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GENERALIZED INTUITIONISTIC FUZZY LAPLACE TRANSFORM

AND ITS APPLICATION IN ELECTRICAL CIRCUIT

S.P.MONDAL1, T.K.ROY2, §

Abstract. In this paper we describe the generalized intuitionistic fuzzy laplace trans-
form method for solving first order generalized intutionistic fuzzy differential equation.
The procedure is applied in imprecise electrical circuit theory problem. Here the ini-
tial condition of those applications is taken as Generalized Intuitionistic triangular fuzzy
numbers (GITFNs).
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ber, First order differential equation.

AMS Subject Classification: 34A07, 44A10, 34-XX

1. Introduction

Zadeh [1] and Dubois and Parade [2] , first introduced the conception of fuzzy num-
ber and fuzzy arithmetic. The generalizations of fuzzy sets theory [1] is considered to
be one of Intuitionistic fuzzy set (IFS) theory. Out of various higher-order fuzzy sets,
IFS was first proposed by Atanassov [3] and these is found to be suitable to deal with
unexplored areas.The fuzzy set considers only the degree of belongingness and non be-
longingness. Fuzzy set theory does not incorporate the degree of hesitation (i.e.,degree of
non-determinacy defined as, 1- sum of membership function and non-membership func-
tion.To handle such situations, Atanassov [4] explored the concept of fuzzy set theory by
intuitionistic fuzzy set (IFS) theory.The degree of acceptance in Fuzzy Sets is only con-
sidered, otherwise IFS is characterized by a membership function and a non-membership
function so that the sum of both values is less than one [4]. Basic arithmetic operations of
TIFNs is defined by Deng-Feng Li in [5] using membership and non membership values.
Basic arithmetic operations of TIFNs such as addition,subtraction and multiplication are
discussed by Mahapatra and Roy in [6], by considering the six tuple number itself and
division by A.Nagoorgani & K.Ponnalagu [7].
Now-a-days, IFSs are being studied widely and being used in different fields of Science
and Technology. Amongst the all research works mainly on IFS we can include Atanassov
[4,8-11], Atanassov and Gargov [12], Szmidt and Kacprzyk [13], Buhaescu [14], Ban [15],
Deschrijver and Kerre [16], Stoyanova [17], Cornelis et al. [18], Buhaesku [19], Gerstenkorn
and Manko [20], Stoyanova and Atanassov [21], Stoyanova [22], Mahapatra and Roy [23],
Hajeeh [24], Persona et al. [25], Prabha et al. [26], Nikolaidis and Mourelatos [27], Kumar
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et al.[28] and Wang [29], Shaw and Roy [30], Adak et al.[31], A.Varghese and S.Kuriakose
[32], S.P.Mondal and T.K.Roy[71].
It is seen that in current years the topic of Fuzzy Differential Equations (FDEs) has been
rapidly grown. In the year 1987, the term ”fuzzy differential equation” was introduced by
Kandel and Byatt [33]. To study FDE there have been many conceptions for the definition
of fuzzy derivative. Chang and Zadeh [34] was someone who first introduced the concept of
fuzzy derivative, later on it was followed up by Dobois and Prade [35] who used the exten-
sion principle in their approach. Other methods have been discussed by Puri and Ralescu
[36], Goetschel and Voxman [37], Seikkala [38] and Friedman et al. [39,40], Y. Cano, H.
Flores [41], E. Hllermeier [42], H.Y. Lan, J.J. Nieto [43], J.J. Nieto, R. Lpez, D.N. Georgiou
[44]. First order linear fuzzy differential equations or systems are researched under vari-
ous interpretations in several papers (see [45,46,47,48,49]).There are only few papers such
as [50,51,52,53,70] in which intuitionistic fuzzy number are applied in differential equation.

Laplace transform is a very useful apparatus to solve differential equation. Laplace
transforms give the solution of a differential equations satisfying the initial condition di-
rectly without use the general solution of the differential equation. Fuzzy Laplace Trans-
form (FLT) was first introduced by Allahviranloo & Ahmadi [72].Here first order fuzzy
differential equation with fuzzy initial condition is solved by FLT. Tolouti & Ahmadi [73]
applied the FLT in 2nd order FDE. FLT also used to solve many areas of differential equa-
tion. Salahshour et al [74] used FLT in Fuzzy fractional differential equation.Salahshour
& Haghi used FLT in Fuzzy Heat Equation. Ahmad et al [75] used FLT in Fuzzy Duffing’s
Equation.

Fuzzy differential equations play an important preface in the field of biology, engineer-
ing, physics as well as among other field of science. For example, in population models
[54], civil engineering [55], bioinformatics and computational biology [56], quantum optics
and gravity [57] , modeling hydraulic [58], HIV model [59], decay model [60], predator-
prey model [61], population dynamics model [62] , Friction model [63], Growth model [64],
Bacteria culture model [65], bank account and drug concentration problem [66], baro-
metric pressure problem [67]. First order linear fuzzy differential equations have many
applications among all the Fuzzy differential equation.

