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ON RULED NON-DEGENERATE SURFACES WITH DARBOUX

FRAME IN MINKOWSKI 3-SPACE

GÜLSÜM YELİZ ŞENTÜRK1, SALİM YÜCE2, §

Abstract. In this paper, ruled non-degenerate surfaces with respect to Darboux frame
are studied. Characterization of them which are related to the geodesic torsion, the nor-
mal curvature and the geodesic curvature with respect to Darboux frame are examined.
Furthermore, some special cases of non-null rulings are demonstrated according to Frenet
frame {T,N,B} with Darboux frame {T,g,n}. Finally, the integral invariants of these
surfaces are examined.
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1. Introduction

The curve and surface theories are popular topics in differential geometry so a ruled
surface is the important subject of differential geometry. A ruled surface can always be
easily parameterized. These surfaces can be described by moving a straight line along a
chosen curve. Therefore, the equation of the ruled surface can be written as

X(s, v) = α(s) + ve(s), ‖e(s)‖ = 1

where (α) is curve which is called the base curve of the ruled surface and the curve e is
also called the spherical indicatrix vector of the ruled surface. The ruled surface have been
studied for centuries by geometers. The geometry and theory of ruled surfaces are widely
used in sciences for instance Computer-Aided Manufacturing (CAM), Computer-Aided
Geometric Design (CAGD), architectural design and kinematics.

In the literature, many properties of ruled surfaces have been examined in Euclidean and
non-Euclidean spaces. B. Ravani and T. S. Ku have generalized the theory of Bertrand
offsets of curves for ruled surfaces with geodesic Frenet frame, [1]. A. Turgut and H.
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H. Hacısalihoğlu have investigated spacelike and timelike ruled surfaces and given some
theorems related to the distribution parameter in Minkowski 3-space, [2, 3, 4]. Y. H. Kim
and D. W. Yoon have classified ruled surfaces in terms of the second Gaussian curvature,
the mean curvature and the Gaussian curvature in Minkowski 3-space, [5]. E. Kasap
and N. Kuruoğlu have studied Bertrand offsets of ruled surfaces with geodesic Frenet
frame in Minkowski 3-space, [6]. Y. H. Kim and D. W. Yoon have investigated non-
developable ruled surfaces in Lorentz-Minkowski space, [7]. The involute-evolute offsets
and Mannheim offsets of ruled surfaces with geodesic Frenet frame are studied in [8, 9]. N.
Yüksel have defined the ruled surfaces according to Bishop Frame in Minkowski 3-Space,
[10]. C. Ekici and H. Öztürk have given timelike ruled surfaces and they obtained some
theorems related to the geodesic Frenet curvature and the second fundamental form, [11].
S. Kızıltuğ and A. Çakmak have studied developable ruled surfaces with Darboux frame in
Minkowski 3-space, [12]. The ruled surfaces with Darboux frame (RSDF) are investigated
and Bertrand offsets of RSDF are defined by G. Y. Şentürk and S. Yüce, [13, 14]. D. W.
Yoon has classified evolute offsets of a ruled surface with constant Gaussian curvature and
mean curvature and investigated linear Weingarten evolute offsets in Minkowski 3-space,
[15].

In this study, we study on ruled non-degenerate surfaces with Darboux frame in E3
1. We

take the relation between the Darboux frame {T,g,n} and the Frenet frame {T,N,B} of
base curve to write characteristic properties and integral invariants of ruled non-degenerate
surfaces which related to the geodesic torsion, the normal and the geodesic curvatures.

2. Preliminaries

2.1. Differential geometry in R3
1. Let x = (x1, x2, x3) and y = (y1, y2, y3) be vectors

in R3. The Lorentzian inner product of x and y is defined to be the real number

〈x, y〉 = −x1y1 + x2y2 + x3y3.

