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HARMONIC MAPPINGS RELATED TO CLOSE-TO-CONVEX

FUNCTIONS OF COMPLEX ORDER b

YAŞAR POLATOG̃LU1 §

Abstract. Let CC(b) be the class of functions close-to-convex functions of order b, and
let SH be the class of harmonic mappings in the plane. In the present paper we investi-
gate harmonic mappings related to close-to-convex functions of complex order b.
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1. Introduction

Let Ω be the family of functions ϕ(z) regular in the open unit disc D = {z ∈ C||z| < 1}
and satisfying the conditions ϕ(0) = 0, |ϕ(z)| < 1 for all z ∈ D.

Next, denote by P the family of functions p(z) = 1+ p1z + p2z
2 + · · · regular in D and

such that p(z) is in P if and only if

p(z) =
1 + ϕ(z)

1− ϕ(z)
(1)

for some function ϕ(z) ∈ Ω and every z ∈ D.
Moreover, let A be the class of functions in the open unit disc D that are normalized

with h(0) = h′(0)− 1 = 0, then a function h(z) ∈ A is called convex on starlike if it maps
D into a convex or starlike region, respectively. Corresponding classes are denoted by C
and S∗. It is well known that C ⊂ S∗, that both are subclasses of the univalent functions
and have the following analytical representations

h(z) ∈ C if and only if Re

(
1 + z

h′′(z)

h′(z)

)
> 0, z ∈ D, (2)

and

h(z) ∈ S∗ if and only if Re

(
z
h′(z)

h(z)

)
> 0, z ∈ D. (3)

More on these classes can be found in [3]. Let h(z) be an element of A. If there is a
function s(z) in C and a real β such that

Re

(
h′(z)

eiβs′(z)

)
> 0, z ∈ D (4)
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then h(z) is called a close-to-convex function in D, and the class of such functions is
denoted by CC [3], and let h(z) ∈ A, s(z) ∈ S∗. If

Re(1 +
1

b
(z

h′(z)

s(z)
− 1)) > 0, z ∈ D (5)

then h(z) is called the close-to-convex function of complex order b, b ∈ C 0, the class of
such functions is denoted by CC(b)[5].

Further, let h(z), g(z) ∈ A. Then we say that h(z) is subordinate to g(z) and we
write h(z) ≺ g(z). If there exists a function ϕ(z) ∈ Ω such that h(z) = g(ϕ(z)) for all
z ∈ D. Specially if g(z) is univalent in D, then h(z) ≺ g(z) if and only if h(0) = g(0),
h(D) ⊂ g(D), implies h(Dr) ⊂ g(Dr), where Dr = {z||z| < r, 0 < r < 1} (Subordination
and Lindelof Principle [1]).

In the terms of subordination we have

P =
{
p(z) = 1 +

∞∑
n=1

pnz
n|p(z) regular in D, p(z) ≺ 1 + z

1− z

}
, (6)

S∗ =
{
h(z) ∈ A|zh

′(z)

h(z)
≺ 1 + z

1− z

}
, (7)

C =
{
h(z) ∈ A|

(
1 + z

h′′(z)

h′(z)

)
≺ 1 + z

1− z

}
, (8)

and

CC =
{
h(z), s(z) ∈ A| h′(z)

eiβs′(z)
≺ 1 + z

1− z
, s(z) ∈ C

}
. (9)

CC(b) =
{
h(z), s(z) ∈ A|Re(1 +

1

b
(z

h′(z)

s(z)
− 1)) > 0, (1 +

1

b
(z

h′(z)

s(z)
− 1)) ≺ 1 + z

1− z
,

s(z) ∈ S∗, b ∈ C − {0}
}
.

Using Alexander Theorem the class CC(b) can be written in the following form

CC(b) =
{
h(z), s(z) ∈ A|Re(1 +

1

b
(z

h′(z)

s′(z)
− 1)) > 0, (1 +

1

b
(z

h′(z)

s′(z)
− 1)) ≺ 1 + z

1− z
,

s(z) ∈ C, b ∈ C − {0}
}
.

Finally, a planar harmonic mapping in the open unit disc D is a complex-valued harmonic
function f , which maps D onto the some planar domain f(D). Since D is a simply con-

nected domain, the mapping f has a canonical decomposition f = h(z) + g(z) where h(z)
and g(z) are analytic in D and have the following power series expansions
h(z) =

∑∞
n=0 anz

n, g(z) =
∑∞

n=0 bnz
n, z ∈ D.

where an, bn ∈ C, n = 0, 1, 2, 3, ... as usual we call h(z) analytic part of f and g(z) co-
analytic part of f an elegant and complete account of the theory harmonic mapping in
given Duren’s monograph [2]. Lewy [2] proved in 1936 that the harmonic mapping f

locally univalent in D if and only if its jacobien Jf = |h′(z)|2 − |g′(z)|2 is different from
zero in D. In view of this result, locally univalent harmonic mappings in the open unit
disc are either sense-preserving if |h′(z)| > |g′(z)| in D or sense-reserving if |g′(z)| > |h′(z)|
in D. Throughout this paper we will restrict ourselves to the study of sense-preserving
harmonic mappings. We also note that f = h(z) + g(z) is sense-preserving in D if and

only if h′(z) does not vanish in the unit disc D, and the second dilatation w(z) = ( g
′(z)

h′(z))
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has the property |w(z)| < 1 in D.
The class of all sense-preserving harmonic mapppings of the open unit disc D with a0 =
b0 = 0 and a1 = 1 will be denoted by SH . Thus SH contains the standard class S of
univalent functions. The family of all mappings f ∈ SH with the additional property
g′(0) = 0, i.e, b1 = 0 is denoted by S0