2. Preliminary concept

Definition 2.1:Fuzzy Set: A fuzzy set Ã is defined by Ã = {(x, µÃ(x)) : xϵA, µÃ(x)ϵ[0, 1]}.
In the pair (x, µÃ(x)) the first element belongs to the classical set A, the second element
µÃ(x), belongs to the interval [0, 1], called membership function.

Definition 2.2:Height: The height h(Ã), of a fuzzy set Ã = {(x, µÃ(x)) : xϵX}, is
the largest membership grade obtained by any element in that set i.e., h(Ã) = supµÃ(x).

Definition 2.3:Convex Fuzzy sets: A fuzzy set Ã = {(x, µÃ(x)) is called convex
fuzzy set if all Aα for every αϵ[0, 1] are convex sets i.e., for every element x1ϵAα and
x2ϵAα and λx1 + (1 − λ)λx2ϵAα∀λϵ[0, 1]. Otherwise the fuzzy set is called non-convex
fuzzy sets.

Definition 2.4:Fuzzy Number: A fuzzy number is an extension of a regular number
in the sense that it does not refer to one single value but rather to a connected set of
possible values, where each possible value has its own weight between 0 and 1.This weight
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is called membership function. Thus a fuzzy number is a convex and normal fuzzy set.

Definition 2.5:Intuitionistic Fuzzy set: Let a set X be fixed. An IFS Ãi in
X is an object having the form Ãi = {< x, µÃi(x), ϑÃi(x) > 0 : xϵX}, where the
µÃi(x) : X → [0, 1] and ϑÃi(x) : X → [0, 1] define the degree of membership and de-

gree of non-membership respectively, of the element xϵX to the set Ãi, which is a subset
of X, for every element of xϵX, 0 ≤ µÃi(x) + ϑÃi(x) ≤ 1.

Definition 2.6:(α, β)-level Interval or (α, β)-cuts: A set of (α, β)-cuts, generated

by an IFS Ãi, where α, βϵ[0, 1] are fixed number such that α+ β ≤ 1 is defined as
Aα,β = {(x, µÃi(x), ϑÃi(x)) : xϵX, µÃi(x) ≥ α, ϑÃi(x) ≤ β, α, βϵ[0, 1]}
we define (α, β)-level Interval or (α, β)-cut, denoted by Aα,β , as the crisp of elements x

which is belongs to Ãi at the least to the degree α and which belong to Ãi at most to the
degree β.

Definition 2.7:Intuitionistic Fuzzy number: An IFN Ãi is defined as follows
(i) an intuitionistic fuzzy subject of real line.
(ii) normal. i.e., there is any x0ϵR such that µÃi(x0) = 1(so ϑÃi(x0) = 0)
(iii) a convex set for the membership function µÃi(x), i.e.,
µÃi(λx1 + (1− λ)x2) ≥ min(µÃi(x1), µÃi(x2))∀x1, x2ϵR, λϵ[0, 1]
(iv)a concave set for the non-membership function ϑÃi(x), i.e.,
ϑÃi(λx1 + (1− λ)x2) ≤ min(ϑÃi(x1), ϑÃi(x2))∀x1, x2ϵR, λϵ[0, 1]

Definition 2.8: Triangular Intuitionistic Fuzzy number: A TIFN Ãi is a subset
of IFN in R with following membership function and non membership function as follows:

µÃi
(x) =


x−a1
a2−a1

if a1 ≤ x ≤ a2
a3−x
a3−a2

if a2 ≤ x ≤ a3
0 otherwise

and

ϑÃi
(x) =


a2−x

a2−a
′
1

if a
′
1 ≤ x ≤ a2

x−a2
a
′
3−a2

if a2 ≤ x ≤ a
′
3

1 otherwise

where a
′
1 ≤ a1 ≤ a2 ≤ a3 ≤ a

′
3 and TIFN is denoted by ÃTIFN = (a1, a2, a3; a

′
1, a2, a

′
3)

Note 2.1: Here µÃi
(x) increases with constant rate for xϵ[a1, a2] and decreases with

constant rate for xϵ[a2, a3] but ϑÃi
(x) decreases with constant rate for xϵ[a

′
1, a2] and in-

creases with constant rate for xϵ[a2, a
′
3]

Definition 2.9: (α, β)-level Interval or (α, β)-cuts of a TIFN: If Ãi is a TIFN,
then (α, β)-level Interval or (α, β)-cuts is given by

Aα,β =

{
[A1(α), A2(α)] for degree of acceptance αϵ[0, 1]

[A
′
1(β), A

′
2(β)] for degree of regection βϵ[0, 1]
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with α+ β ≤ 1.