The vector space R3 with the Lorentzian inner product is called Minkowski (Lorentz)
3-space and is denoted by E3

1, [16, 17].
Let x be a vector in R3. The sign of 〈x, x〉 determines the type of x. In particular

if 〈x, x〉 > 0 or x = 0, then x is spacelike; and if 〈x, x〉 < 0, then x is timelike; and if
〈x, x〉 = 0, then x is null (lightlike). A timelike vector x said to be positive (resp. negative)

if and only if x1 > 0. The Lorentzian norm of x is defined ‖x‖ =
√
|〈x, x〉|.

Two vectors x, y in R3
1 are Lorentzian orthogonal if and only if 〈x, y〉 = 0.

Theorem 2.1. Let x and y be nonzero Lorentzian orthogonal vectors in R3
1. If x is

timelike, then y is spacelike, [17]

{x, y, z} in R3
1 are Lorentzian orthonormal if and only if ‖x‖2 = −1 and 〈x, y〉 = 〈x, z〉 =

〈z, y〉 = 0 and ‖y‖2 = ‖z‖2 = 1, [17]. For any vectors x = (x1, x2, x3) and y = (y1, y2, y3)
in R3

1, the Lorentzian vector product of x and y is defined by, [16, 17]

x× y =

∣∣∣∣∣∣
−e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ = (x3y2 − x2y3, x3y1 − x1y3, x1y2 − x2y1) ,

where

δij =

{
1 i = j,
0 i 6= j,

ei = (δi1, δi2, δi3) , e1 × e2 = e3, e2 × e3 = −e1, e3 × e1 = e2.
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Theorem 2.2. If x = (x1, x2, x3), y = (y1, y2, y3) and z = (z1, z2, z3) in R3
1, then,[17]

(1) x× y = −y × x
(2) x× (y × z) = 〈x, y〉 z − 〈z, x〉 y.

Theorem 2.3. Let x, y in R3
1. We have, [18]

(1) If x and y are spacelike vectors, x× y is a timelike vector.
(2) If x and y are timelike vectors, x× y is a spacelike vector.
(3) If x is a spacelike vector and y is a timelike vector, x× y is a spacelike vector.

Let α (s) : I ⊂ R → R3
1, be a smooth regular curve in R3

1. For any s ∈ I, the curve is
said to be a spacelike, timelike or null if the velocity vector α′ (s) is a spacelike, timelike or
null vector, respectively. Denote by {T,N,B} the moving Frenet frame along the curve
α (s) in Lorentz 3-space. For an arbitrary spacelike curve α (s), then the following Frenet
formulae are given,  T′

N′

B′

 =

 0 κ 0
−εκ 0 τ

0 τ 0

 T
N
B

 ,
where 〈T,T〉 = 1, 〈N,N〉 = ε = ±, 〈B,B〉 = −ε, 〈T,N〉 = 〈T,B〉 = 〈N,B〉 = 0 and κ
and τ are curvature and torsion of the spacelike curve, respectively. The Darboux vector
of this motion is D = τT− κB, where T×N = B,N×B = −εT and T×B = N, [19].

Furthermore, for any timelike curve α (s), then the following Frenet formulae are given, T′

N′

B′

 =

 0 κ 0
κ 0 τ
0 −τ 0

 T
N
B

 ,
where 〈T,T〉 = −1, 〈N,N〉 = 〈B,B〉 = 1, 〈T,N〉 = 〈T,B〉 = 〈N,B〉 = 0 and κ and τ
are curvature and torsion of the spacelike curve, respectively. The Darboux vector of this
motion is D = τT + κB, where T×N = B,N×B = −T and T×B = −N, [19].

