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THE GENERALIZED HAHN POLYNOMIALS
MOHAMMED A. ABDLHUSEIN® §

ABSTRACT. In this paper, we represent the generalized Hahn polynomials cpgla)(x,y)
by the Cauchy operator for deriving its identities: generating function, Mehler’s for-
mula, Rogers formula (with some of its applications), Rogers-type formula, extended
generating function, extended Mehler’s formula, extended Rogers formula and another
extended identities. Also, the Rogers-type formula for the bivariate (generalized) (classi-
cal) Rogers-Szego polynomials will be given by two methods. Then we give the g-integral
representation for the generalized Hahn polynomials, bivariate Rogers-Szegé polynomi-
als, and the generalized Rogers-Szego polynomials.

Keywords: Hahn polynomials, Cauchy operator, generating function, extended Mehler’s
formula, g-integral.
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1. INTRODUCTION

Chen and Liu [13] developed a method of deriving hypergeometric identities by param-
eter augmentation, this method has more realizations as in [1, 2, 3, 4, 5, 11, 12, 14, 21, 22].
A new realization will be given in this paper, where we will represent the generalized Hahn
polynomials by the Cauchy operator to derive their basic and extended identities.

Let us review some common notation and terminology for basic hypergeometric series
n [18]. Assume that |g| < 1. The g¢-shifted factorial is defined by:

n—1 0
(@;qo=1, (a0n=][00—-ad"), (65000 =]](1—ad". (1)
k=0 k=0
Where:
(@0)n = (a;90)00/(09"™; @)oo »
(@ Dnsr = (@0)k (ag";@)n -
We also adopt the following notation for multiple g-shifted factorial:
(a1,a2, - sami@On = (a1;0)n(a2;@)n - (@m; @n
(a1,a2, ,am; Qoo = (a139)00(a2: @)oo (Am: @)oo -
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The g-binomial coefficient is defined by:

m __ (&9

k]l (¢ Or(@ Onr
The basic hypergeometric series ,y1¢, is defined by:

0o
al, ..., r41 z: (a17~--7ar+1;Q)n n
4, = L.

r+1¢r< bi,...,b, q > vt (qvbl,...,br;q)n

The inverse pair is defined for any sequences a,, and b,, as follows:

an = [k] by = bp=)_ M (—1)* ¢ ay_p. (2)
k=0 k=0
The Cauchy identity is defined as:
= (¢ Ok (73 ¢)oo

Putting a = 0, (3) becomes Euler’s identity:

0 k

x 1
= ;o lz) <1, (4)
(e (T¢)
and its inverse relation: )
o~ (=Dl
Z ﬁ = (x§q)oo- (5)
k=0 q;4)k
The Cauchy polynomials is defined by:
pu(z,y) = (@ —y)(x—qy) - (x—¢"'y) = (y/z; )n 2", (6)

The generalized Hahn polynomials [7, 8, 9, 10] or the bivariate form of Al-Salam-Carlitz
polynomials is defined as:

a g n n—
o (@, lg) = [k] (a; Q) 2" y" ", (7)
k=0
The classical Rogers-Szego polynomials [4, 6, 12, 14, 21, 22] is a (a = 0,y = 1) case of the
generalized Hahn polynomials (7), is defined in 1926 by Szegd, as:

tmtela) =3 [ 0

k=0
The generalized Rogers-Szego polynomials [1, 16, 17, 21] is a (a = 0) case of the generalized
Hahn polynomials (7), is defined as:

ro(2,y) = i [Z] CARTE (9)

k=0
which has the following generating function [1, 16, 17, 21]:

oo

Zrn(ﬂv,y)( " = L (10)

vt GO (@Yt Qo
where maz{|xt|, |yt|} < 1.
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The bivariate Rogers-Szegd polynomials [22] is a (r = 1,y = x,a = y) case of the gener-
alized Hahn polynomials (7), is defined as:

ho(z,ylg) = m (y; Q) 2" ", (11)

k=0
F.H. Jackson [19] defined the g-integral as follows:

d 00
/0 fO)dgt = d(1—-q) > f(dg")q", (12)
n=0

/cdf(t)dqt - /Odf(t)dqt - /ch(t)dqt. (13)

M. Wang [23] derived the following integral identity:
/d (qt/c, qt/d; q)oot™ dyt — d(1 - q)(g,dg/¢, ¢/d, abed; ¢)oo Z": [ } ) e 2)

and

(at, bt; q) oo (ac,ad, be, bd; q) o — abed; q) g
The g-differential operator [12] is defined by:
a) — f(aq
where [12]:
DFiz™M = M xn—k’ 15
1" (¢ @)n—k (15)

In 2008, Chen and Gu [11] introduced the following Cauchy augmentation operator for
basic hypergeometric series as a general form for the g-exponential operator T'(bD,) when
a=0.

