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Abstract
With the help of statistical software programs, such as AMOS, Lisrel, R, Matlab, and many equivalents, most of the 
complicated research models have become more computable and easily understandable. Even the most complicated 
and complex models with various relationships can be easily computed with the help of software. Although with slight 
differences, outputs are consistent, and tables are mostly comprehensible. However, with the increasing curiosity and 
amount of knowledge about the research methodology, these simple looking outputs start to become more complicated 
and deeper. Even though aforementioned statements seem contradictory, what we imply here is very sound to a mid-
level researcher because, as knowledge and understanding of statistics deepens, questions and doubts about from 
where, how, and why these numbers are calculated increase. Curiosity about the fit indices, chi-square and degrees of 
freedom, modification indices, covariances, and residuals begin to arouse.

In this review and commentary, we focus on the infamous CMIN (or chi-square), different model definitions, and 
calculation of fit indices by the help of these models while avoiding statistical jargon as much as possible. With the aim 
of putting an end to a decade long debate, when and how to use which fit indices, what they really indicate, and which 
numbers refer to good or bad fit is also discussed.
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Introduction
In order to be able to comprehend structural equation modelling, confirmatory 

factor analysis, and fit concepts, some literature and definitions are necessary to 
clarify. First of all, we have to begin with the definition of the models mentioned in 
the software. These are most of the time confusing, not only because of their nature 
but because they are never really described anywhere in the process. Secondly, the 
estimation methodology is to be defined. Most SEM users, no matter what software 
they use, are accustomed to the “Maximum Likelihood Estimation,” but a great 
deal of these researchers have no idea what it is and what it does. Finally, there 
are several concepts which need to be clarified before discussing fit of the models. 
Some of these concepts are CMIN, Chi-Square, Log-Likelihood (see also Maximum 
Likelihood), C and F values, NPAR, p and P, fit and index, and PRATIO. Despite 
sounding familiar, most of the time they are misleading, confusing, bewildering, and 
even confounding. We see them and think we know them, but we never think about 
what they really are or where they come from. Alongside the discussion of several 
concepts and terminology, the necessary values and key-points will be discussed 
throughout the paper.

Models Definitions
Despite slight naming differences among statistical software, there are three main 

models essential for the calculation of SEM and CFA. First is the one that researchers 
want to investigate, which is called “default model,” “structural model,” or “measurement 
model”. Following is the one in which every measured variable is accounted as 
independent of each other and any latent variable. This is called “independence 
model;” it also is the “baseline/null model” for CFA and SEM – we will discuss this 
confusion further below. Final is “saturated model” in which all variables covary with 
every each other. 

Since its name will be mentioned several times here, before we begin defining 
models, an introduction to a fairly common concept called parsimony is also essential. 
Parsimony means simplicity, so the parsimonious models are simple models with 
less parameters to be estimated. Of course, parsimony of a model can only be judged 
relatively, often comparing nested models. 

Nested models are the models in which one of the models contains all the variables, 
parameters, and interactions of the other and at least one extra term (parameter, constraint 
e.g.). Extended model is called the full (or complete) model, and abridged is called 
the restricted (or reduced) model; hence, saturated, default, and independent models 
are all nested models, where saturated is the full model and default is the restricted 
version of it (so is the independent).
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Besides, there is a ratio called PRATIO (parsimony ratio) which compares the degrees 
of freedom for default model (df) and independence model (dfi). Its formula is simply 
PRATIO=df/dfi. This ratio is also used to calculate “Parsimony adjusted measures of 
fit” or namely PNFI and PCFI. These will be discussed later in this paper. 

Aforementioned models are:

Saturated model: This is the fully explanatory model in which per every degree of 
freedom, there are as many parameter estimates; therefore, dfs=0. That is to say every 
variable in the model co-varies with every each other. This is the most general model 
possible. Goodness of fit measures are “1.0” for this model. Besides, some measures 
such as RMSEA cannot be computed for saturated model, and because saturated 
model, by its nature, is the most un-parsimonious model possible, parsimony-based 
fit measures (PNFI, PGFI etc.) will be 0. It is an inane and illogical model in the sense 
that it is guaranteed to fit perfectly to any set of data collected. Any other model in the 
same research (that also implies the same dataset) is a nested (constrained) version 
of the saturated model.

Null or baseline model (AKA independence model in AMOS and some other 
software): The comparison model is frequently used as the “baseline model,” differences 
from which must be significant if a proposed structural model (the one with straight 
arrows connecting some latent variables – also called the default model in AMOS) is 
to be investigated further; however, the term “baseline model” implies comparison 
with an alternative that is more complex than a no-effect hypothesis. The terms “naïve 
model” and “null model” better indicate the kinds of models that researchers have 
used as baselines so far (Schwab, A., & Starbuck, W. H., 2013).

In the SEM or CFA baseline model, the covariances in the covariance matrix among 
the latent variables are all assumed to be zero. Despite its official name, AMOS and 
several other statistical software name “null/baseline” model as “independence model”. It 
makes sense because the independence model is the one which assumes all relationships 
among measured variables are “0.” Independence model is an uncorrelated variables 
model, and for computation, many fit measures, such as TLI=NNFI, RFI, IFI, NFI, CFI, 
PNFI, and PCFI, necessitate a “null/baseline” model in comparison with researchers’ 
measurement model. This model assumes that variables or latent factors of a construct 
are uncorrelated. Unlike the saturated model which have a parsimony ratio of “0,” the 
independence model has a parsimony ratio of “1.”1 Most of the fit measures will have 
a value of “0” since this is the worst model possible, whether parsimony-adjusted or 
not. In rare occasions, some fit indices, such as RMSEA and GFI, may have a non-zero 
value depending on the data (Schermelleh-Engel, K., et.al., 2003).

