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PERIODIC AND SEMI-PERIODIC EIGENVALUES OF HILL’S

EQUATION WITH SYMMETRIC DOUBLE WELL POTENTIAL

E. BAŞKAYA, §

Abstract. In this paper, some estimates are derived explicitly for periodic and semi-
periodic eigenvalues of Hill’ s equation with symmetric double well potentials. Also,
lengths of the instability intervals are obtained and bounds for the gaps of Dirichlet and
Neumann eigenvalues are given by using an auxiliary eigenvalue problem.
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1. Introduction

Consider the following differential equation

y′′ (t) + [λ− q (t)] y (t) = 0, t ∈ [0, a] (1)

where λ is a real parameter and q (t) is a real-valued, continuous and periodic function with
period a. This equation is named as Hill’s equation. There are some eigenvalue problems
related to this equation. A periodic problem of (1) is defined with boundary conditions
y (0) = y (a) , y′ (0) = y′(a). This problem has a countable infinity of eigenvalues denoted
by {λn} . The other problem is a semi-periodic problem which is given with (1) and
boundary conditions y (0) = −y (a) , y′ (0) = −y′ (a). These eigenvalues are denoted by
{µn}. It is known that the two sets of eigenvalues satisfy the relation [2]

−∞ < λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < ....

The equation (1) is also identified with the Dirichlet boundary conditions y (0) = y (a) = 0
and the Neumann boundary conditions y′ (0) = y′(a) = 0. The eigenvalues of Dirichlet
and Neumann problems are shown by Λn and νn, respectively. For all of these eigenvalues,
it is indicated that Eastham [2] gained for n = 0, 1, 2, ...

µ2n ≤ Λ2n ≤ µ2n+1, λ2n+1 ≤ Λ2n+1 ≤ λ2n+2, (2)

and
µ2n ≤ ν2n+1 ≤ µ2n+1, λ2n+1 ≤ ν2n+2 ≤ λ2n+2. (3)
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Also, the instability intervals of (1) are described as (−∞, λ0), (µ2n, µ2n+1), (λ2n+1, λ2n+2)
and called the zero− th, (2n+ 1)− th and (2n+ 2)− th instability interval, respectively.
The length of the n − th instability interval of (1), whether it is absent or not, will be
shown by ln. Note that the absence of an instability interval means that there is a value of
λ for which all solutions of (1) have either period a, or semi-period a. Instability intervals
for Hill’s equation with various types of restrictions on potential have been investigated by
many authors over the years [2,3,6]. [5,9] are especially referred that q(t) is a symmetric
double well potential in these references. Some results about the first instability interval
were obtained in [5] and the eigenvalue gap for Schrodinger operators on an interval with
Dirichlet and Neumann boundary conditions was considered in [9].

In this paper, estimates are obtained about the periodic eigenvalues, the semi-periodic
eigenvalues and the instability intervals of (1) with q (t) being of a symmetric double well
potential with mean value zero. A symmetric double well potential on [0, a] means a
continuous function q (t) on [0, a] which is symmetric on [0, a] as well as on

[
0, a2
]

and

non-increasing on
[
0, a4
]
, that is, q (t) = q (a− t) = q

(
a
2 − t

)
, mathematically. The main

analysis for this study is based on [1], which involves Λn (τ) the eigenvalues of (1) on the
interval [τ, τ + a] where 0≤ τ < a with Dirichlet boundary conditions

y(τ) = y(τ + a) = 0. (4)

This problem will be referred as “auxiliary eigenvalue problem”. Here, note that this
problem is equivalent to the following problem [1]:

y′′ (t) + [λ− q (t+ τ)] y (t) = 0, (5)

y(0) = y(a) = 0. (6)

Also, it is indicated that q′ (t) exists since a monotone function on an interval I is
differentiable almost everywhere on I [4].

Now, consider the following asymptotic approximation previously obtained for the aux-
iliary eigenvalues ([6,7,8]) which will be used to prove our results. It was shown in ([8], p.
1275, for N = 2) as n→∞

Λ1/2
n (τ) =

(n+ 1)π

a
+

a

4 (n+ 1)2 π2

×
[
cos

(
2 (n+ 1)π

a
τ

)∫ τ+a

τ
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

− sin

(
2 (n+ 1)π

a
τ

)∫ τ+a

τ
q′ (t) cos

(
2(n+ 1)π

a
t

)
dt

]
− a2

8 (n+ 1)3 π3

∫ a

0
q2 (t) dt+ o

(
n−3

)
. (7)

The theorem below which involves the auxiliary eigenvalues Λn (τ) plays an important
role to obtain periodic and semi-periodic eigenvalues [2]:

Theorem 1.1. The ranges of Λ2n (τ) and Λ2n+1 (τ) as functions of τ are [µ2n, µ2n+1] and
[λ2n+1, λ2n+2] , respectively.

