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NUMERICAL TREATMENT OF NEWELL-WHITEHEAD-SEGEL

EQUATION

S. GUPTA1, M. GOYAL1, A. PRAKASH2, §

Abstract. In this paper, a comparative study of recently developed numerical meth-
ods in solving nonlinear Newell-–Whitehead—Segel equations is carried out. Results
computed using Variational iteration method (VIM) are compared with Adomian de-
composition method (ADM), iterative method and the exact results. The numerical
results obtained by VIM are discussed with the help of different figures and tables. The
plotted graph and numerical results show accuracy and efficiency of this method in solv-
ing nonlinear equations.
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1. Introduction

Nonlinear phenomena are always visible in the study of applied Mathematics, Physics,
Chemistry and many related fields of engineering. In daily life, we come across many real
life models of Mathematics for numerical solution of nonlinear differential equations. The
significance of obtaining their exact solution, if available, facilitates the authentication
of numerical solvers as well as supports in stability analysis of the solution. Analytical
solutions to nonlinear PDEs play a vital role in physical science as they may offer more
physical information as well as better insight into its physical aspects [1]. Various methods
are used for the solution of nonlinear PDEs by researchers in the last few decades. For
details of notable methods, we direct readers to the papers [2-20].

The Newell—Whitehead—Segel (NWS) equations have broad pertinence in bio engineer-
ing, biology, ecology, chemical and mechanical engineering. They are one of the most
significant amplitude equations that discover the visual aspect of the streak pattern in
2–dimensional systems and applied in Faraday instability, Rayleigh–Benard convection,
nonlinear optics, Taylor-–Couette flow, biological systems etc. Also, the interaction of
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effect of diffusion term with effect of the nonlinear reaction term is modeled as,

∂u

∂t
= k

∂2u

∂x2
+ au− buq, (1)

where the constants a, b, k ∈ R, with k > 0 and q being a positive integer. u(x, t) is a
function of temporal variable t and spatial variable x, where t ≥ 0, x ∈ R. Here u may be
considered as the nonlinear distribution in a thin infinitely long rod and also be seen as
the fluid flow velocity in an infinitely long pipe having small diameter. The derivative on
the LHS of Eq.(1), ∂u

∂t represents the partial rate of change of u with respect to t at a set

position. The derivative on RHS of Eq.(1), ∂
2u
∂x2

represents partial rate of change of u with
respect to x at a fixed time. The effect of source term is shown by the term au − buq on
the RHS of Eq.(1).

So far, LADM [21], Differential transform method [22], ADM [23], Multi-–quadric
quasi-–interpolation methods [24], HPM [25] etc. have been used for the solution of Eq.(1).
Reliability of solution schemes is also a very important aspect than modeling dimensions
of equations. VIM has a thoroughness in mathematical derivation of Lagrange’s multiplier
by variational theory for fractional calculus. It leads to solution converging to exact one.
Recently, fractional complex transform is developed to build a simpler variational iteration
algorithm for fractional calculus.

In the present paper, we propose to study Eq.(1) using VIM. This method directly at-
tacks the nonlinear partial differential equation without a need to find certain polynomials
for nonlinear terms and gives result in an infinite series. It rapidly converges to analytical
solution. This method also requires no linearization, discretization, little perturbations or
restrictive assumptions. It lessens mathematical computations significantly. A compara-
tive study is made of the results obtained with ADM and a new iterative method (NIM).
The numerical results acquired show that VIM is efficient, easier and more convenient for
solving NWS equation.

This paper is structured in the following manner. Section 1, is introduction. In section
2, the working algorithm of VIM is proposed by taking the problem under consideration.
Section 3, presents some numerical test examples on which VIM is applied to find the
approximate analytic solution. Section 4, deals with the discussion of obtained numerical
results and their comparison with other methods. In last section 5, the conclusions are
drawn after summarizing the results.

2. Implementation of VIM

Consider the nonlinear PDE

∂u

∂t
=
∂2u

∂x2
+ au− buq, (2)

A correction functional is formed as follows,

un+1(x, t) = un(x, t) +

∫ t

0
λ(ξ)

[
∂un(x, ξ)

∂ξ
− ∂2ũn(x, ξ)

∂x2
− aun(x, ξ) + bũ3n(x, ξ)

]
dξ, (3)

where λ is Lagrange’s multiplier. Optimally, λ may be found using theory of variations.
ũn is restricted variation such that δũn = 0.
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Taking variations on both sides of Eq.(2), we acquire

δun+1(x, t) = δun(x, t) + δ

∫ t

0
λ(ξ)

[
∂un(x, ξ)

∂ξ
− ∂2ũn(x, ξ)

∂x2
− aun(x, ξ) + bũ3n(x, ξ)

]
dξ.

