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HARMONIC MAPPINGS RELATED TO CLOSE-TO-CONVEX
FUNCTIONS OF COMPLEX ORDER b

YASAR POLATOGLU" §

ABSTRACT. Let CC(b) be the class of functions close-to-convex functions of order b, and
let Su be the class of harmonic mappings in the plane. In the present paper we investi-
gate harmonic mappings related to close-to-convex functions of complex order b.
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1. INTRODUCTION

Let © be the family of functions ¢(z) regular in the open unit disc D = {z € C||z| < 1}
and satisfying the conditions ¢(0) =0, |¢(z)| < 1 for all z € D.
Next, denote by P the family of functions p(z) = 1 + p1z + p2z? + - - - regular in D and
such that p(z) is in P if and only if
14+ e(2)

)= T4

for some function ¢(z) € 2 and every z € D.

Moreover, let A be the class of functions in the open unit disc D that are normalized
with h(0) = A'(0) — 1 = 0, then a function h(z) € A is called convex on starlike if it maps
D into a convex or starlike region, respectively. Corresponding classes are denoted by C
and S*. It is well known that C C S*, that both are subclasses of the univalent functions
and have the following analytical representations

(1)

. . h"(2)
h(z) € C if and only if Re 1+Zh’() >0, zeD, (2)
z
and
g , h'(z)
h(z) € S* if and only if Re zh( ) >0, zeD. (3)
z

More on these classes can be found in [3]. Let h(z) be an element of A. If there is a
function s(z) in C and a real § such that

Re<m>>0, zeD (4)

! Department of Mathematics and Computer Sciences, Istanbul Kiiltiir University, Istanbul, Turkey
e-mail: y.polatoglu@iku.edu.tr
§ Submitted for GFTA’13, held in Isik University on October 12, 2013.
TWMS Journal of Applied and Engineering Mathematics, Vol.4, No.1; (© Isik University, Department
of Mathematics 2014; all rights reserved.
27



28 TWMS J. APP. ENG. MATH. V.4, NO.1, 2014

then h(z) is called a close-to-convex function in D, and the class of such functions is
denoted by CC [3], and let h(z) € A, s(z) € S*. If
1, W(z)
Re(1+ —
e(l+ b(z 52
then h(z) is called the close-to-convex function of complex order b, b € C 0, the class of
such functions is denoted by C'C(b)[5].

—1))>0,zeD (5)

Further, let h(z), g(z) € A. Then we say that h(z) is subordinate to g(z) and we
write h(z) < g(z). If there exists a function ¢(z) € Q such that h(z) = g(¢(z)) for all
z € D. Specially if g(z) is univalent in D, then h(z) < g(z) if and only if h(0) = ¢(0),
h(D) C g(D), implies h(D,) C g(D,), where D, = {z||z| < 7,0 <r <1} (Subordination
and Lindelof Principle [1]).

In the terms of subordination we have

P= {p(z) =1+ i_o:lpnz”\p(z) regular in D, p(z) < 1 i j} (6)

s ={h(z) € A|ZZ((ZZ)> < iz} (7)

o ={ne e <1+ZZ((5))> < iz} (8)

" 00 = {h(2).5(2) € A\ei’;’;il) < 1 £ sec) (9)
CO®) = {h(z).5(2) € AlRe(1 + Ilj(zz'((j)) S1) 0,14 2(22/((5)) S 1)) < 1 t

s(z) € 8%, be c—{c)}}.

Using Alexander Theorem the class CC(b) can be written in the following form
1, B(2) 1, B(2) 1+z2

CO(b) = {h(z),s(z) € AR+ 35 = 1) > 0.0+ 35 — D) < 7

s(2) ec,bec—{c)}}.