Definition 2.1. i) The timelike angle between timelike vectors: Let x and y be
positive (negative) timelike vectors in R3

1. Then there is a unique real number θ ≥ 0 such
that 〈x, y〉 = |x| |y| cosh θ.
ii) The timelike angle between spacelike vectors: Let x and y be spacelike vectors
in R3

1 that span a timelike vector subspace. Then there is a unique real number θ ≥ 0 such
that 〈x, y〉 = |x| |y| cosh θ.
iii) The spacelike angle between spacelike vectors: Let x and y be spacelike vectors
in R3

1 that span a spacelike vector subspace. Then there is a unique real number θ ≥ 0
such that 〈x, y〉 = |x| |y| cos θ.
iv) The angle between spacelike and timelike vectors: Let x be a spacelike vector
and y be a timelike vector in R3

1. Then there is a unique real number θ ≥ 0 such that
〈x, y〉 = |x| |y| sinh θ, [17].

A surface in Lorentz 3-space is called a timelike or spacelike if the normal on surface is a
spacelike or timelike vector, respectively, [16, 17]. Let M be an oriented surface in Lorentz
3-space and α(s) be a non-null curve lying on M . Since α(s) is also a space curve, there
exists the moving Frenet frame {T,N,B} along the curve. T is a unit tangent vector, N
is a principal normal vector and B is a binormal vector.Due to the curve α(s) that lies on
the surface there exists the Darboux Frame and it is denoted by {T,g,n} . In Darboux
Frame T is the unit tangent vector of the curve like the Frenet Frame. n is the unit normal
vector of the surface and g is the unit vector which is defined by g = T× n. Due to the
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unit tangent vector T is common Frenet Frame and Darboux Frame, the vectors N , B,
g, n lie on the same plane. Then, if the surface M is an oriented timelike surface, the
relations between these frames can be given as follows

i) If the curve α(s) is timelike, T
g
n

 =

 1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 T
N
B

 .
ii) If the curve α(s) is spacelike, T

g
n

 =

 1 0 0
0 coshϕ sinhϕ
0 sinhϕ coshϕ

 T
N
B

 .
If the surface M is an oriented spacelike surface, then the curve α(s) is spacelike. So,

the relations between these frames can be given as follows T
g
n

 =

 1 0 0
0 coshϕ sinhϕ
0 sinhϕ coshϕ

 T
N
B

 .
In all cases, ϕ is the angle between the vectors g and N. The derivative formulae of the
Darboux frame can be changed as follows:

i) If the surface M is a timelike surface, then the curve α(s) can be a spacelike or a
timelike curve. Thus, the derivative formulae of the Darboux frame of α(s) is given by T′

g′

n′

 =

 0 κg −ηκn
κg 0 ητg
κn τg 0

 T
g
n

 , 〈T,T〉 = η = ±, 〈g,g〉 = −η, 〈n,n〉 = 1.

ii) If the surface M is a spacelike surface, then the curve α(s) can be a spacelike curve.
Thus, the derivative formulae of the Darboux frame of α(s) is given by T′

g′

n′

 =

 0 κg κn
−κg 0 τg
κn τg 0

 T
g
n

 , 〈T,T〉 = 〈g,g〉 = 1, 〈n,n〉 = −1.

In these formulae κg is the geodesic curvature, κn is the normal curvature and τg is the
geodesic torsion of α(s), [19, 20, 21]. In this article, we prefer using -prime- to denote the
derivative with respect to the arc length parameter of a curve.

In addition, the geodesic curvature κg and geodesic torsion τg of the curve α(s) can be
calculated as follows:

κg =<
dα

ds
,
d2α

ds2
× n >, τg =<

dα

ds
,n× dn

ds
> .

Corollary 2.1. There are not closed curves in R3
1 that are timelike or lightlike, [22].

2.2. Ruled non-degenerate Surfaces. A ruled surface is obtained by a straight line
moving along a curve. A ruled surface in R3

1 is given by the parametrization

X : I × R→ R3
1, X(s, v) = α(s) + ve(s), (1)

where the curve α : I → R3
1 is called the base curve and e : R → R3

1 is called the ruling.

If the normal vector on ruled surface n = Xu×Xv
‖Xu×Xv‖ is a spacelike or timelike vector, the

surface is called timelike or spacelike, respectively.
Let M be a ruled surface with the eq. 1. An orthonormal basis of χ(M), {T, e} can

be chosen, where T is the unit tangent vector of α. Thus n = T × e is a normal vector
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of M . In this case, spacelike ruled surface in R3
1 is obtained by a spacelike straight line

moving along a spacelike curve, [2]. Similarly, a timelike ruled surface in R3
1 is obtained

by a spacelike straight line moving along a timelike curve or by a timelike straight line
moving along a spacelike curve, [3].