Here (i) dA1(α)
dα > 0, dA2(α)

dα < 0, ∀αϵ[0, 1], A1(1) ≤ A2(1)

and (ii)
dA

′
1(β)
dβ < 0,

dA
′
2(β
dβ > 0, ∀βϵ[0, 1], A′

1(0) ≤ A
′
2(0).

It is expressed as Aα,β = {[A1(α), A2(α)]; [A
′
1(β), A

′
2(β)]}, α+ β ≤ 1, α, βϵ[0, 1].

For instance, if ÃiT IFN = (a1, a2, a3; a
′
1, a2, a

′
3) then (α, β)-level Interval or (α, β)-cuts

is given by
Aα,β = {[a1 + α(a2 − a1), a3 − α(a3 − a2)]; [a2 − β(a2 − a

′
1), a2 + β(a

′
3 − a2)]},

where α+ β ≤ 1, α, βϵ[0, 1].

Definition 2.10: Generalized Intuitionistic Fuzzy Number: An IFN Ãi is defined
as follows

(i) an intuitionistic fuzzy subject of real line.
(ii) normal. i.e., there is any x0ϵR such that

µÃi(x0) = ω(so ϑÃi(x0) = σ) for 0 < ω + σ ≤ 1.
(iii) a convex set for the membership function µÃi(x), i.e.,

µÃi(λx1 + (1− λ)x2) ≥ min(µÃi(x1), µÃi(x2))∀x1, x2ϵR, λϵ[0, ω]
(iv)a concave set for the non-membership function ϑÃi(x), i.e.,

ϑÃi(λx1 + (1− λ)x2) ≤ min(ϑÃi(x1), ϑÃi(x2))∀x1, x2ϵR, λϵ[σ, 1]
(v) µÃi and ϑÃi is continuous mapping from R to the closed interval [0, ω] and [σ, 1]

respectively and x0ϵR, the relation 0 ≤ µÃi + ϑÃi ≤ 1 holds.

Definition 2.11: Generalized Triangular Intuitionistic Fuzzy number: AGTIFN
Ãi is a subset of IFN in R with following membership function and non membership func-
tion as follows:

µÃi
(x) =


ω x−a1

a2−a1
if a1 ≤ x ≤ a2

ω if x = a2
ω a3−x

a3−a2
if a2 ≤ x ≤ a3

0 otherwise

and

ϑÃi
(x) =


σ a2−x

a2−a
′
1

if a
′
1 ≤ x ≤ a2

0 if x = a2
σ x−a2
a
′
3−a2

if a2 ≤ x ≤ a
′
3

σ otherwise

where a
′
1 ≤ a1 ≤ a2 ≤ a3 ≤ a

′
3 and TIFN is denoted by ÃTIFN = (a1, a2, a3; a

′
1, a2, a

′
3)

Definition 2.12: Non negative GTIFN: A GTIFN

Ãi
GTIFN = ((a1, a2, a3;ω), (a

′
1, a2, a

′
3;σ)) iff a

′
1 ≥ 0.
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Definition 2.13: Equality of two GTIFN: A GTIFN

Ãi
GTIFN = ((a1, a2, a3;ω1), (a

′
1, a2, a

′
3;σ1)) and B̃i

GTIFN = ((b1, b2, b3;ω2), (b
′
1, b2, b

′
3;σ2))

are said to be equal iff a1 = b1,a2 = b2,a3 = b3,a
′
1 = b

′
1,a

′
3 = b

′
3,ω1 = ω2 and σ1 = σ2.

Definition 2.14: α-cut set: α-cut set of a GTIFN Ãi
GTIFN = ((a1, a2, a3;ω), (a

′
1, a2, a

′
3;σ))

is a crisp subset of R which is defined as follows
Aα = {x : µÃi

(x) ≥ α} = [A1(α), A2(α)] = [a1 +
α
ω (a2 − a1), a3 − α

ω (a3 − a2)]

Definition 2.15: β-cut set: β-cut set of a GTIFN Ãi
GTIFN = ((a1, a2, a3;ω), (a

′
1, a2, a

′
3;σ))

is a crisp subset of R which is defined as follows
Aβ = {x : ϑÃi

(x) ≤ β} = [A
′
1(β), A

′
2(β)] = [a2 − β(a2 − a

′
1), a2 + β(a

′
3 − a2)]

Definition 2.16: (α, β)-cut set: (α, β)-cut set of a GTIFN Ãi
GTIFN = ((a1, a2, a3;ω),

(a
′
1, a2, a

′
3;σ)) is a crisp subset of R which is defined as follows

Aα,β = {[A1(α), A2(α)]; [A
′
1(β), A

′
2(β)]}, α+ β ≤ ω, σ, αϵ[0, ω], βϵ[σ, 1]

Definition 2.17: Addition of two GTIFN: Let two Ãi
GTIFN = ((a1, a2, a3;ω1),

(a
′
1, a2, a

′
3;σ1)) and B̃i

GTIFN = ((b1, b2, b3;ω2), (b
′
1, b2, b

′
3;σ2)) be GTIFN, then the addition

of two GTIFN is given by

Ãi
GTIFN

⊕
B̃i

GTIFN = ((a1 + b1, a2 + b2, a3 + b3;ω), (a
′
1 + b

′
1, a2 + b2, a

′
3 + b

′
3;σ))

where ω = min{ω1, ω2} and σ1 = min{σ1, σ2}.