Finally, a planar harmonic mapping in the open unit disc D is a complex-valued harmonic
function f, which maps D onto the some planar domain f(ID). Since D is a simply con-
nected domain, the mapping f has a canonical decomposition f = h(z) + g(z) where h(z)
and g(z) are analytic in D and have the following power series expansions

h(z) =30 panz", g(z) = > 07 g bnz", z € D.

where a,,b, € C, n = 0,1,2,3,... as usual we call h(z) analytic part of f and g(z) co-
analytic part of f an elegant and complete account of the theory harmonic mapping in
given Duren’s monograph [2]. Lewy [2] proved in 1936 that the harmonic mapping f
locally univalent in I if and only if its jacobien J; = |B/(2)|* — |¢/(2)|* is different from
zero in D. In view of this result, locally univalent harmonic mappings in the open unit
disc are either sense-preserving if |h/(2)| > |¢’(z)| in D or sense-reserving if |¢'(z)| > |h/(2)]
in D. Throughout this paper we will restrict ourselves to the study of sense-preserving

harmonic mappings. We also note that f = h(z) + g(z) is sense-preserving in D if and

only if h/(z) does not vanish in the unit disc D, and the second dilatation w(z) = (58)
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has the property |w(z)| < 1 in D.

The class of all sense-preserving harmonic mapppings of the open unit disc D with ag =
bp = 0 and a; = 1 will be denoted by Sy. Thus Sy contains the standard class S of
univalent functions. The family of all mappings f € Sy with the additional property
g'(0) =0, i.e, by = 0 is denoted by S%. Thus it is clear that S C SY C Sy. [2]. Now we
consider the following class of harmonic mappings

&K@@):{f:h@0+g@ﬂg$;<bﬂ'F?lepimsC—{QLh@)eC}, (10)

The aim of this paper we need the following well known lemma and theorems.

Lemma 1.1. ([}]) Let ¢(z) be regular in the open unit disc D. Then if |¢(2)| attains its
mazimum value on the circle |z| = r at the point z1, one has z1.¢/(z) = k¢(z1) for some
k> 1.

Theorem 1.1. (/3]) Let h(z) be an element of C, then

r
h(z)| < ——
1+ _‘()’_1—7”

and

forall |z| =r < 1.
Theorem 1.2. ([3]) If h(z) € C then

I 1 W 1
(z) 1 W)

Rez iy > 27 % his) “1=2

2. MAIN RESULTS

) be an elemet of Sgccw), then

9(z
9(z) 1+ (2b—1)z
() 1> , 2€D

Proof. Since f = h(z) + g(z) € SHccm), then we have

J(2) 1+(20—1)z 1,14(2)

we) ST 5 W)
g'(z)  bi(1+(2b—1)r?) < 2buf [b] 7
n'(z) 1—1r2 - 1—=r2"

Theorem 2.1. Let f = h(z) +

= Re[l + ~1)]>0=

this shows that the values of (‘Z:E’z%) for |z] < 1 are inside the disc with the centre

bi(1+ (2b—1)r?)
1—r2

C(r) =

and the radius
o(r) = 21by| |b] 7
1—7r2 "7

at the some time we can write (using Theorem 1.2)

W), 1 M(2) 1 W) s
o) 727 R ST T e — (o)) €0

Re(z
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Now we define the function ¢(z) by
o) _, 1+ (b= 1)(2)
hz) 1 1=6(2)
taking the derivative from this equality we obtain.
Jg(z) b (1 + (20 — 1)p(2) + 2bz2¢'(2)
W(z) 1—¢(z)
Now, it is easy to realize that the subordination
! 1 2b—1
7)1+ (2=
h(z) 1—=z2
(from the definition of Sy ) is equivalent to |¢(2)| < 1 for all z € D.

Indeed assume the contrary that there exists z; € D such that |¢(z1)| = 1. Then by I. S.
Jack lemma (Lemma 1.1) z1¢'(21) = k¢(z1), k > 1, such z; we have

9'(z) _ 1+ (0 +k)(2b—1)¢(z)

) (11)

w('zl) h/(Z) 1 — (Z)(Zl) w(qb(zl)) ¢ w( )
But this is a contradiction to the condition of the definition of Sgcc () and so assumption
is wrong, i.e, |¢(z)| < 1 for all z € D. O