The striction point on ruled surface is the foot of the common perpendicular line of
the successive rulings on the main ruling.The set of striction points of the ruled surface
generates its striction curve. The striction curve of any spacelike and timelike ruled surface
is given by , [2, 3]

c(s) = α(s)− < αs, es >

< es, es >
e(s).

The distribution parameter of any spacelike and timelike ruled surface is given by, [2, 3]

Pe =
〈αs × e, es〉
< es, es >

= −det(αs, e, es)
< es, es >

.

Theorem 2.4. The ruled surface is developable if and only if the distribution parameter
Pe is zero, [1].

A curve which intersects perpendicularly each one of rulings is called an orthogonal
trajectory of the ruled surface. It is calculated by

< e, dϕ >= 0.

Let α : I → E3
1 be a differentiable closed curve and H = sp {T,N,B} be a moving space

along the curve α, where {T,N,B} is Frenet frame of α and H ′ = E3
1 be a fixed space. In

this case, a closed space motion can be defined on H ′ of H along the curve α. We denote
by H/H ′ the closed space motion. The pitch of closed ruled surface is defined by

Le = −
∮
α
< e, dα >=

∮
α
dv =< V, e >,

where V =
∮
α dα is Steiner translation vector of the motion. The angle of pitch of closed

ruled surface is defined by
λe =< D, e >,

where D = λTT− ελBB is Steiner rotation vector of the motion.

3. On ruled non-degenerate surfaces with Darboux Frame in Minkowski
3-space

3.1. Spacelike ruled surfaces. Let M be a ruled surface which obtain by a spacelike
straight line moving along a spacelike curve in R3

1. In the study [2], T and e are orthog-
onal spacelike vectors. Because of this special choice, n is obtained as a timelike, so M
is a spacelike ruled surface. Unlike this study, we take that T and e are not orthogonal
vectors. In this case, the normal of the surface n can be spacelike or timelike. We assumed
that the normal vector n is a timelike. We take the relation between the Darboux frame
{T,g,n} and the Frenet frame {T,N,B} of base curve. As the tangent vector of base
curve appears in both frames, then that relation is indeed, a relation between the last two
vectors of both frames and a certain angles between the vectors. Then, we can write e in
linear combination of both frames.

A unit direction vector of a spacelike ruling e is spanned by the system {T,g} . So e
can be written as:

e = T cosφ+ g sinφ
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where φ is the angle between the spacelike vectors T and e.
es is also provided the equation,

es = −T(φ′ + κg) sinφ+ g(φ′ + κg) cosφ+ n(κn cosφ+ τg sinφ).

Holding v constant, we obtain a curve β(s) = α(s) + ve(s) on a ruled surface whose
vector field is

T∗ = T(1− v(φ′ + κg) sinφ) + g(φ′ + κg)v cosφ+ n(κn cosφ+ τg sinφ)v.

The relation between the vectors e and T∗ is

< T∗, e >= cosφ.

The distribution parameter of the spacelike RSDF is

Pe = − sinφ(κn cosφ+ τg sinφ)

(φ′ + κg)
2 − (κn cosφ+ τg sinφ)2 .

The orthogonal trajectories of the spacelike RSDF is

cosφds = −dv.
The striction curve of the spacelike RSDF is

c(s) = α(s) +
sinφ(φ′ + κg)

(φ′ + κg)2 − (κn cosφ+ τg sinφ)2
e(s).

Theorem 3.1. Let M be a spacelike RSDF, which is given by X(s, v) = α(s) + ve(s).
In this case, the shortest distance between the spacelike rulings of the surface along the
orthogonal trajectories is

v =
sinφ(φ′ + κg)

(φ′ + κg)2 − (κn cosφ+ τg sinφ)2

along the curve Xv : I →M.

