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EXISTENCE AND UNIQUENESS OF AN INVERSE PROBLEM FOR A

WAVE EQUATION WITH DYNAMIC BOUNDARY CONDITION

I. TEKIN, §

Abstract. In this paper, an initial boundary value problem for a wave equation with
dynamic boundary condition is considered. Giving an additional condition, a time-
dependent coefficient is determined and existence and uniqueness theorem for small times
is proved.
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1. Introduction

The pioneering model of the hyperbolic equations and one of the most important equa-
tion of mathematical physics is the wave equation. Wave equations occur in many fields
such as electromagnetic theory, acoustics, hydrodynamics, elasticity and quantum theory,
see [4] and [5].

Consider the following initial-boundary value problem for one dimensional wave equa-
tion

utt = uxx + a(t)u(x, t) + f(x, t), (x, t) ∈ DT , (1)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ 1, (2)

u(0, t) = 0, 0 ≤ t ≤ T, (3)

mutt(1, t) + dux(1, t) + ku(1, t) = 0, 0 ≤ t ≤ T, (4)

where DT = {(x, t) : 0 < x < 1, 0 < t ≤ T} for some fixed T > 0, f , ϕ, ψ are given
functions and m, d, k are given numbers which are not simultaneously zero.
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This model can be used in vibration of an uniform elastic bar subjected to distributed
force f(x, t) per unit length, the functions ϕ(x) and ψ(x) are the axial displacement and
axial velocity of the bar, respectively. The boundary condition (3) means that the left end
of the bar is fixed while the boundary condition (4), known as dynamic boundary condition,
describes the right end of the bar is connected to a mass m and string where ku(1, t) is
spring force and mutt(1, t) is the inertia force, [4]. Such type of boundary conditions also
arise in a model of flexible membrane which boundary affected by vibration only in a
region, [7].

When the function a(t) is given, the problem of finding the displacement u(x, t) from
the equation (1), initial condition (2) and the boundary conditions (3) and (4) is called the
direct (forward) problem. The well-posedness of the direct problem has been established in
[19] and with another boundary conditions (i.e. integral, non-local etc.) has been studied
in [2], [18].

When the function a(t) for t ∈ [0, T ] is unknown, the inverse problem is formulated as
finding the pair of functions {a(t), u(x, t)} which satisfy the equation (1), initial conditions
(2), boundary conditions (3) and (4), and the additional condition

u(x0, t) = h(t), x0 ∈ (0, 1), 0 ≤ t ≤ T. (5)

The inverse problems of determining the time dependent coefficient a(t) is scarce. The
inverse problems for the wave equation with different boundary conditions and space
dependent coefficients are considered in [10], [16], [20], [24] and more recently in [9], [17].
The inverse problem for the wave equation with time dependent coefficient with integral
condition is investigated in [15] and with non-classical boundary condition is studied in
[1]. The time-dependent source function of a time-fractional wave equation with integral
condition in a bounded domain is determined in [21]. Since the inverse problems for linear
wave equations with dynamic boundary conditions are scarce, it is important to note that
the paper [22] considers the inverse source problem for a time-fractional wave equation
of the order 1 < β < 2 with dynamic boundary condition. Notice that for β = 2, the
time-fractional equation becomes classical wave equation. Although the authors use the
variational formulation to determine both the solution of the equation and the source term
and prove the existence and uniqueness of the solution in the suitable functional spaces in
[22], we present the fixed-point system via Fourier series, which brings along computations
that are technically simple, to obtain the solution of the inverse coefficient problem.

In present paper, we consider an initial boundary value problem for a wave equation
with dynamic boundary condition. Giving an additional condition,we determine the time-
dependent coefficient and prove the existence and uniqueness theorem for small T .

The article is organized as following: In Section 2, we present auxiliary spectral problem
of this problem and its properties. In Section 3, the series expansion method in terms of
eigenfunctions converts the inverse problem to a fixed point problem in a suitable Banach
space. Under some consistency, regularity conditions on initial and boundary data the
existence and uniqueness of the inverse problem is shown by the way that the fixed point
problem has unique solution for small T .

2. Auxiliary Spectral Problem

Since the function a is space independent, m, d, k are constants and the boundary
conditions (3) and (4) are linear and homogeneous, the method of separation of variables
is suitable for investigating this problem.
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The auxiliary spectral problem of the problem is


X ′′(x) + λX(x) = 0, 0 ≤ x ≤ 1,

X(0) = 0,

(mλ− k)X(1) = dX ′(1).

(6)

The problems on vibration of a homogeneous loaded string, torsional vibrations of a
rod with a pulley at the one end, heat propagation in a rod with lumped heat capacity at
one end lead to this spectral problem.