T(a,b; D,) = ZEZ q; (bDy)". (16)

They derived three important results for this operator:

Proposition 1.1. [11].

, 1 o (abt; @)oo
T(a,b,Dq){(Ct;q)oo} = Gdigs bt| < 1. (17)
. 1 _ (ab9) a,ct
Tla,b:D "){@s,ct;q)oo} = Whes.ctigm 2‘”( abt 7‘“’3)’ (18)

where max{|bs|, |bt|} < 1.
(cv;q) oo (abs, cv; q)oo a,cs,v/t
T(a,b; D —_— = —— q,bt 19
((Z, ) q) { (cs,ct; q)oo (bS,CS,Ct; q)oo 392 abs, cv @ ( )
where max{|bs|, |bt|} < 1.

Notice that when we set s = 0 in (19), we get the following operator identity ( see
[20]), which will be used later to derive the Rogers-type formula for the generalized Hahn
polynomials and for the bivariate Rogers-Szegd polynomials.

T(a,b; Dq){(cv?q)“} _ (e ( wv/t ,bt> Ibt| < 1. (20)

(Ct; Q)oo (Ct; Q)oo cv
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So that, (20) reduce to the following new identity for the g-exponential operator, when we
set a = 0 which will be used later to derive the Rogers-type formula for the classical and
generalized Rogers-Szegd polynomials.

(cv; @)oo (V5 @)oo 0 U/t
T(bD = i q, bt bt| < 1. 21

(424) { (i |~ (ctig 2\ v " 2
In 2009, the author [1] introduced the following Cauchy operator results:

Proposition 1.2. [1].

' c” L (abt @)oo (a,ct; q) n—j .
Tia.b, Dq){(ct; Q)oo} B Wz H (abt; q)j pe slet <1

‘ A (abt; ¢) o a,ct;q)jvi(cs;q); H =gl
T(a,b,Dq){ : } (b, ct,csiq)o0 ZZH (abt; q); (QQ)z ’

(s, ct; @)oo ==

where max{|bs|, |bt|} < 1.

(22)

(23)

T(a,b; Dy) {C"(C”(J)OO} _ (abs,cv;q)o iz": [ ] a, 53 @)5(cti 0, /6 Dyt njy

(bs s, ct; @)oo (abs, cv; Q)j+l(Q7 Q)1

(s, ct; @)oo ==

where max{|bs|, |bt|} < 1.

T(a,b; D) v — i a; q (abtqk'q) & aq”, ctq
P (s, ety cv; @) oo (cv, bt Q)00 —~ w(csqF, ctdF; q)oe 20 abtq®

where max{|bs|, |bt|} < 1.

2. THE BASIC IDENTITIES

In this section, we recall the definition of generalized Hahn polynomials gpgf“) (z,y) and
give a corresponding definition for it. We represent this polynomials by the Cauchy opera-
tor, then we derive its generating function, Mehler’s formula, Rogers-type formula, Rogers
formula, linearization formula, and another some identities.

Definition 2.1. The generalized Hahn polynomials [7, 8, 9, 10] is defined as:

n

P y) = m (a;q)p "~

k=0

Notice that, the bivariate Rogers-Szegd polynomials (11) isa (y = 1,2 = y and a = z) case
of the generalized Hahn polynomials, also the generalized Rogers-Szeg6 polynomials (9) is
a (a = 0) case of the generalized Hahn polynomials therefore when we setting y = 1,2 =y
and a = x in all identities of cp,(la) (x,y) (which are given in this paper) we will get the
corresponding identities for h,(x,y|q), so that we will get the corresponding identities for
rn(z,y) when we setting a = 0.