1	 Please	refer	to	PRATIO	in	this	paper.
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Default (structural or measurement) model: This is the researcher’s measurement 
or structural model (AMOS calls it the “default model”). In comparison to saturated 
model, this model is always more parsimonious, and it is always better fitting than the 
independence model when compared using fit indices. Thus, the default model will 
have a goodness of fit between the perfect fitting “saturated model” and worst possible 
model with lowest explanatory power, “the independence model.”

Estimation and Maximum Likelihood Estimation
Even though there is no simple way to describe Maximum Likelihood Estimation 

(MLE), it is essential to say this method is the default for many statistical software 
in order to be able to calculate many of the fit indices. Its complexity should not be 
taken for granted; however, some concepts about the estimation process and routines 
can be elaborated.

There are several estimation techniques, most of them perform one of three things 
(Templin, J. 2015):

1. Minimize some function: If the estimation process includes the word “least” in its 
name, then minimization should be expected. Most of these techniques minimize 
the squares of the error terms (or std. deviations). Types of least squares techniques 
include ordinary, generalized, weighted, WLSMV, iteratively re-weighted, and 
diagonally weighted. It is usually conducted as a last resort. 

2. Maximize some function: Mostly, this gold standard of estimation techniques comes 
with the name “maximum” in it, such as maximum likelihood, residual maximum 
likelihood, and robust maximum likelihood. 

3. Usage of simulation for sampling from data: These use recent advanced techniques 
of re-sampling through the help of recent simulation methods. Some of these 
include Gibbs sampling, Metropolis-Hastings algorithm, Monte Carlo simulation, 
and Bayesian Markov Chain Monte Carlo. These are typically used for complex 
models where maximum likelihood is not applicable or in which some prior values 
are necessary.

Simply;

(1) MLE is a procedure to determine best model parameters (reality) that fit the 
given data with maximizing log-likelihood function to estimate parameters. The 
formulas here, while being quite mathematical, are familiar to most statisticians’. 
But one can immediately ask: “Why not likelihood function but log-likelihood?”. 
Simply put, mathematically its asymptotes meet at the same values, and it is way 
easier to find a maximum of log-likelihood since it includes “sums” rather than 
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“products” as likelihood function does. Additionally, one can easily understand 
that maximization of products is harder than sums. Since we need derivatives 
of functions to find out asymptotes, it is easier to take derivatives of sums. 

(2) MLE also helps compare different models with the same data using some 
information criteria. This is mathematically even more advanced. There are 
formulas called information theory techniques. The most common one is 
Kullback-Leibler information criterion, which quantifies the distance between 
two given models. Since depending on full probability density functions, it is very 
hard to calculate (Burnham, K. P., & Anderson, D. R., 2001). Japanese statistician 
Hirotugu Akaike (1987) proved that K-L information could be estimated based 
on maximum log-likelihood and created AIC (Akaike Information Criterion). 
Its formula is: 

AIC = -2(ln(ø|x)) + 2K

It actually is “-2” times log-likelihood added by “2” times the number of parameters. 
Both log-likelihood and AIC are only meaningful when compared to other models with 
the same data (they are relative not absolute). They have no meaning by themselves, 
so the higher or lower the values mean nothing without comparison. Moreover, if 
you are comparing two “bad” models, they can only mean one is better than the other 
but cannot say anything about how bad/good they are. AMOS reports several similar 
model comparison values such as AIC, BCC, BIC, CAIC, ECVI, and MCVI. Keep 
in mind that these values are only for models’ comparison and relative . They do not 
indicate a fit for models. Simply put, if you are to compare two nested models2 among 
each other, they are handy. If not, just ignore them. Complicated, poorly fitting models 
get high scores. For comparison purposes, this means the lower the values the better3.

Some Other “sine qua non” Concepts
Since we now are aware of maximum likelihood estimation and log-likelihoods, 

we	can	talk	about	chi-square	(χ2) values calculated per model in AMOS. It is named 
as “CMIN” which allegedly stands for “chi-square minimum.” If one is accustomed 
to basic statistics, then he or she should also know about chi-square test and that it 
stands for “independence.” This means, without terminologically using definition of 
hypotheses,	if	a	χ2 value is statistically significant (p<0.05) then these two observations 
are “independent” from each other. In CFA and SEM, it is potentially unwanted. We 
want our measurement model (default model in AMOS) to be “not independent” from 
the data of observations.

2 Two models are nested if one contains all the terms of the other, and at least one extra term.
3	 Also	see	the	“Model	comparison”	section	below.



ISTANBUL MANAGEMENT JOURNAL

6

The problem is that it is not easy to comprehend how CMIN is calculated. As one 
googles chi-square, he or she will most probably end up with what we call “Pearson 
Chi-Square” formula saying something like, “If you subtract expected values from 
observed values and square them, then divide them by expected values, you end up 
with chi-squared for each observation.” If you add them all, you find a summed chi-
square value. This is what confuses most people because we have observed values on 
one side of the arrow since factors are unobserved (latent) variables. 