Corollary 2.1. Let f = h(z) + g(2) € Succw), then

\b1|[1—2\b]7“+\1—2b\r] J'(2) \bﬂ[l—i—Q!blr—i—\l—Qb\rz]
(12)
1—r2 (z) 1—r2
|bl|[1—2|b\r—|—|1—2b|r] g(2) \b1|[1+2|b|r+\1—2b] 2] (13)
1—r2 (z) 1—1r2
Proof. Since (}’;8) and (h§z;) are subordinate to (ZJ1W)7 then using subordination
and Lindelf Principle we get (12) and (13).
U
Corollary 2.2. Let f = h(z) + g(z) € Stcow), then
b1 F(b], —r) < [g/(2)] < [ba] F(Ib],7) (14)
[b1] . G(Jo] , =) < |g(2)| < |bar.| G([b],7) (15)
where
1+ 2[b|r + |1 — 2b|r2
F([bl,r) = —
(14+r)(1-7)3
127 + |1 — 2] r?
G(of,r) = —
(14+r)(1—7r)?
Proof. Using Corollary 2.1 and Theorem 1.1 we obtain (14) and (15).
(|
Lemma 2.1. If f = h(2) + g(2) € Sgccw), then
|b1] — 7 [b1] + 7
e B < 2T
ol = O T (16)
1—72)(1—|b|)? 1—r2)(1 = b2

(14 [ba|r)? (1= [ba|r)?
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(1 —7)(1+[ba]) (1+ 7)1+ |ba])

< (14 |w(z)]) < (18)

1—|b1’7‘ 1+’b1‘7“
(1 —7)( = bal) (L+7)(A = [bs])

Proof. Since f = h(z) + g(2) € Sgccw), it follows that
g (z) b1 +2baz+ ...
W(z) 14 2a2z+ ..
So, the function

= w(0) = by, |w(z)| < L.

w(z) —w(0 w(z) —b
sy W) w0 () b
1—w(0)w(z) 1-bw(z)
satisfies the conditions of Schwarz lemma. Therefore, we have
b1 + ¢(2) b1+ 2

zeD)

w(z) = ——=——ifandonlyi fw(z) < —. (2D
(2) = {0 i pandontyifu() < 1 e D)
On the other hand, the linear transformation (%) maps |z| = r onto the disc with
the centre ( 2) ( 2)
(I =7r*)Reby (1 —1°)Imb
Olr) = (S B
and the radius )
_ A= [ufY)r
Then we have (16) which gives (17), (18) and (19). O

Corollary 2.3. Let f = h(z) + g(z) € Succw), then
(1—r)(— o) (L+r)(1— b

AR ol =7 = W= Pl 2
<Ifl< (21)
Proof. Since
T =GP 0= )P, 2
and
W] (1~ w))dr < 1df] < ()] 1+ () )dr 29

Using Theorem 1.1 and Lemma 2.1 in the inequalities (22) and (23), then we obtain (20)
and (21).

O
Theorem 2.2. Let f = h(z) + g(2) € Sgccw), then
n+1
Zk: b — brag|* < |1 - 83)? + )k |ag, — bibg|? (24)
k=2 k=2

Proof. Using Lemma 2.1 we can write,
_g() btz d(z) bito(z)
YO NE S Taie T RE 1 he)
9(2) (1 +019(2)) = I (2) (b1 + ¢(2)) = ¢'(2) + brg'(2)d(2) = bik/(2) + W' (2)$(2)
= (9'(2) = 01l (2)) = (W (2) = brg'(2))é(2) =
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O 2™ =bi(z+ Y an2") =[(z+ > anz") = bi(z+ Y _ anz")]6(2) =
n=1 n=2 n=2 n=1

D k(b —brag)Z T+ Y de® T =1 0) + > k(ak — bibp)2" e(2)  (25)
Since the last equality has the form
fi(z) = fa(2)9(2)
with |¢(2)| < 1, it follows that

1 27 ) 1 27 )
o | |neen)| <5 [ e (26)

for each 7, (0 < r < 1). Expressing (26) in terms of coefficients in (24) we obtain the
inequality

n 00 n+1
S klor —bra e+ 3 (e < 1837+ ST K |ag — bubif 2 (27)
k=2 k=n+1 k=2
By letting r — 17 in (27) we obtain the desired result. The proof of this method is due
to Clunie [1].
O
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