By this theorem and the fact that Λn (τ) is a continuous function of τ, it is observed
that

max
τ

Λ2n (τ) = µ2n+1, min
τ

Λ2n (τ) = µ2n,

max
τ

Λ2n+1 (τ) = λ2n+2, min
τ

Λ2n+1 (τ) = λ2n+1. (8)
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2. Main Results

Firstly, the following lemma will be given before proving results:

Lemma 2.1. If q (t) is a symmetric double well potential, then
(i)∫ τ+a

τ
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt =

{
4
∫ a/4

0 q′ (t) sin
(

2(n+1)π
a t

)
dt, if n is odd

0, if n is even

(ii) ∫ τ+a

τ
q′ (t) cos

(
2(n+ 1)π

a
t

)
dt = 0,

(iii) ∫ a

0
q2 (t) dt = aq2 (a) + 2a

∫ a/4

0
q(t)q′ (t) dt− 8

∫ a/4

0
tq(t)q′ (t) dt.

Proof. (i) Since q′ (t) sin
(

2(n+1)π
a t

)
is a periodic function with period a∫ τ+a

τ
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt =

∫ a

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

=

∫ a/2

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

+

∫ a

a/2
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

=

∫ a/2

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

−
∫ a

a/2
q′ (a− t) sin

(
2(n+ 1)π

a
t

)
dt

= 2

∫ a/2

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt.

The last equality holds because q (t) is a symmetric function and q′ (t) exists. Also, by
using q (t) = q

(
a
2 − t

)
∫ τ+a

τ
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt = 2

∫ a/4

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

+2

∫ a/2

a/4
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

= 2

∫ a/4

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

−2

∫ a/2

a/4
q′
(a

2
− t
)

sin

(
2(n+ 1)π

a
t

)
dt

= 2

∫ a/4

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

+2 cos (n+ 1)π

∫ a/4

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt.
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This proves the theorem.
(ii) It can be proved similarly.
(iii) Using integration by parts and q (t) = q (a− t) , it is obtained that

∫ a

0
q2 (t) dt = tq2 (t)

∣∣a
0
− 2

∫ a

0
tq (t) q′ (t) dt

= aq2 (a)− 2

{∫ a/2

0
tq (t) q′ (t) dt+

∫ a

a/2
tq (t) q′ (t) dt

}

= aq2 (a)− 2

{∫ a/2

0
tq (t) q′ (t) dt−

∫ a

a/2
tq (a− t) q′ (a− t) dt

}

= aq2 (a)− 2

{∫ a/2

0
tq (t) q′ (t) dt+

∫ 0

a/2
(a− t) q (t) q′ (t) dt

}

= aq2 (a) + 2a

∫ a/2

0
q (t) q′ (t) dt− 4

∫ a/2

0
tq (t) q′ (t) dt.

Now, by writing q (t) = q
(
a
2 − t

)
in the last equation, it is calculated that

∫ a

0
q2 (t) dt = aq2 (a) + 2a

{∫ a/4

0
q (t) q′ (t) dt+

∫ a/2

a/4
q (t) q′ (t) dt

}

−4

{∫ a/4

0
tq (t) q′ (t) dt+

∫ a/2

a/4
tq (t) q′ (t) dt

}

= aq2 (a) + 2a

{∫ a/4

0
q (t) q′ (t) dt−

∫ a/2

a/4
q
(a

2
− t
)
q′
(a

2
− t
)
dt

}

−4

{∫ a/4

0
tq (t) q′ (t) dt−

∫ a/2

a/4
tq
(a

2
− t
)
q′
(a

2
− t
)
dt

}

= aq2 (a)− 4

{∫ a/4

0
tq (t) q′ (t) dt+

∫ 0

a/4

a

2
q (t) q′ (t) dt+

∫ a/4

0
tq (t) q′ (t) dt

}
.

This proves the theorem. �

Theorem 2.1. The periodic and semi-periodic eigenvalues of (1) satisfy, as n→∞

λ2n+1

λ2n+2
=

(n+ 1)2 π2

a
∓ 2

(n+ 1)π

∣∣∣∣∣
∫ a/4

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

∣∣∣∣∣
− a

4 (n+ 1)2 π2

[
aq2 (a) + 2a

∫ a/4

0
q(t)q′ (t) dt− 8

∫ a/4

0
tq(t)q′ (t) dt

]
+o
(
n−2

)
,
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and

µ2n

µ2n+1
=

(n+ 1)2 π2

a2

− a

4 (n+ 1)2 π2

[
aq2 (a) + 2a

∫ a/4

0
q(t)q′ (t) dt− 8

∫ a/4

0
tq(t)q′ (t) dt

]
+o
(
n−2

)
.

Proof. From 7 and Lemma 2.1, it is observed that if n is odd

Λ1/2
n (τ) =

(n+ 1)π

a

+
a

4 (n+ 1)2 π2
cos

(
2 (n+ 1)π

a
τ

)
4

∫ a/4

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

− a2

8 (n+ 1)3 π3

[
aq2 (a) + 2a

∫ a/4

0
q(t)q′ (t) dt− 8

∫ a/4

0
tq(t)q′ (t) dt

]
+o
(
n−3

)
,

if n is even

Λ1/2
n (τ) =

(n+ 1)π

a

− a2

8 (n+ 1)3 π3

[
aq2 (a) + 2a

∫ a/4

0
q(t)q′ (t) dt− 8

∫ a/4

0
tq(t)q′ (t) dt

]
+o
(
n−3

)
.