(4)
This gives stationary conditions

−λ′(ξ)− aλ(ξ)|ξ=t = 0,

1 + λ(ξ)|ξ=t = 0. (5)

We quickly get,

λ = −e−a(t−ξ). (6)

Consecutive approximations un+1, n ≥ 0, are promptly found out using a discriminating
function u0. u0 is the zeroth approximation.
Finally, the result is achieved as u(x, t) = limn→∞ un(x, t), which will be the solution of
Eq.(2).

3. Test Examples

In this section, we show the applicability and efficiency of VIM to examine the NWS
equation by taking few test examples.
Example 1. Taking a, b > 0 and q = 3, Eq.(2) becomes,

∂u

∂t
=
∂2u

∂x2
+ au− bu3, (7)

with initial condition

u(x, 0) =

√
a

b

(
e
√
2ax
2

e
√
2ax
2 + 1

)
, (8)

Correction functional for Eq. (7) is given as

un+1(x, t) = un(x, t) +

∫ t

0
λ(ξ)

[
∂un(x, ξ)

∂ξ
− ∂2ũn(x, ξ)

∂x2
− aun(x, ξ) + bũ3n(x, ξ)

]
dξ, (9)

where ũn is restricted variation such that δũn = 0.
Lagrange’s multiplier is obtained as

λ = −e−a(t−ξ). (10)

By applying VIM, we will form a sequence. Putting λ in Eq. (9), we get

un+1(x, t) = un(x, t)−
∫ t

0
e−a(t−ξ)

[
∂un(x, ξ)

∂ξ
− ∂2un(x, ξ)

∂x2
− aun(x, ξ) + bu3n(x, ξ)

]
dξ.

(11)
Taking u0 = u(x,0), we get
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u1(x, t) =
√

a
b

[
e

√
2ax
2

e

√
2ax
2 +1

+ 3(1−e−at)

4
(
1+cosh(

√
2ax
2

)
)
]

,

u2(x, t) =

√
a

b

[
e
√
2ax
2

e
√
2ax
2 + 1

− 3e−3at+
√
2ax
2

16(e
√
2ax
2 + 1)2

(
−20e3at + 9e

√
2ax − 56e3at+

√
2ax
2 − 36eat+3

√
2ax
2 + 28e3at+3

√
2ax
2

−90eat+
√
2ax + 6e3at+

√
2ax + 4e3at+2

√
2ax + e2at+

√
2ax(75− 78at) + e2at+3

√
2ax
2 (8− 64at) + 20e2at

(1 + at) + 56e2at+
√

2ax
2 (1 + at)− 4e2at+2

√
2ax(1 + at) +

3(1− e−at)

4
(

1 + cosh(
√
2ax
2 )

)
 ,

and so on. The next approximations can be found easily using Maple package.

So as n tends to ∞, un(x, t)will tends to u(x, t) =
√

a
b

(
e

√
2ax
2

e

√
2ax
2 +e−

3
2at

)
,

which is the exact solution of Eqs. (7)—(8).
Example 2. Taking a< 0, b > 0 and q = 3, Eq. (2) becomes,

∂u

∂t
=
∂2u

∂x2
+ au− bu3, (12)

with

u(x, 0) =

√
|a|
b

tan

(√
2|a|x
4

+
1

2

)
, (13)

We obtain,

λ = −e−a(t−ξ). (14)

Taking the initial approximation u0 = u(x,0), and using λ, we get

u1(x, t) =
1

4

√
|a|
b

4tan

(√
2|a|x
4

+
1

2

)
+

1

a

(1− e−at)(4a+ |a|{4− 3sec

(√
2|a|x
4

+
1

2

)2

})


,

Similarly, the next approximations u2, u3,... can be found easily using Maple package.