Proof. Supposing that the two spacelike rulings pass through the points αs1 and αs2 where
s1 < s2, the distance between these rulings along an orthogonal trajectory is given:

J(v) =

∫ s2

s1

‖T ∗‖ds

where T∗ = T(1−v(φ′+κg) sinφ)+g(φ′+κg)v cosφ+n(κn cosφ+ τg sinφ)v. From there
we obtain

J(v) =

∫ s2

s1

√
1− 2v sinφ(φ′ + κg) + v2(φ′ + κg)2 − v2(κn cosφ+ τg sinφ)2ds.

To find value of v which minimizes J(v), we have to use

J ′(v) =

∫ s2

s1

−2 sinφ(φ′ + κg) + 2v(φ′ + κg)
2 − 2v(κn cosφ+ τg sinφ)2√

1− 2v sinφ(φ′ + κg) + v2(φ′ + κg)2 − v2(κn cosφ+ τg sinφ)2
ds = 0

which satisfies

v =
sinφ(φ′ + κg)

(φ′ + κg)2 − (κn cosφ+ τg sinφ)2
.

�

Theorem 3.2. Let M be a spacelike RSDF. Moreover, the point X(s, v0), v0 ∈ R, on the
main spacelike ruling which passes the point α(s), is a striction point if and only if es is
the unit normal vector field of tangent plane in the point X(s, v0).
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Proof. While suggesting that the point X(s, v0) on the main spacelike ruling which passes
through the point α(s) is a striction point, we have to show that < es, e >=< es,T

∗ >= 0.
We know that < e, e >= 1 so if we take differential this equation with respect to s, we
obtain < es, e >= 0. Also if we calculate the value of < es,T

∗ >, we get

< es,T
∗ >= − sinφ(φ′ + κg) + v(φ′ + κg)

2 − v(κn cosφ+ τg sinφ)2. (2)

From X(s, v0), we can write the striction point as

v0 =
sinφ(φ′ + κg)

(φ′ + κg)2 − (κn cosφ+ τg sinφ)2
.

If we calculate the value v0 into the eq. 2, then we get < es,T
∗ >= 0. So, es is normal to

e and the vector field T∗ .
Conversely, it can easily be obtained. �

Let
e = T cosφ−N sinφ sinhϕ+ B sinφ coshϕ, 〈e, e〉 = 1 (3)

where ϕ is the angle between spacelike g and timelike N and where φ is the angle between
the spacelike vectors T and e, be a unit vector line in Frenet frame {T,N,B} on the
RSDF drawn by a line e . (Similarly, we can take B is a timelike vector. Then, all below
theorems can be shown using it.)

Let α : I → E3
1 be a differentiable closed spacelike curve and H = sp {T,N,B} be a

moving space along the curve α, where {T,N,B} is Frenet frame of α and H ′ = E3
1 be a

fixed space. In this case, a closed space motion can be defined on H ′ of H along the curve
α. We denote by H/H ′ the closed space motion.

Theorem 3.3. The angle of pitch of the spacelike RSDF, which is drawn by a fixed line
in {T,N,B} during the motion H/H ′ in fixed space H ′, is

λe = λT cosφ+ λB sinφ coshϕ, (4)

where λT and λB are the angle of pitches of the ruled surfaces which are drawn by the
vectors T and B, respectively.

Theorem 3.4. The pitch of the spacelike RSDF, which is drawn by a fixed line in {T,N,B}
during the motion H/H ′ in fixed space H ′, is

Le = cosφLT ,

where LT is the pitch of the ruled surface which is drawn by the vector T.