Now, we can represent the polynomials Lp%a) (z,y) by the following case of the Cauchy
operator:

Proposition 2.1.
T(a,2; D){y"} = ¢\ (2, 9). (26)
Proof. By definition of the Cauchy operator (16) and identity (15). O

(24)

k
;q,bS>,

(25)
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Depending on our representation (26) for the generalized Hahn polynomials go%a) (z,y),
we can give the following proofs of the generating function, Mehler’s formula, Rogers
formula and another Rogers-type formula by using the roles of the Cauchy operator.
Firstly, we derive the generating function by using (26) and identity (17) as follows:

Theorem 2.1. ( The generating function for goff) (z,y) ). We have:

> t" azt; q)so
S @) e = 0T Do (27)
n=0

(:0)n (2,9t q)o0

where max{|zt|, |yt|} < 1.
Proof.

(@) (g, = T(a,z; D
;% ) o nz:% ( M o

t n
= T(a,z;Dy) {Z ((qy, q))n}

n=0

= T(a,z;Dy) {(yt}q)oo}

(azt; q)oo
(xt,yt; @)oo

0

Notice that, we can give another definition to the generalized Hahn polynomials by
using the above generating function (27), Cauchy identity (3), Euler identity (4), and
Cauchy polynomial (6) as follows:

Lemma 2.1. We have:

a . n n—
o (@,y) = [k]pk(y,aw)w g (28)
k=0
Proof. Rewrite the generating function (27) as the form:

n

> o t azrt; q)oo
S wl@(z,y) St
n=0

(6 Dn (xt, yt; @)oo

= (4 )y e (Y1) = (at)F
N nz_% (@an & O(Q;q)k

Z aff/y, ny Z o itk

n=0 74

Set n — n — k and replace the summations, then compare the coefficients of " in the two
sides, we get:

3

k

o (a,y) = i{k}(aw/y;q)nky”"%
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By using the inverse pair (2), we can give the inverse relation of (28) as:
n
n k _
patinan) = Y- 1] 0l ot (29)
k=0
Mehler’s formula for the generalized Hahn polynomials will be derived by applying our
representation (26) and the Cauchy operator identity (19) as follows:

Theorem 2.2. (Mehler’s formula for cp%a)(x, y)) . We have:

" (azzt, bzyt; @)oo a, zyt, bz /w
_ » 2y, g zwt ), (30
Z(p (@9 zv) G (@t gty *72\ awst bayr F07 30

where max{|zzt|, |zwt|, |zyt|, |wyt|} < 1.

Proof
(z, " = 3 a,x; "M o®) (2w &
= T(a,=; (yt)"
- oo S obten) (1|

B (zyt,wyt;q)oo

 (azzt, bzyt; ) s a, zyt,bz/w wt
(z2t, 2yt, wyt; ¢)oo azzt,bzyt 7 '

O

In the following theorem, we give the Rogers-type formula for gpff) (x,y) by using identity

(20) of the Cauchy operator and our representation (26).
Theorem 2.3. (Rogers-type formula for 901(@&) (z,y)) . We have:
oo 0 n _1\m (m) m .
(a) " (=D)™Mg 2™ (Ysi9)eo ( a,s/t )
z,y = 2¢1 iq,t |, 31
,;n;%m( ' @on (@om (Ut @)oo Y (31
where max{|zt|, |yt|} < 1.

Proof.
nz;)mzo it DGon  @om

0 0 n _1\m (2)8m
_ ZZT(a’x;Dq){yn—km} t (=1D)™q

v Showar (@a)n (G Dm

= T(a,x;Dy) { = (_1)mq(gﬂ)<y3)m}

(4 @)m
- 7D {E‘ZiZ }

oo a, S/t
= Z 1= ;q,xt ) .
(yt;q)oo 2 ys 1 >
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Notice that, when we set x = 1,y = x, and a = y in the above theorem, we will
get the Rogers-type formula for the bivariate Rogers-Szeg6 polynomials, which can be
proved by using the identity (20) of the Cauchy operator and the author representation
T(y,1; Dg){z"} = hn(z,y|q) due to [1] as follows:

Corollary 2.1. (Rogers-type formula for h,(x,y|q)) . We have:

—1)™ (?)sm Ts; s
Zzhn+mxy|q ( ) (=L =4 _’q)‘” 2¢1<y’ /t;q,t), (32)

n=0m=0 n (¢ Dm (2t; ¢) oo xS

where max{|t|, |xt|} < 1.