Moreover, this CMIN is referred to as a fit index; therefore, it should be comparing 
two models, not observations. What are these two models? To evaluate the fit of the 
factor model, its “function of log-likelihood value” has to be compared to that of some 
less constrained model, such as the saturated model. The chi-square test compares the 
model (default model) to the saturated model (it should fit about the same). Many fit 
indices compare the model to the null/baseline model instead (baseline model should 
fit much worse than measurement model). AMOS uses function of log-likelihood to 
report CMIN. Chi-square is calculated through multiplying the number of samples and 
FML (function of ML); therefore, C=n(FML). C value is derived from F, and this value 
is also called “minimum discrepancy function.”

As discussed earlier in the model definitions section, saturated and default models 
are nested models, where saturated is the full and default is the restricted. Difference 
between function of log-likelihood of two nested models also gives the chi-square. If 
one simply calculates function of log-likelihood for saturated and default models and 
takes the difference, they end up with the chi-square for default model. The number 
of parameters to be estimated are also subtracted (of course, saturated model has more 
NPAR) to end up with “df” for default model. Eventually, chi-square distribution table 
can be used to calculate probability and test the null hypothesis of independence.

The number of parameters to be estimated defines the complexity of the model. 
Models with many parameters to estimate are called complex. Less parameters means 
the model is simple. In AMOS and other programs, number of distinct parameters 
to be estimated is called “NPAR.” The word “distinct” is also important here. For 
instance, if two or more parameters are required to be equal to each other, then these 
count as one, not two. 

This leads us to another important concept in statistics, degrees of freedom (df). 
Degrees of freedom is the NPAR (q) subtracted from the number of sample moments 
(p), so the formula is (df=p-q).

One of the main fit measures (perhaps it should be called “THE” fit measure) is 
CMIN. It is the minimum value of C of the discrepancy, otherwise called chi-Square 
of likelihood ratio test. Since chi-square statistics all require a significance value, 
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“p value” is marked as “P” for testing the hypotheses that the model fits perfectly in 
population. As discussed earlier in this paper, it is the discrepancy between perfectly 
fit model (saturated model) and default model.

Increase in NPAR (also implying decrease in df), declines log-likelihood for the 
nested models using the same sample. This means, saturated model always has lower 
value for function of log-likelihood. Sample size increases the likelihood functions; 
despite the sample size being the same in the nested models, this does not mean the 
difference stays the same with smaller sample sizes. Chi-square test value increases as 
the sample size increases, and this makes the values significant since the (df) stays the 
same. It sounds complicated, but think of it as a test statistic of independence getting 
larger as the number of samples increases, which makes it more significant at a time. 
If two models (in our case, it is saturated and default models) are independent of each 
other, then they simply are not fit to each other. This is true but not necessarily correct, 
and this is the reason that we need more indices to be able to look at.

Here are some quotes directly from respected statisticians/researchers:

“The power of the test to detect an underlying disagreement between theory 
and data is controlled largely by the size of the sample. With a small sample 
an alternative hypothesis which departs violently from the null hypothesis 
may still have a small probability of yielding a significant value of. In a very 
large sample, small and unimportant departures from the null hypothesis are 
almost certain to be detected.” (Cochran, 1952)

“If the sample is small, then the test will show that the data are ‘not 
significantly different from’ quite a wide range of very different theories, 
while if the sample is large, the test will show that the data are significantly 
different from those expected on a given theory even though the difference 
may be so very slight as to be negligible or unimportant on other criteria.” 
(Gulliksen and Tukey, 1958, pp. 95–96)

“Such a hypothesis [of perfect fit] may be quite unrealistic in most empirical 
work with test data. If a sufficiently large sample were obtained this statistic 
would, no doubt, indicate that any such non-trivial hypothesis is statistically 
untenable.” (Jöreskog, 1969, p. 200)

“Do they mean that we should limit the sample size? Despite they sound in that 
manner, one should also know that “Significant properties of maximum likelihood (ML) 
estimate are consistency, normality, and efficiency. However, it has been proven that 
these properties are valid when the sample size approaches infinity. Many researches 
warn that a behavior of ML estimator working with the small sample size is largely 
unknown. (Psutka, J. V. and Psutka J., 2015)”
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One logical way to assess fit is to find the discrepancy value (CMIN) per degrees 
of freedom, given that it tends to increase with number of sample moments. CMIN/
df value can give the researcher an absolute value for fit. Arguments begin just here, 
because various researchers have suggested various acceptable values for this value. 
Wheaton and colleagues (1977) suggested 5 or less, some suggested as low as “2,” or 
as	high	as	“5.”	Byrne	et.al.	(1989)	puts	forward	that	χ2/df > 2 indicates bad fit.

Values less than “1” will probably require insignificant CMIN values and will 
therefore not be even necessary to calculate. Anything close to “1” should be very 
good fit, but how far apart could it fall from “1?” Let’s remember the calculation of 
degrees of freedom (df=Sample moments - number of distinct parameters); thus, as 
df increases with sample size so does X2. Here we should first look at NPAR. The 
default model’s chi-square calculation, not by chance, is the difference of NPAR 
between saturated model and measurement (default) model. If “df” for default 
model is calculated taking the number of parameters into account, this means we 
can ignore it simply because it is already taken into account. Sample size should be 
the only variable here to decide the value for CMIN/df cut point. Here we can use 
common sense: 

(1) If the commonly accepted minimum sample size in a factor analysis is at least 
50 and also 5 times the number of variables. This means minimum sample for 
a decent number of variables as around 150 (there is no real calculation here 
but merely observation). 

(2) If minimum number is around 150, doubling this number seems fair for a cut 
point. Let’s say 300 here is a cut point for sample size to categorize CMIN/df 
value. 