Definition 2.18: Subtraction of two GTIFN: Let two Ãi
GTIFN = ((a1, a2, a3;ω1),

(a
′
1, a2, a

′
3;σ1)) and B̃i

GTIFN = ((b1, b2, b3;ω2), (b
′
1, b2, b

′
3;σ2)) be GTIFN, then the subtrac-

tion of two GTIFN is given by

Ãi
GTIFN ⊖ B̃i

GTIFN = ((a1 − b3, a2 − b2, a3 − b1;ω), (a
′
1 − b

′
3, a2 − b2, a

′
3 − b

′
1;σ))

where ω = min{ω1, ω2} and σ1 = min{σ1, σ2}.

Definition 2.19: Multiplication by a scalar: Let Ãi
GTIFN = ((a1, a2, a3;ω),

(a
′
1, a2, a

′
3;σ)) and k is a scalar then kÃi

GTIFN is also a GTIFN and is defined as

kÃi
GTIFN =

{
((ka1, ka2, ka3;ω), (ka

′
1, ka2, ka

′
3;σ)) if k > 0

((ka3, ka2, ka1;ω), (ka
′
3, ka2, ka

′
1;σ)) if k < 0

where 0 < ω, σ ≤ 1.

Definition 2.20: Multiplication of two GTIFN: Let two Ãi
GTIFN = ((a1, a2, a3;ω1),

(a
′
1, a2, a

′
3;σ1)) and B̃i

GTIFN = ((b1, b2, b3;ω2), (b
′
1, b2, b

′
3;σ2)) be GTIFN, then the multi-

plication of two GTIFN is given by

Ãi
GTIFN

⊗
B̃i

GTIFN = ((a1b1, a2b2, a3b3;ω), (a
′
1b

′
1, a2b2, a

′
3b

′
3;σ))

where ω = min{ω1, ω2} and σ1 = min{σ1, σ2}.
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Definition 2.21: Division of two GTIFN: Let two Ãi
GTIFN = ((a1, a2, a3;ω1),

(a
′
1, a2, a

′
3;σ1)) and B̃i

GTIFN = ((b1, b2, b3;ω2), (b
′
1, b2, b

′
3;σ2)) be GTIFN, then the multi-

plication of two GTIFN is given by

Ãi
GTIFN/B̃i

GTIFN = ((a1b3 ,
a2
b2
, a3b1 ;ω), (

a
′
1

b
′
3

, a2b2 ,
a
′
3

b
′
1

;σ))

where ω = min{ω1, ω2} and σ1 = min{σ1, σ2}.

3. Generalized Intutionistic Fuzzy Laplace transform

Theorem 3.1: Let f(x) be a generalized intuitionistic fuzzy number valued func-
tion on [a,∞] and it represented by (f1(x, α;ω), f2(x, α;ω); g1(x, β;σ), g2(x, β;σ) where
αε[0, ω], βϵ[σ, 1], 0 ≤ ω, σ ≤ 1. Assume f1(x, α;ω), f2(x, α;ω), g1(x, β;σ) and g2(x, β;σ)
are Riemann-integrable on [a, b] for every b ≥ a, and assume there are four positive func-
tion M1(α),M2(α),N1(β) and N2(β) such that,∫ b
a |f1(x, α;ω)|dx ≤ M1(α),

∫ b
a |f2(x, α;ω)|dx ≤ M2(α),

∫ b
a |g1(x, β;σ)|dx ≤ N1(β) and∫ b

a |g2(x, β;σ)|dx ≤ N2(β) for every b ≥ a. Then f(x) is a intutionistic fuzzy Riemann-
integrable on [a,∞) and the intutionistic fuzzy Riemann-integral is a intutionistic fuzzy
number.