Since the boundary condition includes the spectral parameter, this problem differs from
the classical Sturm-Liouville problems. It makes impossible to apply the classical results on
eigenfunction expansion. Thus we need the explicit availability of basis for the expansion
in terms of eigenfunctions of the auxiliary spectral problem (6). The spectral analysis of
such type of problems was started by [23], and after that [3], [6], [11], [12].

Consider the spectral problem (6) with md > 0. This problem has the eigenvalues
λn = µ2n, n = 0, 1, 2, ... are real and simple, and form an unbounded increasing sequence.
The eigenfunctions Xn(x) corresponding to λn has n simple zeros in the interval (0, 1).
The eigenvalues and eigenfunctions have the following asymptotic behaviour [8]:√

λn = µn = nπ +O(
1

n
), Xn(x) = sin(nπx) +O(

1

n
),

for sufficiently large n.
It was shown in [13] that the system {Xn(x)} , (n = 0, 1, ...;n 6= n0) forms a Riesz

basis in L2[0, 1] where n0 be arbitrary non-negative integer. The system {Yn(x)} , (n =
0, 1, ...;n 6= n0) which has the form

Yn(x) =
1

‖Xn‖2L2[0,1]
+ m

d X
2
n(1)

(
Xn(x)− Xn(1)

Xn0(1)
Xn0(x)

)
is biorthogonal to the system {Xn(x)} , (n = 0, 1, ...;n 6= n0).

The following Bessel-type inequalities are true for the system {Xn(x)} , (n = 0, 1, ...;n 6=
n0), see [8].

Lemma 2.1. (Bessel-type inequalities) Let g(x) ∈ L2[0, 1], then the estimates

∞∑
n=0
n6=n0

|(g,Xn)|2 ≤ C1 ‖g‖2L2[0,1]
,
∞∑
n=0
n6=n0

|(g, Yn)|2 ≤ C2 ‖g‖2L2[0,1]

hold for some positive constant Ci, i = 1, 2, where (g,Xn) =
∫ 1
0 g(x)Xn(x)dx and (g, Yn) =∫ 1

0 g(x)Yn(x)dx are the usual inner products in L2[0, 1].

Let us denote

Sn0 :=
{
g(x) ∈ C4[0, 1], g(0) = g′′(0) = 0,

g(1) = g′(1) = g′′(1) = g′′′(1) = 0,

∫ 1

0
g(x)Xn0(x)dx = 0

}
.
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Lemma 2.2. If g(x) ∈ Sn0, then we have

µ4n(g,Xn) = (g(4), Xn), µ4n(g, Yn) = (g(4), Yn), (7)

∞∑
n=0
n6=n0

∣∣µ2n (g,Xn)
∣∣ ≤ C3 ‖g‖C4[0,1] ,

∞∑
n=0
n6=n0

∣∣µ2n (g, Yn)
∣∣ ≤ C4 ‖g‖C4[0,1] , (8)

∞∑
n=0
n6=n0

|µn (g,Xn)| ≤ C5 ‖g‖C4[0,1] ,
∞∑
n=0
n6=n0

|µn (g, Yn)| ≤ C6 ‖g‖C4[0,1] , (9)

∞∑
n=0
n6=n0

|(g,Xn)| ≤ C7 ‖g‖C4[0,1] ,

∞∑
n=0
n6=n0

|(g, Yn)| ≤ C8 ‖g‖C4[0,1] , (10)

where Ci, i = 3, 8 are some positive constant.

Proof. Since λnXn(x) = −X ′′n(x) and Xn(0) = 0, the equalities (7) can be obtained by
applying four times integration by parts in (6) considering that g(x) ∈ Sn0 . The estimate∑∞

n=0
n6=n0

∣∣µ2n (g,Xn)
∣∣ ≤ C3 ‖g‖C4[0,1] is obtained from the Lemma 2.1, equation (7) by using

Schwartz inequality. Then the convergence of the series
∑∞

n=0
n6=n0

∣∣µ2n (g,Xn)
∣∣ is equivalent

to the convergence of

∞∑
n=0
n 6=n0

∣∣µ2n (g, Yn)
∣∣ =

∞∑
n=0
n6=n0

∣∣µ2n (g,Xn)
∣∣

‖Xn‖2L2[0,1]
+ m

d X
2
n(1)

.