(3) Then we can say, looking to our commonly mentioned cut points of CMIN/df, 
if sample size is between 150-300, then 3.5 (median of 2-5) can be taken as cut 
point to assess the fit. If sample size is above 300, then “5” can be taken as the 
criterion.	More	than	5	χ2 per degrees of freedom indicates a bad fit regardless. 
This value should be less. Please read further.

(4) To decide whether a CMIN/df is good enough, one should also compare the 
worst model’s (independence model) CMIN/df value. These values should be 
significantly different from each other because if worst model is fit enough, 
this requires measurement model to be even much fitter. Luckily, we have fit 
indices comparing these values.4

4	 Please	refer	to	relative	fit	indices	(NFI,RFI,	CFI	and	TLI)
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Indices: Fit and Others

Before beginning to discuss anything about fit, we have to make a short list of things 
often confused by researchers. Researchers MUST keep in mind that:

(1) Fit has very little to do with validity: Most researchers confuse fit with validity. 
Validity is a much broader concept to begin with.

(2) If model is fit, this means your data is consistent with what you want to measure.

(3) If model is fit, then it is useful model.

(4) If model is fit, then it will probably be able to be replicated in other researches.

(5) If model is fit, the researcher can stop adding covariances among residual error 
terms.

(6) If model is fit, then the researcher can proceed with further evaluation of construct 
and other validities.

(7) If model is fit, it is NOT necessarily correct or valid.

(8) A good fitting model is ONLY “reasonably consistent with the data.”

Strictly keeping the list above in mind, there are several indices to measure the 
fit of the proposed measurement model (default model). Also, there is even more 
debate about what to use and when to use it. Mostly, simple models, with a moderate 
number of sample observations, have good fit. As the models get complicated and 
sample size increases, these fit indices start to drop. Frequently, researchers face the 
dilemma of choosing between fit indices because while some are above cut points, 
others are below expected values. Here are some problems: what are the cut points 
for indices? Is there a commonly accepted value for each? What index is best for 
models with many variables? After being able to answer all these questions, another 
problem may rise: what if some of them are above expected values and some are not, 
who tells us which to go for, and finally, if one can solve all these issues, how are two 
or more similar models with the same data compared. In this section we will try to 
answer these questions with avoiding complicated, sophisticated jargon of statistics. 
This does not mean we will leave things out; this implies we will keep it as “simple 
and stupid” as possible.

Fit indices (measures) in AMOS are categorized into sub groups. These are: absolute 
fit indices, relative/incremental fit indices, parsimony (check above) fit indices, non-
central chi-square distribution (population discrepancy based) fit indices, information 
theoretic fit indices, and fit measure based on sample size. 
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Absolute Fit Indices
Absolute fit indices indicate fit without comparing the default model to anything 

for the best fit model. Despite there being a comparison with the best fit model 
(saturated model), the indices indicate the model fit themselves. CMIN and CMIN/
df are the basis of absolute fit indices discussed above. Other absolute fit indices 
include RMR and GFI.

RMR and GFI

It is the Root Mean Squared Residuals, therefore also called RMSR or SRMR. This 
value is simply what it says. It squares the amount by which the sample (measurement) 
covariances differ from their estimates. It is much like average of sum of squared 
errors (or residuals) in regression, yet as measurement units differ from each other, 
it is more relevant to carry out the calculation based on residual correlation matrix. 
Usually an RMR value (based on correlations) less than 0.05 indicates a good fit. This 
unfortunately is not a part of AMOS, but a script or manual calculation will sort out 
this problem. The smaller the value is the better. 

Thanks to AMOS and LISREL, a more advanced version of RMR is calculated 
under the name of GFI (Goodness of fit). GFI compares by dividing squared weighted 
sum of the variances of measurement and estimation, where weighting depends on 
estimation method. Much like R2 in regression, it takes a value between “0-1.” It is 
not suggested to use this index since it is affected by sample size. There also is a “df” 
adjusted version called AGFI, if one wants to use it, this one should be preferred. A 
“GFI” value larger than 0.95 can be accepted as good fit, preferably larger in small 
sample sizes and less parameters. GFI is greatly affected by sample size, so simply 
do not use this index (Kenny, D.A., 2005).

Incremental Fit Indices
These fit indices are also called relative or comparative indices because these indices 

or measures are based on the idea that things may be worse. There always (hopefully 
always; if not, do not even bother testing the model) is a worse model than default 
model, where each observation is taken into account as independent. Independent 
model is also called, due to its nature for comparison, baseline or null model. 

Researchers may immediately ask why use the worst model but not the best. The 
answer is hidden in the calculation. As defined earlier, C (in Amos CMIN or in some 
cases F5) value is calculated with the help of perfectly fit model, which is also the 
“saturated model” namely. This model is the best fit model to the data. Please remember, 
fit and validity are two different things!

5	 Discussed	under	title	“Fit	measures	based	on	population	discrepancy”
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NFI and TLI
Relative fit measures are NFI (Normed Fit Index), RFI (Relative Fit Index), IFI 

(Incremental Fit Index), TLI (Tucker Lewis Index), and CFI (Comparative Fit Index). 
NFI is calculated using minimum discrepancy (CMIN – Chi-Square) of default model 
with CMIN of independent model. NFI gets a value between “0-1,” where a value of 
“1” represents perfect fit to data. The higher the difference between model and worst fit 
results in a bigger value. A value of 0.90 and above is accepted to represent acceptable 
fit. The fit can be overestimated if the number of parameters is increased. RFI is the 
“degrees of freedom” corrected version of NFI; therefore, it solves the issue of parameter 
increase. It gets a value between 0 and 1 like NFI, and values above 0.90 is acceptable. 
For both NFI and RFI, smaller sample size tends to inflate the values; therefore, it is 
mostly suitable for larger samples. For smaller sample sizes, 0.95 is acceptable.