Proof.
(~1)mq(2)sm
hn m
;)mzo " xy|q( )n (& Dm

e n _1\ym ( )Sm
— ZZT(Q,1§Dq){$n+m} l ( 1) q

== (@Dn  (GDm

_ T(.1:D,) { (—1>mq<’é‘><xs>m}

Jn 0 (¢ @)m

m=

5;4) o
= 1; Dy)
T(y,1; {m }

(wt,q o s

O

Also, when we set a = 0 in (31), we will introduce the following Rogers-type formula for
the generalized Rogers-Szego polynomials, which can be derived by using the identity (21)
of the g-exponential operator and the representation T'(zDy){y"} = rn(z,y) according to
the symmetry property r,(x,y) = r,(y, z) due to [21].

Corollary 2.2. (Rogers-type formula for r,(z,y)) . We have:

0o o0 Tk (_1)mq(7§)5m B (ys;q>oo 07$/t '
gmz::orwm(m,y) @D @D = Wt a)w 2¢1< s ,q,a:t) , (33)

where max{|zt|, |yt|} < 1.

Proof.
) (—1)mg(Bsm
nz;m;o ) e @ am
Z Z T(eDy) (¢; q)m

n=0m=0
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_ = )" s ()7 ()™
= T(:ch){g(q;q)n mz::o (¢ Om }

= T(xDg) {EZZZ)):}
m 261 < e xt) |
0

In the same technique, we can give the Rogers-type formula for the classical Rogers-
Szegd polynomials hy,(z|g) which can be proved by using the identity (21) of the g-
exponential operator and the representation T'(Dg){z"} = hy,(z|q) due to [12], or by
replace z with y in (33) according to the symmetry property of the generalized Rogers-
Szego polynomials and then set = 1, or by setting y = 0 directly in (32)

Corollary 2.3. (Rogers-type formula for h,(z|q)) . We have:

53 nimlala) ConaDsn (s ( 0,5/t ;q,t> RE

(¢ Dm (7t; ¢) oo s

n=0m=0

where max{|t|, |zt|} < 1.

Now, we are deriving the Rogers formula for the generalized Hahn polynomials depend-
ing on our representation (26) and the Cauchy operator identity (18) as follows:

Theorem 2.4. (The Rogers formula for go%a)(:n, y)) . We have:

o

> > @gﬁm(w,y)( LA (axssq)oo) 201 ( @ ys ;q,a:t) : (35)

=0 m=0 G@n (GOm (Yt ys, x84 axs

where max{|zs|, |xt|, |ys|, |yt|} < 1.

Proof.
iimm(w) e
B i;T(aw’DQ){yHm} (QTZ)n (qum
- T(“’x’Dq){:O o i)g;)tl}

= T(a,; Dy) {M}

= —(a:ns;q)oo 201 < @S ;C_Iaﬂ)-
(yt, ys, x5, q)oo

O
Here, we introduce some applications of the Rogers formula (35) such as the linearization

formula and some relations between the generalized Hahn polynomials and the generalized
Rogers-Szego polynomials.
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Corollary 2.4. (The Linearization formula for polynomial cp%a)(x, y)). We have:

En:i [Z] [ ] a; q) (ax/y; ) 2"y o ()
=S5 [ 7] wsare ot et o2 o) 2 00, (36)

where max{|zt|, |ys|} < 1.
Proof. Rewrite the Rogers formula (35) in the following form:
n m

(ast, 495; )on o o
Prrton (T, )
(wt, ¥s; @)oo 7;”;0 e (¢ Dn (G @)m

:Z(a;‘q) k (025¢"; @)oo ZZ‘P@WJ @ (2. y) tn (.'s

= (G Dk (Y57"; @)oo v feowrs

(37)

Expanding (azt; )/ (2t; ¢)oos (a5 @)oo/ (Y5 @)oos and (az5¢%; q)oo/ (y5¢"; q)oo by the
Cauchy identity (3) as follows:

(@t _ @k
(xt;q)oo B kz(q’q) (t)’ ’ t|<]—’
(CETENE S C7 T
(Ys;q)o0 ; (@ 9); (ys)  lys| <1,
az5q"; )oo > (az/y;
M - Z(@/.Z)lq)l(ysqk)’; lys| < 1.

l

Il
o

Now substitute these expansions in (37):

n—+m .
= @k (q,q) (@ Dn (49)m
o (a3 q)e 2 (ax/y;q) . . gtk gmet
ZZZZ . /QM)N)MWH)«)
n=0m=0 k=0 [=0 79 qq q;49)n \459)m

