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HUB-INTEGRITY POLYNOMIAL OF GRAPHS

SULTAN SENAN MAHDE1, VEENA MATHAD1, §

Abstract. Graph polynomials are polynomials assigned to graphs. Interestingly, they
also arise in many areas outside graph theory as well. Many properties of graph poly-
nomials have been widely studied. In this paper, we introduce a new graph polynomial.
The hub-integrity polynomial of G is the polynomial

HIs(G, x) =

p∑
i=h

hi(G, i)xi,

such that hi(G, i) is the number of HI-sets of G of size i, and h is the hub number of G.
Some properties of HIs(G, x) and its coefficients are obtained. Also, the hub-integrity
polynomial of some specific graphs is computed.
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1. Introduction

There are many polynomials associated with graphs. For example, domination poly-
nomial, chromatic polynomial, clique polynomial, characteristic polynomial and Tutte
polynomial, see [1, 5, 6, 16, 19]. Throughout this work, we consider a finite, undirected
graph with neither loops nor multiple edges. For a graph G, we denote the vertex set and
the edge set of G by V (G) and E(G), respectively. We use p to denote the number of
vertices and q to denote the number of edges of a graph G. The reader can follow [8],
for graph-theoretical terminology and notation not defined here. The complement G of a
graph G has V (G) as its vertex set, two vertices are adjacent in G if and only if they are
not adjacent in G [8]. A firefly graph Fs,t,p−2s−2t−1(s ≥ 0, t ≥ 0 and p−2s−2t−1 ≥ 0) is a
graph of order p that consists of s triangles, t pendant paths of length 2 and p−2s−2t−1
pendant edges sharing a common vertex [9]. A galaxy graph Gx is a forest in which each
component is a star [18]. A friendship graph Fn is a graph which consists of n triangles
with a common vertex, dxe denotes the smallest integer number that is greater than or
equal to x.

Networks appear in many different applications and settings. The most common net-
works are telecommunication networks, computer networks, the internet, road and rail
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networks and other logistic networks. In all applications, vulnerability and reliability are
crucial and have important features. Network designers often build a network configu-
ration around specific processing, performance and cost requirements. But there is little
consideration given to the stability of the networks’ communication structure when under
the pressure of link or node loses. This lack of consideration makes the networks have low
survivability. Therefore network design process must identify the critical points of failure
and be able to modify the design to eliminate them [17].

Several vulnerability parameters were defined in graph theory to study the vulnerability
of the networks. These parameters can be estimated by using the number of the elements
that are not working, the number of the subnetworks, and the number of elements in the
remaining largest network that can still mutually communicate. Connectivity, toughness,
integrity, tenacity, rupture degree, and scattering number are some of the vulnerability
parameters defined in graph theory. Some information about the vulnerability of the
network modeled by graphs can be obtained by using these graph parameters. The concept
of integrity was introduced as a measure of graph stability by Barefoot, Entringer and
Swart [3], and defined as, I(G) = minS⊂V {|S|+m(G− S)}, where m(G− S) denotes the
order of the largest component of G − S. If the set S achieves the integrity, then it is
called an I-set of G. That is, if |S|+m(G− S) = I(G) for any set S, then S is called an
I-set. For more details on the integrity see [2, 4, 7].

Suppose that H ⊆ V (G) and let x, y ∈ V (G). An H-path between x and y is a path
where all intermediate vertices are from H. (This includes the degenerate cases where the
path consists of the single edge xy or a single vertex x if x = y, call such an H-path trivial).
A set H ⊆ V (G) is a hub set of G if it has the property that, for any x, y ∈ V (G) −H,
there is an H-path in G between x and y. The smallest size of a hub set in G is called a
hub number of G and is denoted by h(G) [20].

Sultan et al. [10] have introduced the concept of hub-integrity of a graph as a new
measure of vulnerability which is defined as follows.

Definition 1.1. [10] The hub-integrity of a graph G denoted by HI(G) is defined by,

HI(G) = min{|S|+m(G− S), S is a hub set of G},
where m(G− S) is the order of a maximum component of G− S.

For more details on hub-integrity of graphs see [14, 11, 13, 12, 15].

Definition 1.2. A subset S of V (G) is said to be a HI-set, if HI(G) = |S|+m(G− S).

We use the following results for our later results.

Theorem 1.1. [20] Let T be a tree with p vertices and l terminals. Then h(G) = p− l.
Theorem 1.2. [10] Let T be a tree with p vertices and l terminal vertices. Then HI(G) =
p− l + 1.