CFI
CFI is also “df” corrected versions of NFI. This time, it is not divided but rather 

subtracted. For every parameter estimated, there is just one penalty. With larger 
samples and low number of parameters change, values tend to be very close to NFI. 
CFI may get values larger than “1” but “1” is always reported as maximum. Value of 
“1” does not indicate perfect fit but simply means “df” of default model is larger than 
chi-square of the default model.

TLI, also called Non-normed fit index, is very similar to RFI. Lower “chi-square to 
df ratios” indicates a better fit. TLI and CFI depend on the average size of correlations 
in the model. If the average correlation among variables is low, values are also low. 
That being said, if several experimental variables (uncorrelated) are added to the 
default model, then this decreases the value of TLI (also CFI). A suggestion here can 
be that if the research model has several experimental or control variables, then TLI 
and CFI are not to be suggested. Values above 0.90 are acceptable, and 0.95 indicates 
good fit. If the model has very strongly or very weakly correlated variables, then the 
suggestion is to ignore these indices.

Fit Measures Based on Population Discrepancy

F0 and RMSEA
As discussed earlier, the function of discrepancy or log-likelihood, in Amos is 

presented as chi-square, “n” value being sample size minus number of groups (n=N-g ; 
g is mostly 1 in our cases) Steiger, Shapiro, and Browne (1985) proved (C=n.F0) under 
certain conditions has a noncentral chi-square distribution with df degrees of freedom 
and non-centrality parameter Delta=(C -df) =nF0. This results in F0= [(C-df) / n] (or 
simply and generally; F0= [(C-df)/ (N-1)]. Non centrality parameter is then used to 
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compare two nested model, such as default and saturated models. The problem here 
is that F0 always favors complex models and will never favor the simpler model, or in 
other words, parsimonious model. Steiger and Lind (1980) suggested compensating 
for the effect of model complexity by dividing F0 by the number of degrees of freedom 
for testing the model. This ratio then gives us “mean square error of approximation” 
(this makes sense since discrepancy function is a square). Taking the square root of 
the resulting ratio gives the population “root mean square error of approximation,” 
or simply RMSEA. The calculation, in mathematical terms, favors larger sample size 
or df. Just like TLI, if chi-square equals to df, then the value becomes “0.” One can 
simply expand the calculation by rewriting F0	as	“(χ

2-df) /n.” Thr formula becomes 
“[(χ2-df) / (df.n)],” and size effect of “df” will be more obvious. The smaller the “df” 
is the larger the RMSEA is, even with very small chi-square.6 This may indicate a 
“bad fit” since RMSEA values below 0.08 indicates an acceptable, and 0.05 indicates 
a good fit. The suggestion is to use RMSEA in high df values and not even compute 
with low values or to at least be very cautious when you have low df.

PCLOSE
PCLOSE is actually a “p” value, something we are familiar seeing in almost every 

statistical analysis; however, this time it should not be confused with the p value of 
chi-square (where H0; RMSEA=0) which stands for exact fit. This makes sense because 
it stands for a “close fit.” Browne and Cudeck (1993), based on experience with SEM 
and RMSEA, argue that a RMSEA of 0.05 or less points to a good (close) fit; hence 
it calculates p value for null hypothesis of H0; RMSEA<=0.05. When PCLOSE is 
significant, null hypothesis is rejected, indicating lack of close fit. PCLOSE should 
be insignificant to indicate good fit.

Parsimony Adjusted Fit Indices
James and colleagues (1982) and Mulaik and colleagues (1989) suggest adjusting 

NFI and GFI by multiplying indices with a ratio called PRATIO. PRATIO, as mentioned 
earlier in the related section of this paper, compares the degrees of freedom for default 
model (df) and independence model (dfi). The formula is simply PRATIO=df/dfi. AMOS 
also calculates PGFI by using the same method. Usually and debatably, values above 
0.80 indicate a good fit. The quotation below clarifies the use of parsimony indices:

“Although many researchers believe that parsimony adjustments are important, 
there is some debate about whether or not they are appropriate. I see relative 
fit indices used infrequently in the literature, so I suspect most researchers 
do not favor them. My own perspective is that researchers should evaluate 

6	 For	instance	a	chi-square	value	of	2	(obviously	not	significant)	with	1	df	and	90	samples	will	give	out	an	
RMSEA of 0.106. sqrt((2-1)/1.(90-1)) = 0.106
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model fit independent of parsimony considerations, but evaluate alternative 
theories favoring parsimony. With such an approach, we would not penalize 
models for having more parameters, but if simpler alternative models seem to 
be as good, we might want to favor the simpler model.”(Newsom, J. T., 2018)

Modification Indices
Modification indices show us how much chi-square (test statistics) will decrease if 

covariance is added among error terms of mentioned variables. It is only informational 
for CFA or SEM. Given a poorly-fitting model, you may want to know what path(s) 
you could add to make it better. If you change something according to MIs, then it is 
exploratory in nature. Be alert. This will be further evaluated below.

Also, adding paths looking to MIs makes the consecutive models nested to each other; 
therefore, one can use the model comparisons based on chi-square as mentioned below.