Setn—n—kandm—m —1I:

[c e Sl o]

>y e e o) Gy

et UL (¢:9) @ Dn—t (40 m—1

oo o0 0

- SIS O L 0, ) )

netem=l k=0 =0 D1 (4:9) ¢ Dn—k (G Dm—t

m

By equating the coefficients of ¢"s™, we get the required identity. O
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Corollary 2.5. For n,m > 0, we have:

min{n,m}

> m [TIZ] (3 Ok (29)* Trsm—2x(2,y)

_ = (ém( )sonkwy>

where max{|zt|, |xs|, |yt|, |ys|, |axt|, |axs]|, |zyst|} < 1.

> " 2o | 69

J=0

Proof. Let a = 0 in the Rogers formula (35), we get:

zzmwyﬂ(s

n=0m=0

_ 1 i LTI

(z5,y8,yt; @)oo

(zyst; q)o
(s, xt, ys, yt; ¢)oo
(zyst; @)oo (a2l;Q)oc (253 ¢)o0
(azxt,azs; q)oo (wt yt; @)oo (T8, yS'q)

zysti Qoo Z% 7.9)] Zwm ™.9)] )

(azt,axs; q)oo
Then:
T'n+m -75 y
wyst q)oo nzj()mz:() * ) (q Q)m
" s

_ (a)

= T, Y) P . 39
(azt, azs; q)oo E:OT;OSO om (7 )(q; D (6 Dm (39)

By applying Euler identity (4) on the terms: 1/(zyst;q)co, 1/(axt; q)so and 1/(axs; q)oo

 (2yst)? O o gm
,;0 (¢ @k ;mz::or”m(x’y) (4 0)n (G Q)m
S ()t NN .
E kZ_O@;q) ; Zomzf RS i e
O X x> (xy)k tn+k Sm+k
- ,;O,;M;) (¢;9) (@) (¢ @)n (45 0)m
(a)
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Setn—n—kandm—>m—%:

oo o0 o0

=222 can @) ()
+m—2k\4,
k=0 n=k m=k q’q o (q; Q)n—k (Q; Q)m—k
00 00 00 00 N .
(a) (a) t S
SD — (‘T,y)g@ _'(x>y)
q); "k m=d (&5 @)n—t (G Q)im—;

k=0 j=0 n= km—j

az)® (ax)! n om
= SN S el o) i

q; Q)nfk (Q7 Q)m—

The proof will be completed after comparing the coefficients of t"s™ . O

Notice that when we set @ = 0 in (38), we get the linearization formula of the generalized
Rogers-Szegd polynomials: (see [16, 17]):

min{n,m}

menrmen = > 1 [H @@t . @

k=0

So that, when we put m = 0 in (38), we will get the following relation between the gener-

alized Rogers-Szeg6 polynomials r,,(x, y) and the generalized Hahn polynomials go%a) (z,y):

n

o) = 3 |1 (@ 2o, (41)

k=0
Where (41) has the inverse relation according to (2) as follows:

n

P (wy) = [Z] (~1)*¢() (az)* ron(2,y). (42)

k=0
The following proof for identity (41) due to the generating function of the generalized
Rogers-Szegd polynomials (10):

Proof. Rewrite identity (10) as follows:

o i
Z:O Y
1
(zt, yt; @)oo
(axt; q)oo 1
(2t,yt: @)oo (a2; q)oo
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> (axt)*
- ZSO” %) qanzzo(q,q
= ZZ% z,y) az)" ¢k

_ (a)"
== (43 @)na: )i

CL$k
_ sz <—th.

ot (@3 Dn—k(a; D

setn=n—%k

By comparing the coefficient of ¢ in two sides, we get identity (41), and the proof will
be finished. m

Corollary 2.6. For n,m > 0, we have:

33 [l Oant s

k=0 j=0
min{n,m} a1 T )
= > M [kl(q;q)kq('z)(—xy)’“@ff_)k(q:,y)wf?j{k(x,y)_ (43)
k=0

Proof. Rewrite identity (39) as follows:

t" s
) JETL S
n=0m=0 qvq q;9)m
(zyst; @)oo o gm
T lart. ars o) — o\ (z,y) o'W (2, y
(axt azxs: q Z()n;) n m ( )(q; Q)n (q; Q)m
Multiply it by (axt, axs;q)eo
53 (o)
(axt,axs;q) Trotm (2, 7)
R R (@ Dn (& Dm
= (zyst;q (pa Hf,y)goa(x,y
( )Oonz%g:o ! " )(q7Q)n (4 @)m