Proof. For the pitch of the spacelike RSDF, which is drawn by the fixed line e, we get

Le =

∮
α
< dα, e >

Le =

∮
α
< Tds,T cosφ−N sinφ sinhϕ+ B sinφ coshϕ >

or
Le = cosφLT . (5)

�

Theorem 3.5. If the spacelike RSDF, which is drawn by a fixed spacelike line e in
{T,N,B} during the motion H/H ′, is developable then the harmonic curvature is calcu-
lated as follows:

h =
κ

τ
= − sin2φ

cosφ sinφ coshϕ
= −

(L2
T − L2

e)λB
(λeLT − LeλT )Le
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of the base curve of the ruled surface, is constant.

Proof. Let e draws a developable spacelike RSDF. In this case, the distribution parameter
of the ruled surface is zero. Hence,

de

ds
= −T (κ sinφ sinhϕ) + N (κ cosφ+ τ sinφ coshϕ)−B (τ sinφ sinhϕ) (6)

and
dα

ds
× e = T× e = −N sinφ coshϕ+ B sinφ sinhϕ

so
Pe = κ cosφ sinφ coshϕ+ τsin2φ = 0 (7)

Using this last equation, we get the following

κ

τ
= − sin2φ

cosφ sinφ coshϕ
(8)

Solving cosφ and sinφ coshϕ from the eq. 5 and the eq. 4, we get the following equations

cosφ =
Le
LT

(9)

and

sinφ coshϕ =
(λeLT − LeλT )

LTλB
. (10)

Then, substituting the eq. 9 and the eq. 10 into the eq. 8 gives

h =
κ

τ
= − sin2φ

cosφ sinφ coshϕ
= −

(L2
T − L2

e)λB
(λeLT − LeλT )Le

. (11)

Besides, e is a fixed spacelike line in {T,N,B} . Hence, the components of e in
{T,N,B} are fixed. So that from the eq. 11, h is constant. So the harmonic curva-
ture of the spacelike RSDF is constant. �

Theorem 3.6. The spacelike RSDF, which is drawn by a fixed spacelike line e in a normal
plane in {T,N,B} during the motion H/H ′, is developable if and only if (α) is a plane
curve.

Proof. If e is a line in a normal plane then from the eq. 3,

cosφ = 0 (12)

can be obtained. Since the spacelike ruled surface is developable from the eq. 7,

sin2 φτ = 0 (13)

can be obtained. When we use the eq. 12 and the eq. 13, τ is zero, so (α) is a plane
spacelike curve. �

Theorem 3.7. The spacelike RSDF, which is drawn by a fixed spacelike line e in an
osculator plane in {T,N,B} during the motion H/H ′, is always developable.

Proof. If e is a line in an osculator plane from, form the eq. 3 we get,

sinφ coshϕ = 0

Since coshϕ 6= 0, we get sinφ = 0. So, the ruled surface is always developable from the
eq. 7. �

Theorem 3.8. The spacelike RSDF, which is drawn by a fixed spacelike line e in a rectifian
plane in {T,N,B} during the motion H/H ′, is developable if and only if κ

τ = − tanφ or
φ = 0.



G. Y. ŞENTÜRK, S. YÜCE: ON RULED NON-DEGENERATE SURFACES WITH ... 507

Proof. If e is a line in a rectifian plane from the eq. 3, then

sinφ sinhϕ = 0

Hence sinφ = 0 or sinhϕ = 0. Moreover, the ruled surface is developable from the eq. 7,
so

κ cosφ sinφ coshϕ+ τ sinφ2 = 0.

Then,
i) If sinφ = 0 when sinhϕ 6= 0, then φ = 0.
ii) If sinhϕ = 0 when sinφ 6= 0, then κ

τ = − tanφ..
iii) Both of sinφ and sinhϕ are both zero, then φ = 0. �

Theorem 3.9. The spacelike ruling of the spacelike RSDF, which is drawn by a fixed line
e in {T,N,B} during the motion H/H ′ in fixed space, is always in the rectifian plane of
the striction curve.

Proof . Since the base curve of the ruled surface is the striction curve,

< αs, es >= 0. (14)

Hence if we substitute T and the eq. 6 into the eq. 14,

κ sinφ sinhϕ = 0

can be obtained. Since κ 6= 0, sinφ sinhϕ is zero. So e is always in the rectifian plane of
the striction curve.