We introduce hub-integrity polynomial of a graph as a new polynomial in the field of
hub set in graphs.

2. Hub-integrity polynomial of graphs

In this section, we define hub-integrity polynomial and obtain some of its properties.

Definition 2.1. For any graph G of order p, the hub-integrity polynomial of G is the
polynomial

HIs(G, x) =

p∑
i=h

hi(G, i)x
i,
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such that hi(G, i) is the number of HI-sets of G of size i, and h is the hub number of G.
The roots of HIs(G, x) are called HIs-roots and denoted by R(HIs(G, x)). To show this
polynomial, we discuss this example.

Example 2.1. Let G be a graph as shown in Figure 1.
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Figure 1

We have S1 = {u, u4}, S2 = {u, u3, u5}, S3 = {u, u3, u6}, S4 = {u, u2, u5}, and S5 =
{u, u2, u4, u6} are HI-sets of G.

Then, HIs(G, x) = x2 + 3x3 + x4, and R(HIs(G, x)) = {0,−3
2 +

√
5
2 ,−

3
2 −

√
5
2 }.

Theorem 2.1. For any complete graph Kp, HIs(Kp, x) =
∑p

k=0(
p
k

)xk.

Proof. Let v1, v2, ..., vp be vertices of Kp, we have p HI-sets of Kp of size one are {v1}, {v2},

{v3}, ..., {vp}. The number of HI-sets of size 2 can be selected in (
p
2

) ways and the

number of HI-sets of size 3 can be selected in (
p
3

) ways, so the number of HI-sets of

size i can be selected in (
p
i

) ways.

Then HIs(Kp, x) = (
p
0

)x0 + (
p
1

)x+ (
p
2

)x2 + ...+ (
p
p

)xp =
∑p

k=0(
p
k

). �

Definition 2.2. [8] The composition G[H] of two graphs G and H has its vertex set
V (G) × V (H), with (u1, u2) adjacent to (v1, v2) if either u1 is adjacent to v1 in G or u1
= v1 and u2 is adjacent to v2 in H.

Lemma 2.1.

HIs((Pp[K2]), x) =

 1 + 4x+ 6x2 + 4x3 + x4, if p=2;
x2, if p=3;
2x3 + 9x4, if p=4.

Proof. Let Pp be a path with vertices u1, u2, u3, ..., up and K2 be a complete graph with
vertices v1, v2. For simplicity, denote (ui, v1) by ji1, 1 ≤ i ≤ p and (ui, v2) by ji2, 1 ≤ i ≤ p.
The graph Pp[K2] is shown in Figure 2.
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Figure 2: Pp[K2]

Depending on the number of vertices we have the following cases:
Case 1: p = 2, then P2[K2] ∼= K4, so by Theorem 2.1, HIs((P2[K2]), x) = 1 + 4x+ 6x2 +
4x3 + x4.
Case 2: p = 3, since {j21, j22} is the only HI-set, we have HIs((P3[K2]), x) = x2.
Case 3: p = 4, we have two HI-sets of size 3, namely, S1 = {j21, j22, j31}, S2 =
{j21, j22, j32}, also we have nine HI-sets of size 4, namely, S3 = {j21, j22, j31, j32}, S4 =
{j21, j22, j41, j42}, S5 = {j11, j12, j31, j32}, S6 = {j21, j22, j31, j42}, S7 = {j21, j22, j32, j41},
S8 = {j21, j22, j31, j41}, S9 = {j31, j32, j11, j21}, S10 = {j31, j32, j12, j22} and S11 = {j21, j22, j32, j42}.
So HIs((P4[K2]), x) = 2x3 + 9x4. �

Theorem 2.2.

HIs((Pp[K2]), x) =

 2x5+4i, if p=5+3i;
2x6+4i, if p=6+3i;
2x7+4i + 2x8+4i, if p=7+3i,

where i ∈ Z+ ∪ {0}.

Proof. Three Cases are discussed.

Case 1: p = 5 + 3i, where i = 0, 1, 2, · · · . We consider S1 = {j(2+3k)1, j(2+3k)2/0 ≤
k ≤ i} ∪ {j(3k)2, j(3k+1)2/1 ≤ k ≤ i + 1} ∪ {j(p−1)1} and S2 = {j(2+3k)1, j(2+3k)2/0 ≤ k ≤
i}∪{j(3k)1, j(3k+1)1/1 ≤ k ≤ i+ 1}∪{j(p−1)2}. Then there exist two HI-sets of size 5 + 4i.