Furthermore, we have:∫∞
a f(x)dx = (

∫∞
a f1(x, α;ω)dx,

∫∞
a f2(x, α;ω)dx;

∫∞
a g1(x, β;σ)dx,

∫∞
a g2(x, β;σ))dx)

Theorem 3.2: Let f(x) be a continuous intutionistic fuzzy valued function. Suppose
that f(x) ⊙ e−px is improper fuzzy Rimann-integrable on [0,∞), then

∫∞
0 f(x) ⊙ e−pxdx

is called intutionstic fuzzy Laplace transforms and is denoted by:
L[f(x)] =

∫∞
0 f(x)⊙ e−pxdx (p is > 0 and integer)

We have∫∞
0 f(x)⊙ e−pxdx = (

∫∞
0 f1(x, α;ω)⊙ e−pxdx,

∫∞
0 f2(x, α;ω)⊙ e−pxdx;

∫∞
0 g1(x, β;σ)⊙

e−pxdx,
∫∞
0 g2(x, β;σ)⊙ e−pxdx)

Also by using the definition of classical Laplace transform
l[f1(x, α;ω)] =

∫∞
0 f1(x, α;ω)e

−pxdx,l[f2(x, α;ω)] =
∫∞
0 f2(x, α;ω)e

−pxdx,

l[g1(x, β;σ)] =
∫∞
0 g1(x, β;σ)e

−pxdx and l[g2(x, β;σ)] =
∫∞
0 g2(x, β;σ)e

−pxdx
Then we get

L[f(x, α, β;ω, σ)] = [l[f1(x, α;ω), l[f2(x, α;ω); l[g1(x, β;σ), l[g2(x, β;σ)]

Theorem 3.3: Let F and G are continuous intutionistic fuzzy valued function and
c1, c2 are constants. Then L[(c1 ⊙ F (x))⊕ (c2 ⊙G(x))] = (c1 ⊙ L[F (x)])⊕ (c2 ⊙ L[G(x)])

Theorem 3.4: Let F is continuous intutionistic fuzzy valued function on [0,∞) and
λϵR. Then L[λ⊙ F (x)] = λ⊙ L[F (x)]

Theorem 3.5: Let f is continuous intutionistic fuzzy valued function and q(x) ≥ 0
is real valued function. Suppose that (f(x) ⊙ q(x)) ⊙ e−px is improper fuzzy Riemann-
integrable on [0,∞), then∫∞

0 (f(x)⊙ q(x))⊙ e−pxdx
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= (
∫∞
0 q(x)f1(x, α;ω)⊙e−pxdx,

∫∞
0 q(x)f2(x, α;ω)⊙e−pxdx;

∫∞
0 q(x)g1(x, β;σ)⊙e−pxdx,∫∞

0 q(x)g2(x, β;σ)⊙ e−pxdx)

Theorem 3.6: Let f is continuous intutionistic fuzzy valued function and
L[f(x)] = F (p), Then

L[eax ⊙ f(x)] = F (p− a)
where eax is real valued function and p− a > 0.

Theorem 3.7: Let f : R → E be a function and denote
f(x) = (f1(x, α;ω), f2(x, α;ω); g1(x, β;σ), g2(x, β;σ) for each αϵ[0, ω], βϵ[σ, 1], 0 < ω, σ ≤

1 then

(1) If f is (i)-gH differentiable then f1(x, α;ω),f2(x, α;ω) and g1(x, β;σ) and g2(x, β;σ)
are differentiable functions and

f
′
(x) = (f

′
1(x, α;ω), f

′
2(x, α;ω); g

′
1(x, β;σ), g

′
2(x, β;σ))

(2) If f is (ii)-gH differentiable then f1(x, α;ω),f2(x, α;ω) and g1(x, β;σ) and g2(x, β;σ)
are differentiable functions and

f
′
(x) = (f

′
2(x, α;ω), f

′
1(x, α;ω); g

′
2(x, β;σ), g

′
1(x, β;σ))

Theorem 3.8: Let f
′
(x) be an integrable fuzzy valued function, and f(x) is the prim-

itive of f
′
(x) on [0,∞). Then

L[f
′
(x)] = p⊙ Lf(x)−h f(0), when f is (i)-gH differentiable

and L[f
′
(x)] = (−f(0))−h (−p⊙ L[f(x)]) when f is (ii)-gH differentiable.

Proof: For arbitrary fixed αε[0, ω], βϵ[σ, 1], 0 ≤ ω, σ ≤ 1 we have

p⊙ Lf(x)−h f(0)
=(pl[f1(x, α;ω)]− f1(0, α;ω), pl[f2(x, α;ω)]− f2(0, α;ω); pl[g1(x, β;σ)]− g1(0, β;σ),

pl[g2(x, β;σ)]− g2(0, β;σ))

Now, pl[f1(x, α;ω)]− f1(0, α;ω) = l[f
′
1(x, α;ω)]

pl[f2(x, α;ω)]− f2(0, α;ω) = l[f
′
2(x, α;ω)]

pl[g1(x, β;σ)]− g1(0, β;σ) = l[g
′
1(x, β;σ)]

pl[g2(x, β;σ)]− g2(0, β;σ) = l[g
′
2(x, β;σ)]

