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SUFFICIENT CONDITIONS FOR GENERALIZED SAKAGUCHI TYPE
FUNCTIONS OF ORDER g
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ABSTRACT. In this paper, we obtain some sufficient conditions for generalized Sakaguchi
type function of order (3, defined on the open unit disk. Many interesting outcomes of
our results are also calculated.
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1. INTRODUCTION
Let A,, be the class of the form
f(2) =24 apy12" ™+ .. (1)

that are analytic in the unit disk A = {z € C':|2| < 1} and let A; = A. An analytic
function f(z) € A, is said to be in the generalized Sakaguchi class S, (5, s, t) if it satisfies

(s =1)2f'(2) }

rel o g 7 b @
for some 5(0 < 8 < 1), s and t are real parameters, s >t and for all z € A.
For n = 1 the generalized Sakaguchi class S, (5, s,t) reduces to the subclass S(f,s,t)
studied by Frasin [[2], see also [6], [7]]. For n = 1,s = 1, this class is reduced to S(5,t)
studied by Owa et al. [9, 10], Goyal and Goswami [3] and Cho et al.[1]. The class S(0,—1)
was introduced by Sakaguchi [12]. Recently T. Mathur et al. [[6], [7]] have introduced and
studied some properties of S(f, s, 1) .
In this paper, we obtain some sufficient conditions for functions f(z) € S,(8,s,t). To
prove our results, we need the following:

Lemma 1.1 (8). Let 2 be a set in the complex plane C and suppose that ¢ is a mapping
from C* x A to C which satisfies ¢p(iz,y;2) € Q for z € A, and for all real z,y such
that y < —n(1 + 22)/2. If the function p(z) = 1+ 2™ + ...... is analytic in A and
d(p(2), 20/ (2);2) € Q for all z € A, then Re(p(z)) > 0.
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2. MAIN RESULTS
Theorem 2.1. If f(z) € A, satisfies

. (s —t)22f"(s2) [aszf"(sz) atzf'(tz)
me G m et e )

>ap{sprt(s—t) - (st} +{8- "} -1 (3)
for(ze A, 0<a<1,0<p<1andt<s), then f(z) € Sp(B,s,t).

Proof. Define p(z) by
(=026 _ gy
{f(sz) — f(t2) } = (1-B)p(z)+ B.

Then p(z) =14 cp2" + ... and is analytic in A.
A computation shows that

saf'(sz) | tafi(tz) (s =)A= Bap'(2) + s[(1 — Blp(e) + BI* — (s = 1)[(1 - B)p(z) + B]

fl(sz) — flsz) = f(tz) (s = )[(1 = B)p(z) + B]
and hence
(s —t)22f'(s2) [aszf"(s2) atzf'(tz)
f(sz) = f(tz) | f'(sz)  f(sz) = f(t2)

- a(st)(lﬁ)zp’(ZHaS(lB)2p2(2)+(1B[2saﬁ+(st)(1a)]p(2)+ﬁ[saﬁ+(st)(1(g)]

+1

= ¢(p(2), 2p'(2); 2) (say)

where
d(u,v; 2) = a(s—t)(1—B)vtas(1—B)?u?+(1— ) [2saf4(s—t) (1—a)|utB[saB+(s—t)(1—a)]
For all real x and y satisfying y < —n(1 + 22)/2, we have

Relg(iz,y; 2)] < as —t)(1 = B)y — as(l - §)*z® + flsaf + (s — t)(1 — a)]

_ 1.2
<ol =01 =) { T | - a9 4 st + (5~ )1 - )
= (s =1 =8) ~ { G =1 = B) + aB(1 = A | ® + Blsaf + (1 - a)(s — 1)

5 (s =t)(1 = B) + flsab+ (1 -a)(s - 1)

—ap{sB+os—t)-(s— )} +{8-"hs-1)

Let Q = {w; Re(w) > af {B+2(s—t)—(s—O)}+{B-"2}(s— 1)}
Then ¢(p(2), 2p'(2); 2) € Q and ¢(iz,y;2) € Q for all real x and y < —n(1+22)/2, z € A.
By an application of Lemma 1.1, the result follows. ]