As n tends to ∞, un(x, t)will tends to u(x, t) =

√
|a|
b

sin

(√
2|a|x
2

+ 1

)

cos

(√
2|a|x
2

+ 1

)
+ e

−3

2
at

,

which is the exact solution of Eqs. (12)—(13).
Example 3. Taking a = 0, b > 0 and q = 3, Eq. (2) becomes,

∂u

∂t
=
∂2u

∂x2
− bu3, (15)

with

u(x, 0) = u0(x, t) =

√
2

b
(

2x

x2 + 1
), (16)

We obtain, λ = −1.
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Using λ and taking u (x,0) = u0, we get the successive approximations as,

u1(x, t) =

√
2

b
(

2x

x2 + 1
)−

√
2

b
(

12tx

(x2 + 1)2
),

u2(x, t) =

√
2

b
(

2x

x2 + 1
) −

√
2

b
(

12tx

(x2 + 1)2
) +

√
2

b

72t2x

(x2 + 1)6
(12t2x2 − 8tx2(x2 + 1) +

(x2 + 1)3),
& so on. The next approximations can be found easily using Maple package.

As n tends to ∞, un(x, t) will tends to u(x, t) =

√
2

b

(
2x

x2 + 6t+ 1

)
,

which is the exact solution of Eqs. (15)-–(16).

Figure 1. Comparison of exact and approximate solutions for Ex. 1

Figure 2. Comparison of exact and approximate solutions for Ex. 2
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Figure 3. Comparison of exact and approximate solutions for Ex. 3

Table 1. Comparison of percentage relative errors among VIM, ADM and
NIM for Ex.1

x VIM solution ADM solution[26] NIM solution[26]∣∣∣∣u− u2u(x, t)

∣∣∣∣× 100

∣∣∣∣u− u2u(x, t)

∣∣∣∣× 100

∣∣∣∣u− u2u(x, t)

∣∣∣∣× 100

0 0.6493899524 0.8901699823 4.356623184
2 0.0076272041 0.0198264374 15.07592524
4 0.0008455034 0.0067615547 19.20443264
6 0.0001057104 0.0010194110 19.88949384
8 0.0000141370 0.0001399741 19.98499124
10 0.0000019155 0.0000189890 19.99796781

Table 2. Percentage relative error between exact and approximate solu-
tions for Ex. 2

x Approximate solution Exact solution Percentage Relative
by VIM Error

u2 u(x, t)

∣∣∣∣u− u2u(x, t)

∣∣∣∣× 100

0 0.5931335317 0.5931335457 2.360345e—6
2 0.0426715120 0.0426715239 2.788756e—5
4 0.0021726115 0.0021726255 6.443827e—4
6 0.0001082868 0.0001082908 3.693765e—3
8 0.0000053890 0.0000053917 5.007697e—2
10 0.0000000265 0.0000000268 3.731343e—1

4. Numerical results and discussion

The results by VIM are found in accordance with the exact result which shows the ef-
fectiveness of this method. Table 1 shows comparison of percentage relative errors among
VIM, ADM and NIM for Ex. 1. It shows that error obtained by VIM is less than recently
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Table 3. Percentage relative error between exact and approximate solu-
tions for Ex. 3

x Approximate solution Exact solution Percentage Relative
by VIM Error

u2 u(x, t)

∣∣∣∣u− u2u(x, t)

∣∣∣∣× 100

2 1.009875306 1.010152545 2.744525e-2
4 0.642816215 0.642824347 1.265011e-3
6 0.451344152 0.451344754 1.302552e-4
8 0.34493005 0.344930137 2.530947e-5
10 0.278388478 0.278388497 6.824995e-6

developed NIM and ADM. Table 2 and 3 depict the negligible percentage relative errors
between exact and approximate solutions by VIM which itself is an indication of the rapid
convergence of this method for Ex. 2 and Ex. 3 respectively. Figures are drawn using
Maple package. Figs. 1-–3 show the variation of u (x,t) with t at x = 0.1 where 0 < t
<1 at an interval of 0.2 for the cases (i) a > 0, b > 0 (ii) a < 0, b > 0 (iii) a = 0, b > 0
respectively. From fig. 1, it is clear that u increases with increase in t. In fig. 2, u slowly
increases with increase in t initially but after some time, it increases rapidly. In fig. 3, u
increases up to 1 as t increases from 0 to 1.

5. Conclusion

In this work, He’s VIM is successfully implemented to get numerical solutions for some
general cases of Newell—Whitehead—Segel equation. In each case, results are found to be
compatible with the exact solution in very few iterations. Results are also compared with
NIM as well as ADM. The result shows that VIM is more accurate, powerful, efficient and
promising method in finding the approximate solutions for nonlinear differential equations.
Hence, VIM is convenient and easier than other methods.
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