How much MI value is worth intervention? Actually, there is no certain limit to 
this. MI values show the test statistics (chi-square or CMIN) change since models 
are nested by nature. Change in CMIN may not mean much if it does not change the 
fit. Researchers may individually calculate a rough estimate for CMIN/df change 
by dividing the highest MI value with the “df.” If the decrease in CMIN/df seems 
significant, then the covariance or path may be added. If not, then it seems negligible. 
This can be done as many times as the model is re-estimated; however, the user should 
be cautious in their use of MIs. If new models are developed with the help of MIs, 
then it must be reported. Do not pretend that you have a theoretical reason for part 
of a model that was put there because it was suggested by MI indices table! This is 
simply fraud. Using MIs makes the analysis exploratory by nature. This means if you 
are to use MI to correct the model, then this should be reported as exploratory SEM. 
The second option is that you reserve a part of the data to first explore, then use the 
remaining part to confirm (lesser evil). 

Model Comparisons
Comparing two good models among each other is a nice comparison. If you are 

comparing two bad models, then it is a burden, and moreover, it leads to nothing but 
choosing the lesser evil. How good your model is is not described in this paper because 
it not only depends on fit indices or other values, such as AVE, MSV, or ASV (also not 
described here), but also theoretical background and other validity questions. Model 
comparisons only and simply compare two or more models. Do not assign more value 
to them, and do not fall into the mistake of calling a better model valid!

If one wishes to compare models, there are few criteria. Some of these information 
criteria are also reported with AMOS: 
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• The model with lower AIC (mentioned before) or BIC (Bayesian information 
criteria-not mentioned in this paper) is better, but, again, these are relative numbers. 
They do not indicate an absolute fit. Simply note down the models’ AIC and BIC 
values, and compare them.

• If models are significantly different from each other, then a complicated version 
is better

• If models are not significantly different, then a simpler version is preferable.

If models are nested (such as default and saturated models mentioned earlier), then:

• Log-likelihood functions can be calculated, and difference among them with df can 
be used in chi-square distribution to test their difference. Added paths or deleted 
paths on a model make them nested to each other, so, one can compare their log-
likelihoods. (This is not in AMOS by default, but R, Matlab, or AMOS scripts can 
be used to calculate).

As a rule of thumb, CFA is used to “confirm” a factor structure or a measurement 
model. Therefore, any changes made to this model will take it apart from confirmation 
and will make it exploratory in nature. Model comparisons are mostly suggested for 
exploratory SEM or path model comparisons. 

Conclusion and Notes on Fit Indices

Several researchers and statisticians suggest different values and cut-points for 
different so-called useful fit indices. Individual researchers should keep in mind some 
notes about fit indices:

• Normality affects absolute fit indices. Non-normal data inflates chi-square and, 
therefore, decreases absolute fit values. Incremental and population discrepancy 
measures are less affected (Kenny, D. A., 2015).

• Number of variables affect fit. Increasing the variables decreases the fit. RMSEA, 
especially, increases (we do not want this) as more variables are added. Indices 
such as NFI, TLI, and CFI are relatively more stable but also declines slightly in 
such case, which is all probably because of an inflated chi-square.

• BIC, RMSEA, and TLI requires parsimony the most (also respectively among each 
other), and NFI and CFI requires it the least.

• NFI does not adjust for sample size. Increasing sample size decreases the fit value. 
TLI and CFI are relatively stable with sample size, and variation decreases between 
larger sample sizes. RMSEA, however, declines with sample size. Larger sample 
researches favor RMSEA.



Yaşlıoğlu, Toplu-Yaşlıoğlu / How and When to Use Which Fit Indices? A Practical and Critical Review of the Methodology

15

• While testing for exact fit, a researcher should go for insignificant CMIN, which is 
almost always impossible (Unless with very few variables and a small sample size).

• To assess a good or close fit, researchers may go for different values;

o RMSEA (below 0.05 to 0.08): If the model is parsimonious and sample size is 
large, then below 0.05 or closer values; otherwise, 0.08 or below.

o CFI, RNI, NFI, TLI, RFI, IFI (above 0,90 to 0,95): Depending on variable size, 
variables below 10-12 require 0.95 for close fit, variables above 12 may require 
0.90 as cut-point. The higher is always the better.

o RMR below 0.05 or 0.08 for larger samples and GFI, preferably 0.90 or above. 
It is preferable not to use these indices.

o For comparing models (almost always nested models), information criteria, 
such as (AIC, BIC e.g.), are useful. 

o For gradual comparisons and model refining, Modification Indices are very 
beneficial.

o Assigning names to nested models in AMOS and using these to calculate 
likelihood ratios is the best way for model comparisons. (This requires an 
advanced knowledge and expertise in AMOS)

After all discussions, some essential fit indices to take into account are CMIN and 
CMIN/df, F0, RMSEA, and PCLOSE. Optionally, NFI, TLI, and CFI can be used. 
Researchers must determine a rationale for fit criteria, mention those rationale in their 
papers, and, perhaps, regard reporting several different types of fit indices. There is 
no one set of rules which to use, but a researcher can take into account the size of the 
sample, number of variables, and fit indices’ pros and cons. Finally, at least referring 
to one index from every different group of indices that we mentioned earlier in this 
text may reduce the criticism for the fit of the model.
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Genişletilmiş Özet