Remark 2.1. On putting s = 1, in Theorem 2.1, we get the known results due to Goyal
et al.[9]
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Theorem 2.2. Let 0< < 1,t <s with —1<14+p5<1,
2
A= (1= { S -0+s-8}, u={3s=DI0-B)+8l(s—t -3}

v={s(1=B8) = B(s—t—s8)}" and o= {(1-B)(258 —t —s)}’ (5)
satisfy A+ p — v+ 0)B% < (1 —28)p.
Also suppose that ro be the positive real root of the equation
2M1—B)*r* + {(1 =B @A+ p—v—+0)+ 373} r* + 282°(2A+ p—v +o)r
+A+2u—v+0)8 = (1-p)°u=0 (6)
2 _ (1=8)*(1 + o) 2
P = (8 — t)2 {(1 — /8)27“0 ¥ 62} [)‘TO + ()‘ +pu—v+ O-)TO + :u] (7)
Now if f(z) € A, satisfies
s—1zf'(sz) ) (szf”(sz) tzf'(tz) >‘ A
(o7 1) (s 7o 7m)| <2 =
then f(z) € Sn(B, s,t).

Proof. Define p(z) by

2
)

and

(s —t)zf'(s2) }
1 =(1-B)p(z) + 6.
gt | = 4= e
Then p(z) =1+ 2" + ... and is analytic in A.
A computation shows that

szf"(s2) | tzf'(tz) (s —t)(1 = B)zp(2) + s[(1 — B)p(2) + B> — (s — H)[(1 - B)p() + B]

f'(sz)  f(sz) = f(tz) (s =)[(1 = B)p(2) + B]

and hence
(s —t)zf'(s2) B szf"(sz) tzf'(tz)
(o5 ) (e roo=tm)
S 5= 0= B () + 5l - A)p(e) + A — (s = (1~ B)p(e) + 41}
= ¢(p(2), 2p'(2); 2)

Then for all real x and y satisfying y < —n(1 + 22)/2, we have
(1-B)*(1 +2?)
(s — 1)2[(1 — B)%a2 + 2]
x [(s = )1 = By — s(1— B)%a? — B(s —t — sB)]" + (1 = B)*[258 — (s — 1))
_ =B+
(s — £)2[(1 - B)%r + 2]
x [(s —t)(1 — By — s(1 — B)*r — B(s —t —s8)]”" + (1 — B)%[2s8 — (s — t)[*r

|b(iz, y; 2)|* =

=9(r,y)
where 7 = 22 > 0 and y < —n(1 + 22)/2
Since
0g _ 2(1-pB)*(1+r)

Ju 5 — - —B(s —t—sB) —s(1 — B)*r
By_(s—t)[(l—ﬁ)2r+ﬁ2]{( (1 =By —pB(s—t—s8)—s(1—pB)°r} <0

therefore we have
h(r)=glr,—n(1+7)/2] < g(r,y),
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where )
1-— 1
h(r) = (25)( J2r7”) :
(s = 1)?[(1 = B)*r + 7]
where A, u, v, and o are given in (5).
Now differentiating (8) and using h/(r) = 0, we get
2M(1 - B)*r* + {(1 = B)*2A+ p— v +0) + 3A3°} r?

+282A+p—vto)r+ (A +2u—v+0)82 - (1-8)°n=0
which is a cubic equation in 7. Since rg is the positive real root of this equation we have
h(r) > h(ro) and hence

2+ (At — v+ o)+ 4 (8)

|6(iz, y; 2)|* > h(ro) = p*.
Define Q = {w;|w| < p}, then ¢(p(z), 2p'(2); z) € Q for all real x and
y < —n(1+2?%)/2, z € A. Therefore by an application of Lemma 1.1 the result follows. [J

Remark 2.2. By taking s =1 in Theorem 2.2 we get the known results of Goyal et al.[4]
For s =1 and t =0 in Theorem 2.2 gives the known results due to Ravichandran et al.[11]

and forn =1, = 0,t =0, our Theorem 2.2 reduces to another known result of Li and
Owa.[5]
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