Therefore,
p⊙ Lf(x)−h f(0) = (l[f

′
1(x, α;ω)], l[f

′
2(x, α;ω)]; l[g

′
1(x, β;σ)], l[g

′
2(x, β;σ)])

by linearity property of l

p⊙ Lf(x)−h f(0) = l[f
′
1(x, α;ω), f

′
2(x, α;ω); g

′
1(x, β;σ), g

′
2(x, β;σ)]

In fuzzy sense we can write
p⊙ Lf(x)−h f(0) = L[f

′
(x)]

Similarly, we can write

(−f(0))−h (−p⊙ L[f(x)])
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=(−f2(0, α;ω)+pl[f2(x, α;ω),−f1(0, α;ω)+pl[f1(x, α;ω);−g2(0, β;σ)+pl[g2(x, β;σ)],
− g1(0, β;σ) + pl[g1(x, β;σ)])

This is equivalent to:
(pl[f2(x, α;ω)− f2(0, α;ω), pl[f1(x, α;ω)− f1(0, α;ω); pl[g2(x, β;σ)]− g2(0, β;σ),

pl[g1(x, β;σ)]− g1(0, β;σ))

Therefore,
(−f(0))−h (−p⊙ L[f(x)]) = (l[f

′
2(x, α;ω)], l[f

′
1(x, α;ω)]; l[g

′
2(x, β;σ)], l[g

′
1(x, β;σ)])

by linearity property of l we have
(−f(0))−h (−p⊙ L[f(x)]) = l[f

′
2(x, α;ω), f

′
1(x, α;ω); g

′
2(x, β;σ), g

′
1(x, β;σ)]

In fuzzy sense we can write
(−f(0))−h (−p⊙ L[f(x)]) = L[f

′
(x)]

4. Application

4.1. Application 1: An electric circuit consists of a resistor of resistence RΩ in series
with a capacitance C farads, a generator of E volts, and a key. At time t = 0 the key
is closed. Assuming that the charge on the capacitor is a Generalized Intuitionistic fuzzy
number(= Q̃0) at t = 0, find the charge and current at any later time. Assume R,C,E to
be constant.

Solution: The initial value problem is

RdQ
dt + Q

C = E(t) with Q(0) = Q̃0 = ((q1, q2, q3;ω), (q
′
1, q2, q

′
3;σ))

Case I: Corresponding to (i)-gH differentiability system applying generalized intution-
istic fuzzy laplace transform we have

R[sL[Qi(t)]⊖Qi(0)] + 1
CL[Q

i(t)] = L[E(t)]

with initial conditions

Q1(0, α;ω) = q1 +
αlQ̃0
ω

Q2(0, α;ω) = q3 −
αrQ̃0
ω

Q
′
1(0, β;σ) = q

′
1 +

βl
′
Q̃0
σ

Q
′
2(0, β;σ) = q

′
3 −

βr
′
Q̃0
σ

where lQ̃0
= q2 − q1,rQ̃0

= q3 − q2,l
′

Q̃0
= q2 − q

′
1 and r

′

Q̃0
= q

′
3 − q2

In crisp sense this can be written as

RdQ1(t,α;ω)
dt + Q1(t,α;ω)

C = E(t)

RdQ2(t,α;ω)
dt + Q2(t,α;ω)

C = E(t)

R
dQ

′
1(t,β;σ)
dt +

Q
′
1(t,β;σ)
C = E(t)

R
dQ

′
2(t,β;σ)
dt +

Q
′
2(t,β;σ)
C = E(t)
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with same initial condition.
After solving the above equations we get

Q1(t, α;ω) = l−1{ l{E(t)}+R(q1+
αl

Q̃0
ω

)

Rs+ 1
C

}

Q2(t, α;ω) = l−1{ l{E(t)}+R(q3−
αr

Q̃0
ω

)

Rs+ 1
C

}

Q
′
1(t, β;σ) = l−1{ l{E(t)}+R(q

′
1+

βl
′
Q̃0
σ

)

Rs+ 1
C

}

Q
′
2(t, β;σ) = l−1{ l{E(t)}+R(q

′
3−

βr
′
Q̃0
σ

)

Rs+ 1
C

}

Case II: Corresponding to (ii)-gH differentiability system applying generalized intu-
tionistic fuzzy laplace transform we have

R[(−Qi(0))⊖ (−sL[Qi(t)])] + 1
CL[Q

i(t)] = L[E(t)]

with initial conditions

Q1(0, α;ω) = q1 +
αlQ̃0
ω

Q2(0, α;ω) = q3 −
αrQ̃0
ω

Q
′
1(0, β;σ) = q

′
1 +

βl
′
Q̃0
σ

Q
′
2(0, β;σ) = q

′
3 −

βr
′
Q̃0
σ

where lQ̃0
= q2 − q1,rQ̃0

= q3 − q2,l
′

Q̃0
= q2 − q

′
1 and r

′

Q̃0
= q

′
3 − q2

In crisp sense this can be written as

RdQ1(t,α;ω)
dt + Q2(t,α;ω)