Finally, the estimates (9) and (10) are hold because for sufficiently large p the series∑∞
n=p

∣∣µ2n (g,Xn)
∣∣ is the majorant for the series

∑∞
n=p |µn (g,Xn)| and

∑∞
n=p |(g,Xn)|. �

Let us introduce the functional space

Bα
β,T =

u(x, t) =
∞∑
n=0
n6=n0

un(t)Xn(x) : un(t) ∈ C[0, T ],

JT (u) =

 ∞∑
n=0
n6=n0

(
µαn ‖un(t)‖C[0,T ]

)β
1/β

< +∞


with the norm ‖u(x, t)‖Bαβ,T ≡ JT (u) which relates the Fourier coefficients of the func-

tion u(x, t) by the eigenfunctions Xn(x), n = 1, 2, ... where α ≥ 0 and β ≥ 1. It is
shown in [14] that Bα

β,T is Banach space. Obviously EαT = Bα
β,T × C[0, T ] with the norm

‖z‖EαT = ‖u(x, t)‖Bαβ,T + ‖a(t)‖C[0,T ] is also Banach space, where z = {a(t), u(x, t)}.
In this paper, we will use the functional space B1

1,T for convenience.
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3. Solution of the Inverse Problem

In this section, we will examine the existence and uniqueness of the solution of the
inverse initial-boundary value problem for the equation(1) with time-dependent coefficient.

Definition 3.1. The pair {a(t), u(x, t)} from the class C[0, T ] × C2(DT ) for which the
conditions (1)-(5) are satisfied is called the classical solution of the inverse problem (1)-(5).

For a given a(t), t ∈ [0, T ], to construct the formal solution of the direct problem (1)-(4)
we will use the generalised Fourier method. Based on this method, let us seek the solution

u(x, t) =
∞∑
n=0
n6=n0

un(t)Xn(x) (11)

where un(t) =
∫ 1
0 u(x, t)Yn(x)dx.

The functions un(t),(n = 0, 1, ...;n 6= n0) satisfy the Cauchy problem u′′n(t) + µ2nun(t) = Fn(t; a, u),

un(0) = ϕn, u′n(0) = ψn,
,(n = 0, 1, ...;n 6= n0)

where Fn(t; a, u) = a(t)un(t) + fn(t), fn(t) =
∫ 1
0 f(x, t)Yn(x)dx, ϕn =

∫ 1
0 ϕ(x)Yn(x)dx,

ψn =
∫ 1
0 ψ(x)Yn(x)dx.

Solving these Cauchy problems, we obtain

un(t) = ϕn cos (µnt) +
1

µn
ψn sin (µnt)

(12)

+
1

µn

∫ t

0
Fn(τ ; a, u) sin (µn(t− τ)) dτ

Substituting (12) into (11), we have the formal solution

u(x, t) =
∞∑
n=0
n6=n0

[
ϕn cos (µnt) +

1

µn
ψn sin (µnt)

(13)

+
1

µn

∫ t

0
Fn(τ ; a, u) sin (µn(t− τ)) dτ

]
Xn(x).

To obtain the coefficient a(t), consider the additional condition (5) in the equation (1),
i.e.

a(t) =
1

h(t)

[
h′′(t)− f(x0, t)− uxx(x0, t)

]
.
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Considering (12) into the equation (11) with the second partial derivative by x, we can
easily get uxx(x0, t). Thus we have

a(t) =
1

h(t)

h′′(t)− f(x0, t) +
∞∑
n=0
n6=n0

µ2n {ϕn cos (µnt)

(14)

+
1

µn
ψn sin (µnt) +

1

µn

∫ t

0
Fn(τ ; a, u) sin (µn(t− τ)) dτ

}
Xn(x0)

]
.

Thus, the solution of problem (1)-(5) is reduced to the solution of system (13)-(14) with
respect to the unknown functions {a(t), u(x, t)}.

From the definition of the classical solution of problem (1)-(5), the following lemma is
proved.

Lemma 3.1. If {a(t), u(x, t)} is any solution of problem (1)-(5), then the functions

un(t) =

∫ 1

0
u(x, t)Yn(x)dx, n = 1, 2, ...

satisfy the equation (12) in [0, T ].

From Lemma 3.1, it follows that to prove the uniqueness of the solution of the problem
(1)-(5) is equivalent to prove the uniqueness of the solution of system (13)-(14).

Let us denote z = [a(t), u(x, t)]T and consider the operator equation

z = Φ(z). (15)

The operator Φ is determined in the set of functions z and has the form [φ1, φ2]
T , where

φ1(z) =
1

h(t)

h′′(t)− f(x0, t) +

∞∑
n=0
n6=n0

µ2n {ϕn cos (µnt)

(16)

+
1

µn
ψn sin (µnt) +

1

µn

∫ t

0
Fn(τ ; a, u) sin (µn(t− τ)) dτ

}
Xn(x0)

]
,

φ2(z) =

∞∑
n=0
n 6=n0

[
ϕn cos (µnt) +

1

µn
ψn sin (µnt)

(17)

+
1

µn

∫ t

0
Fn(τ ; a, u) sin (µn(t− τ)) dτ

]
Xn(x).

