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NEW SUFFICIENT CONDITIONS FOR

STARLIKE AND CONVEX FUNCTIONS

J. NISHIWAKI1, S. OWA2 §

Abstract. Let A be the class of analytic functions f(z) in the open unit disc. Applying
the subordination, some sufficient conditions for starlikeness and convexity are discussed.
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1. Introduction

Let A be the class of functions f(z) of the form

f(z) =
∞∑
n=2

anz
n

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}. A function f(z) ∈ A is
said to be the starlike function of order α if it satisfies

Re

(
zf ′(z)

f(z)

)
> α (z ∈ U)

for some α (0 ≤ α < 1). Also a function f(z) ∈ A is said to be the convex function of
order α if it satisfies

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ U)

for some α (0 ≤ α < 1). These classes are denoted by S∗(α) and K(α), respectively. We
well-known that S∗(0) ≡ S∗ and K(0) ≡ K, and that the relation f(z) ∈ K if and only if
zf ′(z) ∈ S∗.
By investigating expressions

z2f ′(z)

(f(z))2
− (1 + γ)

z

f(z)
,

zf ′′(z)

(f ′(z))2
− γ

1

f ′(z)

and
f(z)f ′′(z)

(f ′(z))2
− (1 + γ)

f(z)

zf ′(z)
,

we would like to introduce some sufficient conditions for the classes S∗(α) and K(α).
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2. Sufficient conditions for starlikeness and convexity

For analitic functions f(z) and g(z) in U, f(z) is said to be subordidnate to g(z) in
U if there exists an analytic function w(z) in U such that w(0) = 0, |w(z)| < 1 and
f(z) = g(w(z)). We denote this subordination by

f(z) ≺ g(z).

If g(z) is univalent in U, f(z) ≺ g(z) if and only if f(0) = g(0) and f(U) ⊂ g(U).
we make use of the case which γ is a non-negative real number of Theorem 2 of Miller,
Mocanu and Reade [1] as following:

Lemma 2.1. Let F (z) and G(z) be analytic functions in U, γ ≥ 0 and G′(0) ̸= 0.
Furthermore, in the case of γ = 0, F (0) = G(0) = 0. If

Re

(
1 +

zG′′(z)

G′(z)

)
> k(γ) =


−γ

2
(γ ≤ 1)

− 1

2γ
(γ ≥ 1)

(z ∈ U)

and
F (z) ≺ G(z),

then

z−γ

∫ z

0
tγ−1F (t)dt ≺ z−γ

∫ z

0
tγ−1G(t)dt.

For F (z) = 1− γp(z)− zp′(z), the following lemma was studied by Singh and Tuneski
[3].

Lemma 2.2. Let p(z) and G(z) be analytic functions in U, γ ≥ 0 and G′(0) ̸= 0. If

Re

(
1 +

zG′′(z)

G′(z)

)
> k(γ) (z ∈ U)

and
1− γp(z)− zp′(z) ≺ G(z),

then

p(z)− Cz−γ ≺ z−γ

∫ z

0
tγ−1(1−G(t))dt,

where C = p(0) for γ = 0 and C = 0 for γ > 0.

Lemma 2.3. (Tuneski [4]) Let us f(z) ∈ A. If it satisfies∣∣∣∣f ′(z)− (1− γ)
f(z)

z
− γ

∣∣∣∣ < λ (z ∈ U)

for some γ (γ ≥ 0) and λ (λ > 0), then∣∣∣∣f(z)z
− 1

∣∣∣∣ < λ

1 + γ
(z ∈ U)

and

|f(z)| < 1 +
λ

1 + γ
(z ∈ U).
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Using similer manner of Lemma 2.3, Our first result is following

Theorem 2.1. If f(z) ∈ A satisfies∣∣∣∣z2f ′(z)

(f(z))2
− (1 + γ)

z

f(z)
+ γ

∣∣∣∣ < λ (z ∈ U) (1)

for some γ (γ ≥ 0) and λ (λ > 0), then∣∣∣∣ z

f(z)
− 1

∣∣∣∣ < λ

1 + γ
(z ∈ U). (2)

Proof. Let us define the function G(z) by G(z) = 1− γ + λz, then G′(0) = λ and

Re

(
1 +

zG′′(z)

G′(z)

)
= 1 (z ∈ U).