C = E(t)

RdQ2(t,α;ω)
dt + Q1(t,α;ω)

C = E(t)

R
dQ

′
1(t,β;σ)
dt +

Q
′
2(t,β;σ)
C = E(t)

R
dQ

′
2(t,β;σ)
dt +

Q
′
1(t,β;σ)
C = E(t)

with same initial condition.
After solving the above equation we get

Q1(t, α;ω) = l−1{ l{E(t)}
( 1
C
+Rs)

+ R
C

(q3−
αr

Q̃0
ω

)

( 1
C2−R2s2)

−R2s
(q1+

αl
Q̃0
ω

)

( 1
C2−R2s2)

}

Q2(t, α;ω) = l−1{ l{E(t)}
( 1
C
+Rs)

−R2s
(q3−

αr
Q̃0
ω

)

( 1
C2−R2s2)

+ R
C

(q1+
αl

Q̃0
ω

)

( 1
C2−R2s2)

}

Q
′
1(t, β;σ) = l−1{ l{E(t)}

( 1
C
+Rs)

+ R
C

(q2+
βr

′
Q̃0
σ

)

( 1
C2−R2s2)

−R2s
(q2−

βl
′
Q̃0
σ

)

( 1
C2−R2s2)

}
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Q
′
2(t, β;σ) = l−1{ l{E(t)}

( 1
C
+Rs)

−R2s
(q2+

βr
′
Q̃0
σ

)

( 1
C2−R2s2)

+ R
C

(q2−
βl

′
Q̃0
σ

)

( 1
C2−R2s2)

}

Numerical example:

If R = 4Ω, c = 0.25f , E(t) = 4e2t and Q(0) = Q̃0 = ((5, 6, 7; 0.7), (4.5, 6, 7.5; 0.2)) then
find Q(t) after t = 2 seconds.

Solution: If we consider (i)-gH differentiable then the solution is given by
Q1(t, α; 0.7) = (143 + 10

7 α)e
−t + 1

3e
2t

Q2(t, α; 0.7) = (203 − 10
7 α)e

−t + 1
3e

2t

Q
′
1(t, β; 0.7) = (173 − 15

2 β)e
−t + 1

3e
2t

Q
′
2(t, β; 0.7) = (173 + 15

2 β)e
−t + 1

3e
2t

Table 1. Value of Q1(t, α; 0.7), Q2(t, α; 0.7), Q
′
1(t, β; 0.2), Q

′
2(t, β; 0.2) for

different α, β at t = 2

α Q1(t, α; 0.7) Q2(t, α; 0.7) β Q
′
1(t, β; 0.2) Q

′
2(t, β; 0.2)

0 18.8309 19.1016 0.2 18.7633 19.1693
0.1 18.8503 19.0823 0.3 18.6618 19.2708
0.2 18.8696 19.0630 0.4 18.5603 19.3723
0.3 18.8889 19.0436 0.5 18.4588 19.4738
0.4 18.9083 19.0243 0.6 18.3573 19.5753
0.5 18.9276 19.0050 0.7 18.2558 19.6768
0.6 18.9469 18.9856 0.8 18.1543 19.7783
0.7 18.9663 18.9663 0.9 18.0528 19.8798

1 17.9513 19.9813

4.2. Application 2: Consider an electrical LR circuit with AC source:

dI(t)
dt = −R

L I(t) + v(t), 0 ≤ t ≤ 1,

subject to the initial condition I(0) = ũ = ((u1, u2, u3;λ), (u
′
1, u2, u

′
3; η))

Solution:
Case I: Corresponding to (i)-gH differentiability system applying fuzzy Laplace trans-

form we have

sL[Ii(t)]⊖ Ii(0) = −R
LL[I

i(t)] + L[v(t)]
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Figure 1. Graph of Q1(t, α; 0.7), Q2(t, α; 0.7), Q
′
1(t, β; 0.2), Q

′
2(t, β; 0.2)

for different α, β for t = 2

with initial condition

I1(0, α;λ) = u1 +
αlũ0
λ

I2(0, α;λ) = u3 −
αrũ0
λ

I
′
1(0, β; η) = u2 −

βl
′
ũ0
λ

I
′
2(0, β; η) = u2 +

βr
′
ũ0
λ

In crisp sense we can write

dI1(t,α;λ)
dt = −R

L I2(t, α;λ) + v(t)
dI2(t,α;λ)

dt = −R
L I1(t, α;λ) + v(t)

dI1(t,β;η)
′

dt = −R
L I2(t, β; η)

′
+ v(t)

dI2(t,β;η)
′

dt = −R
L I1(t, β; η)

′
+ v(t)

with same initial condition.