AMOS,	Lisrel,	R,	Matlab	ve	birçok	benzer	istatistiksel	yazılım	programlarının	
yardımıyla,	karmaşık	araştırma	modellerinin	çoğu	daha	hesaplanabilir	ve	kolayca	(?)	
anlaşılabilir	hale	gelmiştir.	Hatta	birçok	farklı	ilişkilere	sahip,	karmaşık	modeller	bile	
yazılımlar	yardımıyla	kolayca	hesaplanabilmektedir.	Aralarında	küçük	farklılıklar	
olmasına	 rağmen,	 çıktılar	 genellikle	 tutarlıdır	 ve	 oluşan	 tablolar	 çoğunlukla	
anlaşılabilirdir.	Bununla	beraber,	araştırma	metodolojisi	hakkında	artan	merak	ve	
bilgi	miktarı	dolayısıyla,	bu	basit	görünümlü	çıktılar	daha	da	karmaşıklaşmaya	ve	
derinleşmeye	başlamıştır.	Sözü	edilen	ifadeler	çelişkili	gözükse	de	bu	noktada	ima	
edilen	durum	orta	seviye	bir	araştırmacı	için	oldukça	tanıdık	gelecektir,	çünkü	bir	
araştırmacının	istatistik	bilgisi	ve	anlayışı	derinleştikçe,	bu	rakamların	nereden,	nasıl	
ve	neden	hesaplandığına	dair	sorular	ve	şüpheler	artmaktadır.	Bu	sorular	ve	şüpheler	
uyum	indeksleri,	ki-kare	ve	serbestlik	dereceleri	(Degrees	of	Freedom),	değişiklik	
indeksleri	(Modification	Indices),	kovaryanslar	ve	artıklar	(residuals)	hakkında	merak	
uyandırmaya	başlamaktadır.	Bu	doğrultuda,	istatistiksel	jargondan	mümkün	olduğunca	
kaçınarak	CMIN	(ya	da	ki-kare),	farklı	model	tanımları	ve	bu	modellerin	yardımıyla	
uyum	indeksi	hesaplamalarına	odaklanılmaktadır.	Tüm	bunlarla	birlikte	bu	çalışmada,	
on	yıllık	bir	tartışmaya	da	son	vermek	amacıyla;	hangi	uyum	indekslerinin	ne	zaman	
ve	nasıl	kullanılacağı,	tam	olarak	neyi	belirttikleri	ve	hangi	değerlerin	iyi	veya	kötü	
uyum	anlamına	geldiği	tartışılmaktadır.	

Bu	çalışmada	tartışılmakta	olan,	yapısal	eşitlik	modellemesi,	doğrulayıcı	faktör	analizi	
ve	uyum	kavramlarını	kavrayabilmek	literatürde	olan	bazı	tanımların	netleştirilmesi	
gerekmektedir.	Öncelikle	çoğu	zaman	kafa	karıştırıcı	olabilen,	araştırma	sürecinin	birçok	
noktasında	yeterince	açıklanmayan	ve	istatistik	işlemlerin	yapılması	için	kullanılan	
yazılımlarda	bulunan	modellerin	tanımlanması	ve	daha	sonra	da	tahmin	yöntemlerinin	
açıklanması	yerinde	olacaktır.	Çoğu	“yapısal	eşitlik	modellemesi	(SEM)”	yöntemi	kullanan	
araştırmacı	hangi	yazılımı	kullanırsa	kullansın	“Maximum	Likelihood”	yöntemine	alışır	
ancak	büyük	bir	kısmının	bu	yöntemin	gerçekte	ne	olduğu	ve	ne	yaptığı	hakkında	hiçbir	
fikri	yoktur.	Ayrıca	modellerin	uyumunu	tartışmadan	önce	açıklığa	kavuşturulması	
gereken	birkaç	kavram	vardır.	Bunlar;	CMIN,	Ki-kare,	Log-Likelihood	(Maximum	
Likelihood),	C	ve	F	değerleri,	NPAR,	p	ve	P,	uyum	ve	indeks,	PRATIO.	Bu	kavramların	
çoğu	tanıdık	gelmelerine	rağmen,	çoğu	zaman	yanıltıcı,	kafa	karıştırıcı,	şaşırtıcı	ve	
çelişkili	olabilmektedir.	Genellikle	bu	kavramlar,	çeşitli	araştırmalarda	görülmekte	
ve	bilindiği	düşünülmektedir	ancak	gerçekte	ne	olduklarını	ve	nereden	geldikleri	
üzerinde	düşünülmemektedir.	Bu	sebeple	bu	çalışmada	birçok	kavram	ve	terminolojinin	
tartışılmasının	yanı	sıra,	gerekli	değerler	ve	önemli	noktalar	ele	alınmıştır.	

Ayrıca	Türkçe	genişletilmiş	özette	yer	verilemeyen	ancak	makalede	İngilizce	olarak	
ayrıntılandırılmış	konular:	
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-	 Yuvalanmış	modeller	(nested	models),	araştırma	modeli,	doymuş	(saturated)	model,	
bağımsızlık	(independence)	modeli	gibi	kavramlar	ve	bu	modellerin	uygunluk	
değerlerini	hesaplarken	nasıl	kullanıldığı.

-	 Maximum	Likelihood	yönteminin	faktör	analizinde	ve	uygunluk	değerlerini	
hesaplamada	niçin	önemli	olduğu	ve	tam	olarak	ne	yaptığı.

-	 Ki-Kare	kavramının	ayrıntılı	olarak	incelenmesi	ve	neden	uygunluk	değerlerinin	
en	önemlisi	olduğunun	tartışılması.

-	 Tüm	uygunluk	istatistiklerinin	ayrıntılı	açıklaması,	benzerlik	ve	farkları,	güçlü	ve	
zayıf	yönleri.

-	 Düzeltme	indislerinin	(Modification	Indices)	ne	olduğu	ne	şekilde	kullanması	
gerektiği.