Now expand (zyst; ¢)so, (a2t; ¢)oo and (axs; q)so by Euler’s identity (5) as follows:

> axt)k > (—1)j (J) CL.TS , . s™
2) D ; (4:9); ZO,;) om0 > (¢ 0)m
B > (—1 kq(g)(xyst)k = (a) (@) n s
- kzzo (¢:9)s Z::OmZ_O“O &) o0 e @ am
X (—1) +Jq('§)+(§)(m)k+a itk gmetj
- Z Z Z Z (4 9)r(a;9); Patm(®:9) (0O (4, 0)m
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Settingn - n—kand m - m —j:

P2 +Jq 5)+ (j)(ax)kJrj t" s™

=222 E ICE Q)j Patm—k=j(:9) (@ Dn—r (¢ Q)m—

k=0 j=0 n=k m=j

= 9051“_);@(%1/)@52”)_;;(%9)( .

k=0 n=k m=k q, Q)n—k (Q> Q)m—k

By comparing the coefficients of ¢"s™ after replacing the summations, we get the required
identity. O

When we setting a = 0, (43) reduce to the inverse lineariztion formula of the generalized
Rogers-Szegd polynomials (see [16]):

min{m,n} .
e R D ] [ I R P R 1)
k=0

3. AN EXTENDED IDENTITIES

In this section, we introduce an extended generating function, extended Mehler’s for-
mula and extended Rogers formula for the generalized Hahn polynomials go%a) (z,y) by
using our representation (26) and the roles (22), (24) and (23) of the Cauchy operator

respectively, so that we give another extended identities.

Theorem 3.1. (Extended generating function for go%a) (z,y)). We have:

00 k
(a) tn (al’t7 q)oo |:k:| (CL, yt7 Q)j 7. k=7
.. _ S| e, : 45
T;]@"*’“( y) (@) (2t yt;)eo = Li] (antiq); ’ )

where max{|zt|, |yt|} < 1.

Proof.

4 q)n

Z¢n+k ) t" - ZT(a,x;Dq){y"+k} ( t
n=0
)

O

Setting k = 0 in the above theorem, we get the generating function (27) for the gener-
alized Hahn polynomials gpﬁf”) (z,y).
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Theorem 3.2. (Extended Mehler’s formula for gosla) (z,y)). We have:

t" axzt,bzyt; q) o
mey )t = ;

Gn (w2t zyt, wyt; ) s

) ZZ [ } @ 2yt Q) (0yts a)y 02/ W a0 gt it (46

== (azxzt, bzyt; Q)j+l(Q7 Q)

where max{|zzt|, |zwt|, |yzt|, |ywt|} < 1.

Proof.
00 (@) ) tn
E ¢n+k(xa y) Qpn (Z7 w) .
= (4 On
00 m
= E T(a,x; Dy) y L o) (2 w) ——
= { } (¢ Dn

— T(a,z;D,) {y’“ >_ e (zw) ((52; }
n=0 T

bzyt; q) oo
= T(a,2:Dy) {yp VD L
(a,7; Dy) {y (Zyt,wyt;Q)oo}

Which was lead us to the required identity after substitute b — x,v — bzt, s — zt,t — wt
and ¢ — y in the Cauchy operator role (24). O

Setting & = 0 in the above theorem, we get Mehler’s formula (30) for the generalized

Hahn polynomials gp%a) (x,y).

Theorem 3.3. ( Extended Rogers formula for go%a) (x,y)). We have:

550 ) ol e

(@ Dn (GDm (25,9, Y81 @)oo 7l (axs;q)41(q; )

n=0m=0 1=0 j=0

where max{|zs|, |xt|, |ys|, |yt|} < 1.
Proof.

(o SXENe o]

Z Z 90n+m+k(x y) C S

n=0m=0
o o tn Sm
_ Z Z T(a, ;D) {yn+m+k}
== (@ Dn (6 Dm
oo oo
(yt)" (ys)™
= T(a,7;D4) 4 ¢
! { 7;)(Q§Q)n m§:0<Q;Q)m
k
y
= T(a,x;D
( 2 { (ys,yt; 4)oo }
k
_ (aws; q)oo = Z k} (a,ys;9)j+1 (yt; ), ZIH gl g
(s, yt, ys; @)oo =5 =5 L7] (aws;a) 41 (4:9)

| (47)
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Setting k = 0 in the above theorem, we get the Rogers formula (35) for the generalized

Hahn polynomials g07(1 )(.CE, Y).