Let us show that Φ maps E1
T onto itself continuously. In other words, we need to show

φ1(z) ∈ C[0, T ] and φ2(z) ∈ B1
1,T for arbitrary z = [a(t), u(x, t)]T with a(t) ∈ C[0, T ],

u(x, t) ∈ B1
1,T .

We will use the following assumptions on the data of problem (1)-(5):



376 TWMS J. APP. ENG. MATH. V.10, N.2, 2020

(A1): ϕ(x), ψ(x) ∈ Sn0 ,

(A2): h(t) ∈ C2[0, T ], h(0) = ϕ(x0), h
′(0) = ψ(x0), h(t) 6= 0,

(A3): f(x, t) ∈ C(DT ); f(x, t) ∈ Sn0 , ∀t ∈ [0, T ].

First, let us show that φ1(z) ∈ C[0, T ]. Under the assumptions (A1)-(A3), we obtain
from (16)

max
0≤t≤T

|φ1(z)| ≤ R1(T ) +R2(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B1
1,T

(18)

whereR1(T ) = 1
‖h(t)‖C[0,T ]

(‖h′′(t)‖C[0,T ]+‖f(x0, t)‖C[0,T ]+C4 ‖ϕ(x)‖C4[0,1]+C6(‖ψ(x)‖C4[0,1]+

T ‖f(x, ·)‖C4[0,1])), R2(T ) = T
‖h(t)‖C[0,T ]

. Since the right hand side is bounded, φ1(z) ∈
C[0, T ].

Now, let us show that φ2(z) ∈ B1
1,T , i.e. we need to show

JT (φ2) =

∞∑
n=0
n6=n0

µn ‖φ2n(t)‖C[0,T ] < +∞,

where

φ2n(t) = ϕn cos (µnt) +
1

µn
ψn sin (µnt) +

1

µn

∫ t

0
Fn(τ ; a, u) sin (µn(t− τ)) dτ.

After some manipulations under the assumptions (A1)-(A3), we get

∞∑
n=0
n6=n0

µn ‖φ2n(t)‖C[0,T ] ≤ R̃1(T ) + R̃2(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B1
1,T

(19)

where R̃1(T ) =
[
C6 ‖ϕ(x)‖C4[0,1] + C8(‖ψ(x)‖C4[0,1] + T ‖f(x, ·)‖C4[0,1])

]
, R̃2(T ) = T .

Thus JT (φ2) < +∞ and φ2 is belongs to the space B1
1,T .

Now, let z1 and z2 be any two elements of E1
T . We know that ‖Φ(z1)− Φ(z2)‖E1

T
=

‖φ1(z1)− φ1(z2)‖C[0,T ] + ‖φ2(z1)− φ2(z2)‖B1
1,T

. Here zi =
[
ai(t), ui(x, t)

]T
, i = 1, 2.

Under the assumptions (A1)-(A3) and considering (18)-(19), we obtain

‖Φ(z1)− Φ(z2)‖E1
T
≤ A(T )C(a1, u2) ‖z1 − z2‖E1

T

where A(T ) = T
(

1 + 1
‖h(t)‖C[0,T ]

)
and C(a1, u2) is the constant includes the norms of∥∥a1(t)∥∥

C[0,T ]
and

∥∥u2(x, t)∥∥
B1

1,T
.

For sufficiently small T , 0 < A(T ) < 1. This implies that the operator Φ is contraction
mapping which maps E1

T onto itself continuously. Then according to Banach fixed point
theorem there exists a unique solution of (15).

Thus, we proved the following theorem:

Theorem 3.1 (Existence and uniqueness). Let the assumptions (A1)-(A3) be satisfied.
Then, the inverse problem (1)-(5) has a unique solution for small T .
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4. Conclusion

The inverse problems for linear wave equations with dynamic boundary conditions con-
nected with recovery of the coefficient are scarce. The paper consider the of inverse problem
of recovering a time-dependent coefficient in an initial-boundary value problem for a wave
equation. The series expansion method in terms of eigenfunction of a Sturm-Liouville
problem converts the considered inverse problem to a fixed point problem in a suitable
Banach space. Under some consistency and regularity conditions on initial and boundary
data, the existence and uniqueness of inverse problem is shown by using the Banach fixed
point theorem.
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