Thus, it is easily found that if n is odd

Λn (τ) =
(n+ 1)2 π2

a2

+
2

(n+ 1)π
cos

(
2 (n+ 1)π

a
τ

)∫ a/4

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

− a

4 (n+ 1)2 π2

[
aq2 (a) + 2a

∫ a/4

0
q(t)q′ (t) dt− 8

∫ a/4

0
tq(t)q′ (t) dt

]
+o
(
n−2

)
,

if n is even

Λn (τ) =
(n+ 1)2 π2

a2

− a

4 (n+ 1)2 π2

[
aq2 (a) + 2a

∫ a/4

0
q(t)q′ (t) dt− 8

∫ a/4

0
tq(t)q′ (t) dt

]
+o
(
n−2

)
.
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By minimizing and maximizing last two equations, it is written that if n is odd

min
τ

Λn (τ) =
(n+ 1)2 π2

a
− 2

(n+ 1)π

∣∣∣∣∣
∫ a/4

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

∣∣∣∣∣
− a

4 (n+ 1)2 π2

[
aq2 (a) + 2a

∫ a/4

0
q(t)q′ (t) dt− 8

∫ a/4

0
tq(t)q′ (t) dt

]
+o
(
n−2

)
, (9)

max
τ

Λn (τ) =
(n+ 1)2 π2

a
+

2

(n+ 1)π

∣∣∣∣∣
∫ a/4

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

∣∣∣∣∣
− a

4 (n+ 1)2 π2

[
aq2 (a) + 2a

∫ a/4

0
q(t)q′ (t) dt− 8

∫ a/4

0
tq(t)q′ (t) dt

]
+o
(
n−2

)
, (10)

and if n is even

min
τ

Λn (τ) = max
τ

Λn (τ) =
(n+ 1)2 π2

a2

− a

4 (n+ 1)2 π2

[
aq2 (a) + 2a

∫ a/4

0
q(t)q′ (t) dt− 8

∫ a/4

0
tq(t)q′ (t) dt

]
+o
(
n−2

)
. (11)

From (8)

min
τ

Λ2n+1 (τ) = λ2n+1, max
τ

Λ2n+1 (τ) = λ2n+2,

so now with the values of minτ Λ2n+1 (τ) and maxτ Λ2n+1 (τ) in (9) and (10), λ2n+1 and
λ2n+2 are obtained. Also, from (8)

min
τ

Λ
1/2
2n (τ) = µ2n, max

τ
Λ

1/2
2n (τ) = µ2n+1

and by using this with (11), find µ2n and µ2n+1 as required. �

Corollary 2.1. Let q (t) be a symmetric double well potential on [0, a] . Then, as n→∞

Λ2n+1 − Λ2n

ν2n+2 − ν2n+1
≥ (2n+ 1)2 π2

a2
− 1

(n+ 1)π

∣∣∣∣∣
∫ a/4

0
q′ (t) sin

(
4 (n+ 1)π

a
t

)
dt

∣∣∣∣∣
− (4n+ 3) a

16 (n+ 1)2 (2n+ 1)π2

{
aq2 (a) + 2a

∫ a/4

0
q(t)q′ (t) dt− 8

∫ a/4

0
tq(t)q′ (t) dt

}
+o
(
n−2

)
and

Λ2n+1 − Λ2n

ν2n+2 − ν2n+1
≤ (2n+ 1)2 π2

a2
− 1

(n+ 1)π

∣∣∣∣∣
∫ a/4

0
q′ (t) sin

(
4 (n+ 1)π

a
t

)
dt

∣∣∣∣∣
− (4n+ 3) a

16 (n+ 1)2 (2n+ 1)π2

{
aq2 (a) + 2a

∫ a/4

0
q(t)q′ (t) dt− 8

∫ a/4

0
tq(t)q′ (t) dt

}
+o
(
n−2

)
.
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Proof. By recasting (2) and (3) and using Theorem 2.1, the corollary is proved as required.
�

Corollary 2.2. ln satisfies, as n→∞
l2n+1 = o

(
n−3

)
,

l2n+2 =
a

4 (n+ 1)π2

∣∣∣∣∣
∫ a/4

0
q′ (t) sin

(
2(n+ 1)π

a
t

)
dt

∣∣∣∣∣
+o
(
n−3

)
.

Proof. Proof of the corollary follows from Theorem 2.1 and definition of ln. �
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[6] Coşkun, H. and Harris, B. J., (2000), Estimates for the periodic and semi-periodic eigenvalues of Hill’s

equations, Proc. Roy. Soc. Edinburgh Sec. A, 130, pp. 991-998.
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