H . Thus it is clear that S ⊂ S0
H ⊂ SH . [2]. Now we

consider the following class of harmonic mappings

SHCC(b) =
{
f = h(z) + g(z)|g

′(z)

h′(z)
≺ b1

1 + (2b− 1)z

1− z
, b ∈ C − {0} , h(z) ∈ C

}
, (10)

The aim of this paper we need the following well known lemma and theorems.

Lemma 1.1. ([4]) Let ϕ(z) be regular in the open unit disc D. Then if |ϕ(z)| attains its
maximum value on the circle |z| = r at the point z1, one has z1.ϕ

′(z) = kϕ(z1) for some
k ≥ 1.

Theorem 1.1. ([3]) Let h(z) be an element of C, then

r

1 + r
≤ |h(z)| ≤ r

1− r

and
r

(1 + r)2
≤

∣∣h′(z)∣∣ ≤ r

(1− r)2

for all |z| = r < 1.

Theorem 1.2. ([3]) If h(z) ∈ C then

Rez
h′(z)

h(z)
>

1

2
⇒ z

h′(z)

h(z)
≺ 1

1− z
.

2. Main Results

Theorem 2.1. Let f = h(z) + g(z) be an elemet of SHCC(b), then

g(z)

h(z)
≺ b1

1 + (2b− 1)z

1− z
, z ∈ D

Proof. Since f = h(z) + g(z) ∈ SHCC(b), then we have

g′(z)

h′(z)
≺ b1

1 + (2b− 1)z

1− z
⇒ Re[1 +

1

b
(
1

b1

g′(z)

h′(z)
− 1)] > 0 ⇒∣∣∣∣g′(z)h′(z)

− b1(1 + (2b− 1)r2)

1− r2

∣∣∣∣ ≤ 2 |b1| |b| r
1− r2

,

this shows that the values of ( g
′(z)

h′(z)) for |z| < 1 are inside the disc with the centre

C(r) =
b1(1 + (2b− 1)r2)

1− r2

and the radius

ρ(r) =
2 |b1| |b| r
1− r2

,

at the some time we can write (using Theorem 1.2)

Re(z
h′(z)

h(z)
) >

1

2
⇒ z

h′(z)

h(z)
≺ 1

1− z
⇒ h(z)

zh′(z)
= (1 + ϕ(z)), ϕ(z) ∈ Ω
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Now we define the function ϕ(z) by

g(z)

h(z)
= b1

1 + (2b− 1)ϕ(z)

1− ϕ(z)
,

taking the derivative from this equality we obtain.

g′(z)

h′(z)
= b1(

1 + (2b− 1)ϕ(z) + 2bzϕ′(z)

1− ϕ(z)
) (11)

Now, it is easy to realize that the subordination

g′(z)

h′(z)
≺ b1

1 + (2b− 1)z

1− z

(from the definition of SHCC(b) ) is equivalent to |ϕ(z)| < 1 for all z ∈ D.
Indeed assume the contrary that there exists z1 ∈ D such that |ϕ(z1)| = 1. Then by I. S.
Jack lemma (Lemma 1.1) z1ϕ

′(z1) = kϕ(z1), k ≥ 1, such z1 we have

w(z1) =
g′(z)

h′(z)
=

1 + (1 + k)(2b− 1)ϕ(z1)

1− ϕ(z1)
= w(ϕ(z1)) /∈ w(D).

But this is a contradiction to the condition of the definition of SHCC(b) and so assumption
is wrong, i.e, |ϕ(z)| < 1 for all z ∈ D. �

Corollary 2.1. Let f = h(z) + g(z) ∈ SHCC(b), then

|b1| [1− 2 |b| r + |1− 2b| r2]
1− r2

≤
∣∣∣∣g′(z)h′(z)

∣∣∣∣ ≤ |b1| [1 + 2 |b| r + |1− 2b| r2]
1− r2

(12)

|b1| [1− 2 |b| r + |1− 2b| r2]
1− r2

≤
∣∣∣∣g(z)h(z)

∣∣∣∣ ≤ |b1| [1 + 2 |b| r + |1− 2b| r2]
1− r2

(13)