Solution: The solution can be written as

I1(t, α;λ) = l−1{ v(t)

(s+R
L
)
+ s

(u1+
αlũ0
λ

)

(s2−R2

L2 )
− R

L

(u3−
αrũ0

λ
)

(s2−R2

L2 )
}

I2(t, α;λ) = l−1{ v(t)

(s+R
L
)
− R

L

(u1+
αlũ0
λ

)

(s2−R2

L2 )
+ s

(u3−
αrũ0

λ
)

(s2−R2

L2 )
}

I1(t, β; η)
′
= l−1{ v(t)

(s+R
L
)
+ s

(u2−
βl

′
ũ0
λ

)

(s2−R2

L2 )
− R

L

(u2+
βr

′
ũ0
λ

)

(s2−R2

L2 )
}
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I2(t, β; η)
′
= l−1{ v(t)

(s+R
L
)
− R

L

(u2−
βl

′
ũ0
λ

)

(s2−R2

L2 )
+ s

(u2+
βr

′
ũ0
λ

)

(s2−R2

L2 )
}

Case II: Corresponding to (ii)-gH differentiability system applying fuzzy Laplace trans-
form we have

(−Ii(0))⊖ (−sL[Ii(t)]) = −R
LL[I

i(t)] + L[v(t)]

with initial condition

I1(0, α;λ) = u1 +
αlũ0
λ

I2(0, α;λ) = u3 −
αrũ0
λ

I
′
1(0, β; η) = u2 −

βl
′
ũ0
λ

I
′
2(0, β; η) = u2 +

βr
′
ũ0
λ

In crisp sense we can write

dI1(t,α;λ)
dt = −R

L I1(t, α;λ) + v(t)
dI2(t,α;λ)

dt = −R
L I1(t, α;λ) + v(t)

dI1(t,β;η)
′

dt = −R
L I1(t, β; η)

′
+ v(t)

dI2(t,β;η)
′

dt = −R
L I2(t, β; η)

′
+ v(t)

with same initial condition.

Solution: The solution can be written as

I1(t, α;λ) = l−1{ lv(t)

(s+R
L
)
+

(u1+
αlũ0
λ

)

(s+R
L
)

}

I2(t, α;λ) = l−1{ lv(t)

(s+R
L
)
+

(u3−
αrũ0

λ
)

(s+R
L
)

}

I1(t, β; η)
′
= l−1{ lv(t)

(s+R
L
)
+

(u2−
βl

′
ũ0
λ

)

(s+R
L
)

}

I2(t, β; η)
′
= l−1{ lv(t)

(s+R
L
)
+

(u2+
βr

′
ũ0
λ

)

(s+R
L
)

}

Numerical example:

IfR = 1 Ohm,L = 1 Henry,v(t) = sint and u(t = 0) = ((2425 , 1,
101
100 ; 0.6), (

23
25 , 1, 102100; 0.3))

then find I(t) at t = 0.5 sec.

Solution: If we consider (ii)-gH differentiability concept then the solution is written as

I1(t, α; 0.6) =
1
2(sint− cost) + 1

2e
−t + (2425 + 1

15α)e
−t

I2(t, α; 0.6) =
1
2(sint− cost) + 1

2e
−t + (101100 − 1

60α)e
−t

I
′
1(t, β; 0.3) =

1
2(sint− cost) + 1

2e
−t + (1− 4

15β)e
−t

I
′
2(t, β; 0.6) =

1
2(sint− cost) + 1

2e
−t + (1 + 1

15β)e
−t
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Table 2. Value of I1(t, α; 0.6), I2(t, α; 0.6), I
′
1(t, β; 0.3), I

′
2(t, β; 0.3) for dif-

ferent α, β at t = 0.5

α I1(t, α; 0.6) I2(t, α; 0.6) β I
′
1(t, β; 0.3) I

′
2(t, β; 0.3)

0 0.3899 0.4202 0.3 0.3657 0.4263
0.1 0.3940 0.4192 0.4 0.3495 0.4304
0.2 0.3980 0.4182 0.5 0.3333 0.4344
0.3 0.4020 0.4172 0.6 0.3171 0.4384
0.4 0.4061 0.4162 0.7 0.3010 0.4425
0.5 0.4101 0.4152 0.8 0.2848 0.4465
0.6 0.4142 0.4142 0.9 0.2686 0.4506

1 0.2524 0.4546

Figure 2. Graph of I1(t, α; 0.6), I2(t, α; 0.6), I
′
1(t, β; 0.3), I

′
2(t, β; 0.3) for

different α, β for t = 0.5

5. Conclusion and future research

In this paper we solve the first order linear generalized intutionistic fuzzy differential
equation by Generalized intutionistic fuzzy laplace transform method. We apply this pro-
cedure in two different imprecise electrical circuit problem. In future we can solve n-th
order generalized intutionistic fuzzy linear or nonlinear differential equation by Gener-
alized intutionistic fuzzy laplace transform and apply in different models of science and
engineering with uncertainty.
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