3.2. Timelike ruled surfaces.

3.2.1. Timelike ruled surfaces with timelike rulings. Let M be a ruled surface which obtain
by a timelike straight line moving along a spacelike curve in R3

1. In the paper [3], T and
e are orthogonal vectors. Because of this special choice, n is obtained as a spacelike, so
M is a timelike ruled surface. Unlike this study, we take that T and e are not orthogonal
vectors. In this case, we assumed that the normal vector n is a spacelike. We take the
relation between the Darboux frame {T,g,n} and the Frenet frame {T,N,B} of base
curve. As the tangent vector of base curve appears in both frames, then that relation is
indeed, a relation between the last two vectors of both frames and a certain angles between
the vectors. Then, we can write e in linear combination of both frames.
A unit direction vector of a timelike straight ruling e is spanned by the system {T,g} .
So e can be written as:

e = T sinhφ− g coshφ

where φ is the angle between the vectors T and e.
es is also provided the equation,

es = T(φ′ − κg) coshφ− g(φ′ − κg) sinhφ− n(κn sinhφ+ τg coshφ).

Holding v constant, we obtain a curve β(s) = α(s) + ve(s) on a ruled surface whose
vector field is

T∗ = T(1 + v(φ′ − κg) coshφ)− g(φ′ − κg)v sinhφ− n(κn sinhφ+ τg coshφ)v.

The relation between the vectors e and T∗ is

< T∗, e >= sinhφ.
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The distribution parameter of the timelike RSDF is

Pe =
coshφ(κn sinhφ+ τg coshφ)

(φ′ − κg)2 + (κn sinhφ+ τg coshφ)2 .

The orthogonal trajectories of the timelike RSDF is

sinhφds = dv.

The striction curve of the timelike RSDF with is

c(s) = α(s)− coshφ(φ′ − κg)
(φ′ − κg)2 + (κn sinhφ+ τg coshφ)2 e(s).

Theorem 3.10. Let M be a timelike RSDF which is given by X(s, v) = α(s) + ve(s).
In this case, the shortest distance between the timelike rulings of the surface along the
orthogonal trajectories is

v = − coshφ(φ′ − κg)
(φ′ − κg)2 + (κn sinhφ+ τg coshφ)2

along the curve Xv : I →M.

Theorem 3.11. Let M be a timelike RSDF. Moreover, the point X(s, v0), v0 ∈ R, on the
main timelike ruling which passes the point α(s), is a striction point if and only if es is
the unit normal vector field of tangent plane in the point X(s, v0).

Let
e = T sinhφ+ N coshφ coshϕ−B coshφ sinhϕ, 〈e, e〉 = −1 (15)

where ϕ is the angle between timelike vectors g and N and where φ is the angle between
the spacelike T and timelike e, be a unit vector line in {T,N,B} Frenet frame on the
RSDF drawn by a line e . (Similarly, we can take B is a timelike vector. Then, all below
theorems can be shown using it.)

Let α : I → E3
1 be a differentiable closed spacelike curve and H = sp {T,N,B} be a

moving space along the curve α, where {T,N,B} is Frenet frame of α and H ′ = E3
1 be a

fixed space. In this case, a closed space motion can be defined on H ′ of H along the curve
α. We denote by H/H ′ the closed space motion.

Theorem 3.12. The angle of pitch of the timelike RSDF, which is drawn by a fixed line
in {T,N,B} during the motion H/H ′ in fixed space H ′, is

λe = λT sinhφ− λB coshφ sinhϕ, (16)

where λT and λB are the angle of pitches of the ruled surfaces which are drawn by the
vectors T and B, respectively.

Theorem 3.13. The pitch of the timelike RSDF, which is drawn by a fixed line in
{T,N,B} during the motion H/H ′ in fixed space H ′, is

Le = sinhφLT ,

where LT is the pitch of the ruled surfaces which is drawn by the vector T.