Thus HIs((Pp[K2]), x) = 2x5+4i.
Case 2: p = 6 + 3i, i ∈ Z+ ∪ {0}. We have S1 = {j(2+3k)1, j(2+3k)2/0 ≤ k ≤ i +
1} ∪ {j(3k)2, j(3k+1)2/1 ≤ k ≤ i + 1} and S2 = {j(2+3k)1, j(2+3k)2/0 ≤ k ≤ i + 1} ∪
{j(3k)1, j(3k+1)1/1 ≤ k ≤ i + 1}. Then we have two HI-sets of size 6 + 4i. Hence,

HIs((Pp[K2]), x) = 2x6+4i.
Case 3: p = 7 + 3i, i = 0, 1, 2, ..., we have two HI-sets of size 7 + 4i as follows:
S1 = {j(2+3k)1, j(2+3k)2, 0 ≤ k ≤ i+1}∪{j(3k)2, j(3k+1)2, 1 ≤ k ≤ i+2}, S2 = {j(2+3k)1, j(2+3k)2,
0 ≤ k ≤ i+ 1} ∪ {j(3k)1, j(3k+1)1, 1 ≤ k ≤ i+ 2}, also we have two HI-sets of size 8 + 4i as
follows:
S3 = {j(2+3k)1, j(2+3k)2, 0 ≤ k ≤ i+ 1} ∪ {j(3k)2/1 ≤ k ≤ i+ 2} ∪ {j(3k+1)2, 1 ≤ k ≤ i+ 1},
and S4 = {j(2+3k)1, j(2+3k)2, 0 ≤ k ≤ i+1}∪{j(3k)1/1 ≤ k ≤ i+2}∪{j(3k+1)1, 1 ≤ k ≤ i+1}.
Therefore, HIs((Pp[K2]), x) = 2x7+4i + 2x8+4i. �

Definition 2.3. [8] The (Cartesian)product G×H of graphs G and H has V (G)×V (H)
as its vertex set and (u1, u2) is adjacent to (v1, v2) if either u1 = v1 and u2 is adjacent to
v2 or u2 = v2 and u1 is adjacent to v1 .

Lemma 2.2.

HIs((K2 × Pp), x) =

{
x2 + 2x3, if p=3;
3x4 + 2x5, if p=4.
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Proof. Let V (Pp) = {v1, v2, ..., vp} and V (K2) = {u1, u2}. We denote (u1, vi) by j1i, 1 ≤
i ≤ p and (u2, vi) by j2i, 1 ≤ i ≤ p, we show the graph K2 × Pp in Figure 3.

x
x

x
x x

x r r r
r r r x x

j11 j12 j13 j1(p−1) j1p

j21 j22 j23 j2(p−1) j2p

Figure 3: K2 × Pp

xx

When p = 3, we can select one HI-set of size 2 and two HI-sets of size 3 of K2 × P3 as
follows: S1 = {j12, j22}, S2 = {j11, j22, j13} and S3 = {j21, j12, j23}. Therefore, HIs((K2 ×
P3), x) = x2 + 2x3.
When p = 4, the sets S1 = {j12, j22, j13, j23}, S2 = {j11, j21, j13, j23}, S3 = {j12, j22, j14, j24}, S4 =
{j11, j12, j22, j13, j24} and S5 = {j21, j12, j23, j14, j22} areHI-sets ofK2×P3. ThenHI((K2×
P3), x) = 3x4 + 2x5. �

Theorem 2.3.

HIs((K2 × Pp), x) =

 6x5+4i, if p=5+3i;
2x6+4i, if p=6+3i;
4x8+4i, if p=7+3i,

where i ∈ Z+ ∪ {0}.