Furthermore, let us suppose that p(z) =
z

f(z)
, then p(0) = 1 and

1− γp(z)− zp′(z) = 1− (1 + γ)
z

f(z)
+

z2f ′(z)

(f(z))2
.

On the other hand, we have

1− (1 + γ)
z

f(z)
+

z2f ′(z)

(f(z))2
≺ 1− γ + λz

from inequality (1). Applying Lemma 2, we obtain

z

f(z)
− Cz−γ ≺ z−γ

∫ z

0
tγ−1(1−G(t))dt

= 1− λ

1 + γ
z − C1z

−γ ,

where C = C1 = 1 for γ = 0 and C = C1 = 0 for γ > 0. Thus, we arrive∣∣∣∣ z

f(z)
− 1

∣∣∣∣ < λ

1 + γ
(z ∈ U).

The left hand side of the inequality (1) holds true for λ if we take the function

f(z) =
z

1 +
λ

1 + γ
eiθz

from inequality (2), implying that this result is sharp. �

By vertue of Theorem 2.1, we obtain the sufficient condition of starlikeness below

Theorem 2.2. If f(z) ∈ A satisfies∣∣∣∣z2f ′(z)

(f(z))2
− (1 + γ)

z

f(z)
+ γ

∣∣∣∣ < λ (z ∈ U) (3)

for some γ (γ ≥ 0) and λ

(
0 < λ ≤ 1

2

)
, then f(z) ∈ S∗

(
(1 + γ)(1− 2λ)

1 + γ − λ

)
.
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Proof. Supposing that a function f(z) satisfies the inequality (3) and that there exists an
analytic function w(z) in U such that w(0) = 0 and |w(z)| < 1, then we see

zf ′(z)

f(z)
− (1 + γ) =

f(z)

z
(λw(z)− γ).

It follows that ∣∣∣∣zf ′(z)

f(z)
− (1 + γ)

∣∣∣∣ = ∣∣∣∣f(z)z

∣∣∣∣ |λw(z)− γ|

<
(1 + γ)(γ + λ)

1 + γ − λ
.

This shows that

Re

(
zf ′(z)

f(z)

)
> 1 + γ − (1 + γ)(γ + λ)

1 + γ − λ

=
(1 + γ)(1− 2λ)

1 + γ − λ
.

We complete the proof of the theorem. �

Taking λ =
1

2
in Theorem 2.2, we have

Corollary 2.1. If f(z) ∈ A satisfies∣∣∣∣z2f ′(z)

(f(z))2
− (1 + γ)

z

f(z)
+ γ

∣∣∣∣ < 1

2
(z ∈ U)

for some γ (γ ≥ 0), then f(z) ∈ S∗.

Putting zf ′(z) instead of f(z) in Theorem 2.1, we get

Theorem 2.3. If f(z) ∈ A satisfies∣∣∣∣ zf ′′(z)

(f ′(z))2
− γ

1

f ′(z)
+ γ

∣∣∣∣ < λ (z ∈ U) (4)

for some γ (γ ≥ 0) and λ (λ > 0), then∣∣∣∣ 1

f ′(z)
− 1

∣∣∣∣ < λ

1 + γ
(z ∈ U). (5)

Proof. Letting p(z) =
1

f ′(z)
in the proof of Theorem 2.1, we arrive∣∣∣∣ 1

f ′(z)
− 1

∣∣∣∣ < λ

1 + γ
(z ∈ U).