Bazı	araştırmacılar	ve	istatistikçiler,	uyum	indeksleri	için	farklı	değerler	ve	sınırlılıklar	
belirlemektedir.	Bu	nedenle	araştırmacılar	uyum	indeksleri	için	şu	noktaları	akılda	
tutmalıdır:

-	 Normallik	mutlak	uyum	indekslerini	etkilemektedir.	Normal	olmayan	veriler	ki-
kareyi	arttırır	ve	böylece	mutlak	uyum	değerlerini	azaltır	(Kenny,	D.A.,	2015).	

-	 Değişken	sayısı	uyum	indekslerini	etkilemektedir.	Değişkenlerin	artması	uyumu	
azaltır.	Yeni	değişkenlerin	eklenmesi	yoluyla,	istenmeyen	bir	durum	olan	RMSEA’nın	
yükselmesi	de	mümkündür.	NFI,	TLI	ve	CFI	gibi	indeksler	nispeten	daha	kararlı	
bir	yapıda	olsa	da	değişken	sayısına	göre	ufak	azalmalar	gösterebilir.	Bu	durumun	
sebebinin	de	ki-karenin	artması	olduğu	tahmin	edilmektedir.	

-	 BIC,	RMSEA	ve	TLI	modelde	sıkılığın	(parsimony)	karşılığını	verirken,	NFI	ve	
CFI	bunu	en	az	ödüllendiren	indekslerdir.

-	 NFI	örneklem	büyüklüğüne	göre	kendini	ayarlamaz,	artan	örneklem	büyüklüğü	
uyum	değerini	azaltır.	

-	 TLI	ve	CFI	değerleri	örneklem	büyüklüğü	ile	nispeten	daha	kararlı	bir	ilişki	
içerisindedir	ve	örneklem	büyüklüğü	arttıkça	değişkenlik	azalır.	RMSEA	da	örneklem	
büyüklüğü	ile	düşüş	göstermekte,	büyük	örneklem	büyüklükleri	RMSEA’nın	lehine	
bir	durum	ortaya	koymaktadır.	

-	 Kesin	bir	uyumluluk	için,	araştırmacı	CMIN	değerinin	anlamsız	olmasını	beklemelidir.	
Ancak	bu	durum	neredeyse	her	zaman	anlamsızdır.	(Çok	az	değişken	ve	çok	küçük	
bir	örneklem	büyüklüğü	olmadığı	sürece)
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-	 İyi	ya	da	tam	uygunluğun	olup	olmadığını	değerlendirmek	için	araştırmacılar	farklı	
değerler	kabul	edebilmektedir;	

o	 RMSEA	(0,05	ve	0,08’in	altında):	Model	sıkı	(parsimonious)	ise	ve	örneklem	
sayısı	fazla	ise	0,05’in	altında	ya	da	ona	yakın	değerler	olması,	aksi	takdirde	
ise	0,08’in	altında	olması	beklenir.	

o	 CFI,	RNI,	NFI,	TLI,	RFI,	IFI	(0,90	ve	0,95’in	üstünde):	Değişken	büyüklüğüne	
bağlı	olarak	değişmektedir.	10-12	değişkenden	az	olan	durumlar	0,95	ya	da	
ona	yakın	bir	uyum	gerektirmekte	iken	12’den	fazla	değişkeni	olan	durumlar	
ise	için	sınır	nokta	0,90’dır.	Bu	değer	için	daha	yüksek	olması	her	zaman	daha	
iyidir.	

o	 Daha	büyük	örneklemler	için	RMR’nin	0,05	ya	da	0,08’den	küçük	ve	tercihen	
GFI’nin	0,90	ya	da	üstünde	olması	beklenir.	Ancak	bu	indekslerin	tercihen	
kullanılmaması	öngörülmektedir.	

o	 Modelleri	karşılaştırmak	için	AIC,	BIC	gibi	kriterler	daha	yararlıdır.	

o	 Aşamalı	karşılaştırmalar	ve	model	arındırma	için	Modifikasyon	İndeksleri	
(Modification	Indices)	çok	faydalıdır.	

o	 AMOS’ta	iç	içe	geçmiş	modellere	isim	atamak	ve	onların	olasılık	oranlarını	
hesaplamak	model	karşılaştırmaları	için	en	iyi	yöntemdir.	(AMOS	konusunda	
ileri	düzeyde	bilgi	ve	uzmanlık	gerektirir.)

Tüm	bu	tartışmalardan	sonra	dikkate	alınması	gereken	bazı	temel	uyum	indeksleri;	
CMIN ve CMIN/df, F0,	RMSEA	ve	PSCLOSE’dir.	İsteğe	bağlı	olarak	NFI,	TLI	ve	CFI	
de	kullanılabilir.	Bunlar	doğrultusunda	araştırmacıların	uyum	kriterleri	için	mantıklı	
gerekçeler	belirlemeleri,	bu	gerekçeleri	makalelerinde	belirtmeleri	ve	birkaç	farklı	uyum	
indeksi	ile	karşılaştırmalar	yapmaları	gerekmektedir.	Bu	noktada	kullanılması	gereken	
kurallar	bütünü	bulunmamaktadır	ancak	araştırmacı	örneklem	büyüklüğünü,	değişken	
sayısını,	uygun	endekslerin	artılarını	ve	eksilerini	dikkate	alarak	karar	vermelidir.	
Son	olarak,	bu	çalışmada	bahsedilen	her	farklı	indeks	grubundan	bir	indekse	atıfta	
bulunmak,	modelin	uyumuna	yönelik	eleştirileri	azaltacaktır.	
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