Proof. We consider three cases.
Case 1: p = 5 + 3i, where i = 0, 1, 2, ..., S1 = {j1(2+3k), j2(2+3k)/0 ≤ k ≤ i} ∪
{j2(3k), j2(3k+1)/1 ≤ k ≤ i+1}∪{j1p}, S2 = {j1(2+3k), j2(2+3k)/0 ≤ k ≤ i}∪{j1(3k), j1(3k+1)/1 ≤
k ≤ i + 1} ∪ {j2p}, S3 = {j1(4+3k), j2(4+3k)/0 ≤ k ≤ i} ∪ {j2(3k−1), j2(3k)/1 ≤ k ≤
i+ 1} ∪ {j11}, S4 = {j1(4+3k), j2(4+3k)/0 ≤ k ≤ i} ∪ {j1(3k−1), j1(3k)/1 ≤ k ≤ i+ 1} ∪ {j21},
S5 = {j1(2+3k), j2(2+3k)/0 ≤ k ≤ i} ∪ {j2(3k)/1 ≤ k ≤ i + 1} ∪ {j2(3k+1)/1 ≤ k ≤
i and i ≥ 1} ∪ {j1(p−1), j2(p−1)} and S6 = {j1(2+3k), j2(2+3k)/0 ≤ k ≤ i} ∪ {j1(3k)/1 ≤
k ≤ i + 1} ∪ {j1(3k+1)/1 ≤ k ≤ i and i ≥ 1} ∪ {j1(p−1), j2(p−1)}, all these sets are HI-
sets of K2 × Pp graph. So we can select these sets of size 5 + 4i in six ways and hence
HIs((K2 × Pp), x) = 6x5+4i.
Case 2: p = 6 + 3i, where i ∈ Z+ ∪ {0}. We consider S1 = {j1(2+3k), j2(2+3k)/0 ≤
k ≤ i + 1} ∪ {j2(3k), j2(3k+1)/1 ≤ k ≤ i + 1} and S2 = {j1(2+3k), j2(2+3k)/0 ≤ k ≤
i+ 1}∪{j1(3k), j1(3k+1)/1 ≤ k ≤ i+ 1}. They satisfy condition of hub-integrity of K2×Pp.

Therefore, HIs((K2 × Pp), x) = 2x6+4i.
Case 3: p = 7 + 3i, where i = 0, 1, 2, ... . There are 4 ways to select HI-sets of K2 × Pp

graph of size 8 + 4i, and these sets are given as follows: S1 = {j1(2+3k), j2(2+3k)/0 ≤
k ≤ i + 1} ∪ {j2(3k), j2(3k+1)/1 ≤ k ≤ i + 2}, S2 = {j1(2+3k), j2(2+3k)/0 ≤ k ≤ i + 1} ∪
{j1(3k), j1(3k+1)/1 ≤ k ≤ i+2}, S3 = {j1(2+3k), j2(2+3k)/0 ≤ k ≤ i+1}∪{j2(3k+1), j2(3k+2)/1 ≤
k ≤ i+ 1} ∪ {j21, j22}, and S4 = {j1(3+3k), j2(3+3k)/0 ≤ k ≤ i+ 1} ∪ {j1(3k+1), j1(3k+2)/1 ≤
k ≤ i+ 1} ∪ {j11, j12}. Thus HIs((K2 × Pp), x) = 4x8+4i. �

Definition 2.4. [8] For a simple connected graph G the square of G denoted by G2, is
defined as the graph with the same vertex set as of G and two vertices are adjacent in G2

if they are at a distance 1 or 2 in G .
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Lemma 2.3.

HIs(P
2
p , x) =

{
2x+ x2 + 1, if p=2;
3x+ 3x2 + x3 + 1, if p=3.

Proof. Since P 2
2
∼= K2 and P 2

3
∼= K3, the result comes from Theorem 2.1. �

Theorem 2.4.

HIs(P
2
p , x) =

{
x2, if p=4;
2x2 + x3, if p=5.

Proof. In case p = 4 we have just one HI-set is S = {v2, v3} of size 2, hence HIs(P
2
4 , x) =

x2. If p = 5 we have two HI-sets of size 2 and one set of size 3 as follows: S1 =
{v3, v4}, S2 = {v2, v3} and S3 = {v2, v3, v4}. Then HIs(P

2
5 , x) = 2x2 + x3. �

Theorem 2.5.

HIs(P
2
p , x) =

{
3x3, if p=7;
3x4, if p=8.

Proof. There are threeHI-sets of P 2
7 of size 3, that are {v3, v4, v6}, {v2, v4, v5} and {v3, v4, v5}.

ThenHIs(P
2
7 , x) = 3x3. Also there are threeHI-sets of P 2

8 of size 4, that are {v3, v4, v6, v7},
{v2, v3, v5, v6} and {v3, v4, v5, v6}. Thus HIs(P

2
8 , x) = 3x4. �

Theorem 2.6.

HIs(P
2
p , x) =


x2

p
3
−2, if p ≥ 6 and p ≡ 0 (mod 3);

2x2
p−1
3
−1, if p ≥ 10 and p ≡ 1 (mod 3);

2x2
p+2
3
−2, if p ≥ 11 and p ≡ 2 (mod 3).