The left hand side of the inequality (4) holds true for λ if we take the function

f(z) =
1 + γ

λeiθ
log

(
1 +

λ

1 + γ
eiθz

)
from inequality (5), implying that this result is sharp. �
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In view of Theorem 2.3, we obtain the sufficient condition of convexity below

Theorem 2.4. If f(z) ∈ A satisfies∣∣∣∣ zf ′′(z)

(f ′(z))2
− γ

1

f ′(z)
+ γ

∣∣∣∣ < λ (z ∈ U)

for some γ (γ ≥ 0) and λ

(
0 < λ ≤ 1

2

)
, then f(z) ∈ K

(
(1 + γ)(1− 2λ)

1 + γ − λ

)
.

Proof. As the same technique in the proof of Theorem 2.2, we see∣∣∣∣zf ′′(z)

f ′(z)
− γ

∣∣∣∣ < (1 + γ)(γ + λ)

1 + γ + λ
.

This shows that

Re

(
1 +

zf ′′(z)

f ′(z)

)
>

(1 + γ)(1− 2λ)

1 + γ − λ
(z ∈ U)

which proves the theorem. �

Taking λ =
1

2
in Theorem 2.4, we have

Corollary 2.2. If f(z) ∈ A satisfies∣∣∣∣ zf ′′(z)

(f ′(z))2
− γ

1

f ′(z)
+ γ

∣∣∣∣ < 1

2
(z ∈ U)

for some γ (γ ≥ 0), then f(z) ∈ K.

Applying the same way as the proof of Theorem 2.1, we get

Theorem 2.5. If f(z) ∈ A satisfies∣∣∣∣f(z)f ′′(z)

(f ′(z))2
− (1− γ)

f(z)

zf ′(z)
+ γ − 1

∣∣∣∣ < λ (z ∈ U) (6)

for some γ (γ ≥ 0) and λ (λ > 0), then∣∣∣∣ f(z)

zf ′(z)
− 1

∣∣∣∣ < λ

1 + γ
(z ∈ U). (7)

Proof. Letting p(z) =
f(z)

zf ′(z)
in the proof of Theorem 2.1, we arrive∣∣∣∣ f(z)

zf ′(z)
− 1

∣∣∣∣ < λ

1 + γ
(z ∈ U).

The left hand side of the inequality (6) holds true for λ if we take the function

f(z) =
z

1 +
λ

1 + γ
eiθz
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from the inequality (7), implying that this result is sharp. �

In view of Theorem 2.5, we obtain the sufficient condition of convexity below

Theorem 2.6. If f(z) ∈ A satisfies

f(z) ∈ A,

∣∣∣∣f(z)f ′′(z)

(f ′(z))2
− (1− γ)

f(z)

zf ′(z)
+ γ − 1

∣∣∣∣ < λ (z ∈ U), (8)

then f(z) ∈ K
(
1− 2γλ

1 + γ − λ

)
for some γ (γ ≥ 1) and λ

(
0 ≤ λ ≤ 1 + γ

2γ + 1

)
, or f(z) ∈

K
(
1 +

2γ2 − 2γλ− 2

1 + γ − λ

)
for some γ

(
1

2
< γ ≤ 1

)
and λ

(
0 < λ ≤ 2γ2 + γ − 1

2γ + 1

)
.

Proof. As the same technique in the proof of Theorem 2.2, we see∣∣∣∣zf ′′(z)

f ′(z)
+ (1− γ)

∣∣∣∣ < (1 + γ)(γ − 1 + λ)

1 + γ − λ
(z ∈ U)

when (γ ≥ 1) for the inequality (8). This shows that

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 1− 2γλ

1 + γ − λ
(z ∈ U).

Moreover, we see∣∣∣∣zf ′′(z)

f ′(z)
+ (1− γ)

∣∣∣∣ < 1− (1 + γ)(1− γ + λ)

1 + γ − λ
(z ∈ U)

when

(
1

2
< γ ≤ 1

)
for the inequality (8). This shows that

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 1 +

2γ2 − 2γλ− 2

1 + γ − λ
(z ∈ U).

The proof of theorem is completed. �
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