

Letting k£ — oo, we have
¢ (p(2,T2)) < ¢(ap(2,Tz) + Bp(2,T2)),
since ¢ is a non-decreasing function, we get
p(2,Tz) < ap(z,Tz)+ Bp(z,T2)
= (a+P)p(2,Tz).
Thus, since 0 < a + 8 < 1, we have p(z,Tz) = 0, and hence, z = T'z. O
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Corollary 2.1. Let X be a complete partial metric space, m positive integer, Ay, Aa, ..., Am

m
non-empty closed subsets of X, and X = |J Ai. Let T : X — X be an operator such that
i=1

1
m
(1) X = | A; is a cyclic representation of X with respect to T,
i=1
(13) for any x € Aj,y € Aip1,i=1,2,...,m, where Ay11 = A1 and p : [0,00) — [0, 00)

¢
is a Lebesgue integrable mapping satisfies [ p(s)ds > 0 for t > 0, we have one of the
0

following:
p(Tz,Ty) ap(a,Tx)+Bp(y,Ty)
p(t)dt < / p(t)dt,
0 0
o p(Tz,Ty) ap(Tz,y)+Bp(Ty,x)
/ p()dt < / oL
0 0

m
Then T has a unique fized point z € () A;.
i=1

¢

Proof. Let ¢ : [0,00) — [0,00) be defined as ¢(t) = [ p(s)ds > 0. Then ¢ is an altering
0

distance function, and by taking 1) = 0, we get the result. O

Example 2.1. Let X C !, X = {(:L‘n) ez, >0 forallne N} . Define a partial met-
ric p on X by

(@), (ya)) = 3 max {, v} -
n=1

Let the set { 6, = | 0,0,...,1,0,0,.... | ,n € N 3 be the standard basis for I'. Let 5 € (0,1)
——

nth term
be fized and consider the sets

A = {252’“5%, l:1,2,3....},

k=l

By = {Zﬁ2k_15gk_1, l:1,2,3....}.

k=l
Let A= A1 U{0} and B = By U{0}, and Y = AU B,where 0 = (0,0,0,0...). Consider
the map T :Y — Y given by

T (Z ﬁ2k52k> = Z B Sor i1
k=l k=1
T <Z 52k+152k+1> = ) B 040

k=l k=l
It is easy to see that T (A) C B and T (B) C A andY = AU B is a cyclic representation

[e.°] o0

of Y with respect to T. Now Let A>x =Y %6y, and B>y =Y. 2 169.41. Suppose
k=l k=m
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that I < m, (for the case |l > m is similar). Then

[e.9] o0

T(x) = B opr and T (y) = > B 6115
k=l k=m
and
m—1
62m
plz,y) = B2 +
k=l 1-6
m—1 g2m+1
T TW) = XA+
k=l
21 2m—+1
pETE) = g pe T ) =

Consequently for some positive real number a > 0 we have,

5 2m—+1

p(T(x),T(y) = }jﬁ%“ T
,821 62[ /82m+1

< B <hig e
B /821 52m+1
= (6+1_1)1—6+a1—6
_ 521 ﬁ2m+1 B B le
= sl —a-n
Now if 9 :[0,00)% — [0,00) is taken such that 1 (z,y) = (1 — B) max {z,y} we get
B2l /82m+1
PT@.TE) = BT @)+ ap(T () - (- gmax{ 2 S

= ﬁp(x,T(x))—|—ap(y,T(y))—w(p(x,T(a:)),p(y, )))

and so taking the altering distance ¢ to be ¢(t) = t,we get the result.

Example 2.2. Let X =[—1,1] C R with

max{|x\,|y\} T,y € [_170]
|z — y| otherwise

max {z,y} z,y € [0,1]
p(z,y)

It is not hard to see that p is a partial metric on [—1,1].
Let T : [-1,1] — [—1,1] be given by
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By taking ¢ = 0,¢(t) =t and x € [0,1],y € [-1,0],

1 -1 1 _1
p(Tz,Ty) = \T:C—Ty|:‘—2xe Izl —i-gye [o
< Clel+ Iyl
S 5 x 3 Yy
< 1 +1 2] +1 _1_1 T
~ 9 xr 2336 3 Yy 3ye

1 1
= §’T$—$’+§|Ty—y|

1 1
= 5P (z,Tx) + 3P (y,Ty)

which implies that T' has a unique fixed point in [—1,0] N[0, 1] which is z = 0.
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