Proof. The three cases are considered:
Case 1: p ≡ 0 (mod 3), then p = 3k and k ≥ 2. Since S = {v3+3j , v4+3j/0 ≤ j ≤ k− 2} is

HI-set of P 2
p such that |S| = 2(k−1). Then hi(P

2
p , i) = 2p

3 −2. Hence, HIs(P
2
p , x) = x

2p
3
−2.

Case 2: p ≡ 1 (mod 3), then p = 3k + 1 and k ≥ 3. We consider S1 = {v3+3j , v4+3j/0 ≤
j ≤ k − 2} ∪ {vp−1} and S2 = {v4+3j , v5+3j/0 ≤ j ≤ k − 2} ∪ {v2}. They are HI-sets of

P 2
p such that |S1| = |S2| = 2(p−1)

3 − 1. Then we have HIs(P
2
p , x) = 2x

2(p−1)
3
−1.

Case 3: p ≡ 2 (mod 3), then p = 3k − 1 and k ≥ 4. We have S1 = {v3+3j , v4+3j/0 ≤ j ≤
k − 2} and S2 = {v2+3j , v3+3j/0 ≤ j ≤ k − 2} are HI-sets of P 2

p of size 2k − 1, and this

means we have two sets of size 2p+2
3 − 2. Therefore, HIs(P

2
p , x) = 2x

2p+2
3
−2. �

Proposition 2.1. hi(P
2
p , i) = φ if and only if i > p or i < dp3e.

Lemma 2.4. (1) If hi(P
2
p−1, i− 1) = hi(P

2
p−3, i− 3) = φ, then hi(P

2
p−2, i− 2) = φ.

(2) If hi(P
2
p−1, i− 1) 6= φ, hi(P

2
p−3, i− 3) 6= φ, then hi(P

2
p−2, i− 2) 6= φ.

Proof. (1) From given, hi(P
2
p−1, i − 1) = hi(P

2
p−3, i − 3) = φ, then by Proposition 2.1,

i−1 > p−1 or i−1 < dp−33 e, thus i−1 > p−2 or i−1 < dp−23 e, hence hi(P
2
p−2, i−2) = φ.

(2) Assume hi(P
2
p−2, i− 2) = φ, from Proposition 2.1, i− 1 > p− 2 or i− 1 < dp−23 e. Now

if i − 1 > p − 2, it follows that i − 1 > p − 3. Then hi(P
2
p−3, i − 3) = φ, a contradiction,

hence we get the result. �

Proposition 2.2. For any path Pp, p ≥ 3,

HIs(Pp, x) =


x, if p = 3;
3x2, if p = 4;
6x3, if p = 5;
(p+ 2)xp−2, if p ≥ 6.
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Proof. Let V (Pp) = {v1, v2, ..., vp}, and we have the following cases:
Case 1: p = 3. Since {v2} is HI-set of P3, HIs(P3, x) = x.
Case 2: p = 4. We have three HI-sets of P4 of size 2 as follows: S1 = {v2, v3}, S2 =
{v1, v3}, and S3 = {v2, v4}. Hence, HIs(P4, x) = 3x2.
Case 3: p = 5. We can choose HI-sets of P5 of size 3 in six ways and these sets are
S1 = {v2, v3, v4}, S2 = {v1, v3, v5}, S3 = {v1, v2, v4}, S4 = {v2, v4, v5}, S5 = {v1, v3, v4},
and S6 = {v2, v3, v5}. Then HIs(P5, x) = 6x3.
Case 4: p ≥ 6. Since h(Pp) = p− 2, p ≥ 6, there exist p+ 2 ways to find HI-sets of Pp of
size p− 2. In addition, there does not exist any HI-set of other order satisfying HI(Pp).
So HIs(Pp, x) = (p+ 2)xp−2, p ≥ 6. �

Theorem 2.7. For any tree T 6= Pp with p vertices,

HIs(T, x) =

{
2xp−l, if S contains a terminal vertex of T ;
xp−l, otherwise,

where S is any HI-set of T .