Theorem 3.4. We have
o0 o0 (@)

a e O i
ZZZ@&lmM(%y) t (q(.sq)m( ).q v _ lazsy ,Q)) 3¢2<aéi/j”;/)t;q,xt)a(48)

n=0m=0 k=0 (Q,Q)n (q7 Q)k (:L“S,ys,yt,q oo

where max{|zs|, |xt|, |ys|, |yt|} < 1.
Proof.

[c o IENe SENe o]

> e o

v Sevseward GOn (G Dm (G Dk

= T<a,x;pq>{fj (@_t)" f: (o)™ N <—1>kg<2><yv>k}

— (@ Dn = (G @)m £

_ T(a’x;Dq){((yv;q)oo }

Ys, yt; @)oo

_ (axs,yv; @)oo oo ( a,ys,v/t 4 xt>
(75,98, Yt; @)oo ars,yv

0

The following extended identity for the generalized Hahn polynomials will be derived
based on (25) and the operator representation (26).

Theorem 3.5. We have

(o cIEENe CHNe o]

Z Z Z (pgii)-m-l—k t S

v o e D G Dn @O @

1 ) Z(@;Q)k(wv)k (amtqk;Q)o‘; 2¢1<aqk’ythk;q’ws>7 49)

(et = (Ga)k (ysdhiytdtia)e aztq

m Uk

where max{|zt|, |zs|, [yt], [ys], [yv[} < 1.
Proof.

T%QZO,CZO%’”’”‘“ @D @ Dm @D
_ a. yv)
= T(a,z;D,) {nzo nmz Z(M) }

1
- T(a,2:D)4—0 —
(a,; D) { (Y3, yt, Y3 @)oo }

- 1 ) Z (o) (o)" (axtQk;Q)(X; 201 < aqk’ytqu ;CI,xs)_

(v, 2t:0)00 = (@) (y5¢*, ytd"; @)oo axtq
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4. ¢-INTEGRAL REPRESENTATION

In this section, we give some ¢-integral representation for some g-polynomials depending
on special cases of the g-integral identity (14).

The g-integral representation of the generalized Hahn polynomials or the bivariate form
of the Al-Salam-Carlitz polynomials, is given in the following theorem:

Theorem 4.1. We have:

a,ax/y; q Y (at/x,qt/y; @)oo t"
o) (2, yla) = L0, a2/ Dee / oty el (50)
y(1 =), qy/%,2/y; Qoo Ju (at/y; q)oo
where no zero factors occur in the denominator.
Proof. By setting b =0,c=x,d =y, and a = a/y in (14). O

Notice that when we set y = 1, (50) reduce to the g-integral representation of Hahn
polynomials or the univariate form of the Al-Salam-Carlitz polynomials due to [23]:

. 1 . n
(a)axa Q)OO / (qt/xvqta q)oot dqt, (51)

(@) (gl0) —
P ( |q) (1 —q)(q,q/$,I;Q)oo (at§ Q)oo

Here, we give the g¢-integral representation of the bivariate Rogers-Szegt polynomials
as follows:

Theorem 4.2. We have:

(Y, /25 @)oo /y (qt, qt/7;q) oo t"
1

T [PV N A e (52)

ho(z,ylq) = p

where no zero factors occur in the denominator.
Proof. By setting x =1,y =z, and a = y in (14). O

So that, the g-integral representation of the generalized Rogers-Szegé polynomials is
introduced as:
Theorem 4.3. We have:
1
y(1 = a)(q,9y/%,2/y; 0o

(T, y) = / y(qt/ T, qt/y; @)oo t" dyt, (53)

where no zero factors occur in the denominator.
Proof. By setting a =0,b=0,c =z, and d =y in (14). O

Notice that when we setting y = 1 in (53), we will get the g-integral representation for
the classical Rogers-Szeg6 polynomials h,(x|q) as in [24]:

1
(1—q)(g:z,q/259

1
hn(zlq) = - / (qt. qt/; @)oo " dyt. (54)
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