Theorem 3.14. If the timelike RSDF, which is drawn by a fixed timelike line e in
{T,N,B} during the motion H/H ′, is developable, then the harmonic curvature is cal-
culated as follows:

h =
κ

τ
= − cosh2φ

coshφ sinhφ sinhϕ
=

(L2
T + L2

e)λB
(λeLT − LeλT )Le

of the base curve of the ruled surface, is constant.
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Theorem 3.15. The timelike RSDF, which is drawn by a fixed timelike line e in a normal
plane in {T,N,B} during the motion H/H ′, is developable if and only if (α) is a plane
curve.

Theorem 3.16. The timelike RSDF, which is drawn by a fixed timelike line e in an
osculator plane in {T,N,B} during the motion H/H ′, is developable if and only if (α)
is a plane curve.

3.2.2. Timelike ruled surfaces with spacelike rulings. Let M be a ruled surface which ob-
tain by a spacelike straight line moving along a timelike curve in R3

1. In the paper [3], T
and e are orthogonal vectors. Because of this special choice, n is a spacelike vector and
M is a timelike ruled surface. Unlike this study, we take that T and e are not orthogonal
vectors. In this case, the normal of M can be spacelike or timelike. We assumed that the
normal vector n is a spacelike. Then, we take the relation between the Darboux frame
{T,g,n} and the Frenet frame {T,N,B} of base curve. As the tangent vector of base
curve appears in both frames, then that relation is indeed, a relation between the last two
vectors of both frames and a certain angles between the vectors. Then, we can write e in
linear combination of both frames.

A unit direction vector of a spacelike ruling e is spanned by the system {T,g} . So e
can be written as:

e = −T sinhφ+ g coshφ

where φ is the angle between the vectors T and e.
es is also provided the equation,

es = −T(φ′ − κg) coshφ+ g(φ′ − κg) sinhφ− n(κn sinhφ+ τg coshφ).

Holding v constant, we obtain a curve β(s) = α(s) + ve(s) on a ruled surface whose
vector field is

T∗ = T(1− v(φ′ − κg) coshφ) + g(φ′ − κg)v sinhφ− n(κn sinhφ+ τg coshφ)v.

The relation between the vectors e and T∗ is:

< T∗, e >= − sinhφ.

The distribution parameter of the timelike RSDF is

Pe =
coshφ(κn sinhφ+ τg coshφ)

−(φ′ − κg)2 + (κn sinhφ+ τg coshφ)2 .

The orthogonal trajectories of the timelike RSDF is

sinhφds = −dv.
The striction curve of the timelike RSDF is

c(s) = α(s)− coshφ(φ′ − κg)
−(φ′ − κg)2 + (κn sinhφ+ τg coshφ)2 e(s).

Theorem 3.17. Let M be a timelike RSDF, which is given by X(s, v) = α(s) + ve(s). In
this case, the shortest distance between the spacelike rulings of the ruled surface along the
orthogonal trajectories is

v = − coshφ(φ′ − κg)
−(φ′ − κg)2 + (κn sinhφ+ τg coshφ)2

along the curve Xv : I →M.
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Theorem 3.18. Let M be a timelike RSDF. Moreover, the point X(s, v0), v0 ∈ R, on the
main spacelike ruling which passes the point α(s), is a striction point if and only if es is
the unit normal vector field of tangent plane in the point X(s, v0).

Theorem 3.19. The harmonic curvature of the closed spacelike curve α(s) of ruled non-
degenerate ruled surface with Darboux frame, during the motion H/H ′, is calculated as
follows:

(
κ

τ
)2 = −εPB

PN
+ 1 (17)

where PB and PN are the distribution parameters of ruled non-degenerate surfaces which
are drawn by B and N.

4. Conclusion

We gave the characteristic properties and integral invariants, which are depended to the
geodesic torsion, the normal curvature and the geodesic curvature, of ruled non-degenerate
surfaces with respect to the Darboux frame in Minkowski 3-space.
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