Proof. Suppose that T is a tree with p vertices and l terminal vertices such that T 6= Pp.
Let S be HI-set with |S| + m(T − S) = HI(T ). By Theorem 1.1, h(T ) = p − l and by
Theorem 1.2, HI(T ) = p− l+ 1 and |S| = p− l. If one terminal vertex belongs to HI-set,
then we have two ways to choose the set S of size p − l. The first way is that we can
choose all internal vertices as HI-set, and the second way is that we choose S such that
there exists at least one terminal vertex in HI-set. Thus, HIs(T, x) = 2xp−l. �

By Theorem 2.7, the proof of the following result is straightforward.

Proposition 2.3. (1) For the star K1,p−1, HIs(K1,p−1, x) = x.
(2) For the double star Sn,m, HIs(Sn,m, x) = x2.

Theorem 2.8. Let T be a tree of order p, then hi(K1,p−1, i) ≤ hi(T, i) ≤ hi(Pp, i), for
i = 1, 2, ..., p− 2.

Proof. SinceHIs(K1,p−1, x) = x, hi(K1,p−1, 2) = ... = hi(K1,p−1, p−2) = 0 and hi(K1,p−1, 1) =
1. It is clear that, hi(K1,p−1, i) ≤ hi(T, i) for i = 1, 2, ..., p− 2. We get hi(T, i) ≤ hi(Pp, i),
for i = 1, 2, ..., p− 2, from Proposition 2.2 and Theorem 2.7. �

Proposition 2.4. For any totally disconnected graph Kp, HIs(Kp, x) = xp.

Proof. Since h(Kp) = p, we have only one HI-set of size p, so the result. �

Proposition 2.5.

HIs(Kn,m, x) =

{
xn, if n < m;
2xn, if n = m.

Proof. Let V (Kn,m) = {u1, u2, ..., un, v1, v2, ..., vm}, depending on the number of vertices
of Kn,m, we consider two cases:
Case 1: n < m, the hub number is n and S = {u1, u2, ..., un} is HI-set of Kn,m, then we
have only one HI-set of size n hence, HIs(Kn,m, x) = xn.
Case 2: n = m, h(Kn,n) = n and we have two HI-sets, namely, S1 = {u1, u2, ..., un} and
S2 = {v1, v2, ..., vn}. Therefore, HIs(Kn,m, x) = 2xn. �

Theorem 2.9. For any graph G, HIs(G, x) =
∑p

k=0(
p
k

)xk if and only if G ∼= Kp.
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Proof. If G ∼= Kp, then by Theorem 2.1, we get the proof.

Now, if HIs(G, x) =
∑p

k=0(
p
k

)xk, it follows that HIs(G, x) = (
p
0

)x0+(
p
1

)x+(
p
2

)x2+

... + (
p
p

)xp, this means that any set with at least one vertex of the graph G is HI-set

and has one HI-set of size p, the complete graph Kp only achieves these properties, this
completes the proof.

�

In a polynomial P (x) = a0 +a1x+a2x
2 + ...+apx

p, the coefficients a0 and ap are called
the constant and leading coefficients of P (x), respectively, and the greatest exponent of x
is called the degree of P (x) and denote by deg(P (x)).

Observation 2.1. For any graph G,
(a) deg(HIs(G, x)) = max|Si|, Si is HI-set of G.
(b) deg(HIs(G, x)) = p if and only if G ∼= Kp, or Kp.

Proposition 2.6. Let G be any graph and G 6= Kp, and HIs(G, x) = a0 + a1x+ a2x
2 +

...+ apx
p. Then

(1) a0 = 0,
(2) ap = 1 or ap = 0,
(3) If G is connected, then zero is a root of HIs(G, x) with multiplicity h(G).

Proof. (1) Since h(G) ≥ 1 for any graph G except Kp, as a result G has at least one
nonempty HI-set. So a0 = 0.
(2) Since HI-set of size p for G is unique if it found, then the result.
(3) From (1), we have HIs(G, x) = 0, implying x = 0. Then 0 is the root of polynomial
HIs(G, x), it is clear h(G) is the least power of x in HIs(G, x). Hence h(G) is multiplicity
of the root 0. �

Remark 2.1. If HIs(G1, x) = HIs(G2, x), then it is not necessary HI(G1) = HI(G2),
for example, G1

∼= K1,p−1 and G2
∼= Fn such that HIs(K1,p−1, x) = HIs(Fn, x) = x. But

HI(K1,p−1) = 2 and HI(Fn) = 3.

Proposition 2.7. HIs(G, x) is linear if and only if G ∼= Fs,0,p−2s−1, s ≥ 2, G ∼= Fn, n ≥ 2
or G ∼= K1,p−1, p ≥ 3.
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