Proof. Since ( g
′(z)

h′(z)) and ( g(z)h(z)) are subordinate to (b1
1+(2b−1)z

1−z ), then using subordination

and Lindelf Principle we get (12) and (13).
�

Corollary 2.2. Let f = h(z) + g(z) ∈ SHCC(b), then

|b1|F (|b| ,−r) ≤
∣∣g′(z)∣∣ ≤ |b1|F (|b| , r) (14)

|b1| r.G(|b| ,−r) ≤ |g(z)| ≤ |b1r.|G(|b| , r) (15)

where

F (|b| , r) = 1 + 2 |b| r + |1− 2b| r2

(1 + r)(1− r)3

G(|b| , r) = 1 + 2 |b| r + |1− 2b| r2

(1 + r)(1− r)2

Proof. Using Corollary 2.1 and Theorem 1.1 we obtain (14) and (15).
�

Lemma 2.1. If f = h(z) + g(z) ∈ SHCC(b), then

|b1| − r

1 + |b1| r
≤ |w(z)| ≤ |b1|+ r

1 + |b1| r
(16)

(1− r2)(1− |b1|)2

(1 + |b1| r)2
≤ (1− |w(z)|2) ≤ (1− r2)(1− |b1|)2

(1− |b1| r)2
(17)
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(1− r)(1 + |b1|)
1− |b1| r

≤ (1 + |w(z)|) ≤ (1 + r)(1 + |b1|)
1 + |b1| r

(18)

(1− r)(1− |b1|)
1 + |b1| r

≤ (1− |w(z)|) ≤ (1 + r)(1− |b1|)
1− |b1| r

(19)

Proof. Since f = h(z) + g(z) ∈ SHCC(b), it follows that

w(z) =
g′(z)

h′(z)
=

b1 + 2b2z + ...

1 + 2a2z + ...
⇒ w(0) = b1, |w(z)| < 1.

So, the function

ϕ(z) =
w(z)− w(0)

1− w(0)w(z)
=

w(z)− b1

1− b1w(z)
, (z ∈ D)

satisfies the conditions of Schwarz lemma. Therefore, we have

w(z) =
b1 + ϕ(z)

1 + b1ϕ(z)
ifandonlyifw(z) ≺ b1 + z

1 + b1z
, (z ∈ D)

On the other hand, the linear transformation ( b1+z
1+b1z

) maps |z| = r onto the disc with

the centre

C(r) = (
(1− r2)Reb1

1− r2
,
(1− r2)Imb1

1− r2
)

and the radius

ρ(r) =
(1− |b1|2)r

1− r2
.

Then we have (16) which gives (17), (18) and (19). �

Corollary 2.3. Let f = h(z) + g(z) ∈ SHCC(b), then

(1− r)(1− |b1|2)
(1 + r)3(1 + |b1| r)2

≤ Jf ≤ (1 + r)(1− |b1|2)
(1− r)3(1 + |b1| r)2

(20)

≤ |f | ≤ (21)

Proof. Since

Jf =
∣∣h′(z)∣∣2 (1− |w(z)|2), (22)

and ∣∣h′(z)∣∣ (1− |w(z)|)dr ≤ |df | ≤
∣∣h′(z)∣∣ (1 + |w(z)|)dr (23)

Using Theorem 1.1 and Lemma 2.1 in the inequalities (22) and (23), then we obtain (20)
and (21).

�
Theorem 2.2. Let f = h(z) + g(z) ∈ SHCC(b), then

n∑
k=2

k2 |bk − b1ak|2 ≤
∣∣1− b21

∣∣2 + n+1∑
k=2

k2 |ak − b1bk|2 (24)

Proof. Using Lemma 2.1 we can write,

w(z) =
g′(z)

h′(z)
≺ b1 + z

1 + b1z
⇒ g′(z)

h′(z)
=

b1 + ϕ(z)

1 + b1ϕ(z)
⇒

g′(z)(1 + b1ϕ(z)) = h′(z)(b1 + ϕ(z)) ⇒ g′(z) + b1g
′(z)ϕ(z) = b1h

′(z) + h′(z)ϕ(z)

⇒ (g′(z)− b1h
′(z)) = (h′(z)− b1g

′(z))ϕ(z) ⇒
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(

∞∑
n=1

bnz
n)′ − b1(z +

∞∑
n=2

anz
n)′ = [(z +

∞∑
n=2

anz
n)′ − b1(z +

∞∑
n=1

anz
n)′]ϕ(z) ⇒

n∑
k=2

k(bk − b1ak)z
k−1 +

∞∑
k=n+1

dkz
k−1 = [(1− b21) +

n∑
k=2

k(ak − b1bk)z
k−1]ϕ(z) (25)

Since the last equality has the form

f1(z) = f2(z)ϕ(z)

with |ϕ(z)| < 1, it follows that

1

2π

∫ 2π

0

∣∣∣f1(reiθ)∣∣∣ ≤ 1

2π

∫ 2π

0

∣∣∣f2(reiθ)∣∣∣ (26)

for each r, (0 < r < 1). Expressing (26) in terms of coefficients in (24) we obtain the
inequality

n∑
k=2

k |bk − b1ak|2 r2k +
∞∑

k=n+1

|dk|2 r2k ≤ [
∣∣1− b21

∣∣2 + n+1∑
k=2

k2 |ak − b1bk|2]r2k (27)

By letting r → 1− in (27) we obtain the desired result. The proof of this method is due
to Clunie [1].

�
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