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QUANTUM SPECTRAL CLUSTERING THROUGH A BIASED PHASE

ESTIMATION ALGORITHM

AMMAR DASKIN1, §

Abstract. In this paper, we go through the theoretical steps of the spectral clustering on
quantum computers by employing the phase estimation and the amplitude amplification
algorithms. We discuss circuit designs for each step and show how to obtain the clustering
solution from the output state. In addition, we introduce a biased version of the phase
estimation algorithm which significantly speeds up the amplitude amplification process.
The complexity of the whole process is analyzed: It is shown that when the circuit rep-
resentation of a data matrix of order N is produced through an ancilla based circuit in
which the matrix is written as a sum of L number of Householder matrices; the computa-
tional complexity is bounded by O(2mLN) number of quantum gates. Here, m represents
the number of qubits involved in the phase register of the phase estimation algorithm.
Keywords: Spectral Clustering, Quantum Algorithms..

AMS Subject Classification: 81P68, 68Q12,62H30

1. Introduction

In recent years, the research in quantum algorithms for machine learning problems has
gained substantial momentum. Some of these algorithms include the application of quantum
random walk [1] to the community detection in quantum networks [2], quantum nearest
neighbor methods [3] for clustering problems, the deep learning in the context of quantum
computing [4], and an accelerated unsupervised learning algorithm with the help of quantum
based subroutines [5]. Furthermore, quantum algorithms for topological and geometric
analysis of data [6] and quantum principal component analysis [7] are introduced. The
computational complexities of these algorithms are exponentially less than the classical
algorithms when the data is accessible on a quantum memory. For a broader review of the
area we recommend the recent review articles [8, 9] and the introductory paper [10].

Cluster analysis [11] is dividing a given data points, objects, into clusters in a way that
similarities among cluster-members are maximized while inter-cluster similarities are mini-
mized. Clustering in machine learning and other fields is done through different approaches.
One of the best known approach is the centroid based clustering which is also a part of
spectral clustering algorithms. The spectral clustering algorithms define how to obtain a
solution for the clustering by using the principal eigenvectors of a provided data matrix or a
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Laplacian matrix. Quantum phase estimation is an efficient algorithm to solve eigen-value
related problems on quantum computers. In earlier two works [12, 13], we have showed
respectively how to use quantum phase estimation algorithm to do principal component
analysis of a classical data and how this approach can be employed for neural networks
using Widrow-Hoff Learning rule. In this paper, we employ the same algorithm with slight
modifications for clustering. The particular contributions are as follows:

• For the first time, the spectral clustering is formulated on quantum computers by
introducing a biased quantum phase estimation depicted as a circuit in Fig.1.
• The computational complexities of the constituents of the circuit is analyzed individ-

ually. Then, the complexity bounds are derived for different cases of the data matrix.
The found quantum complexities are discussed and compared with the classical ones.

The remaining part of this paper is organized as follows: In the following subsections; for
unfamiliar readers, the k-means clustering and the spectral clustering on classical computers
are briefly reviewed. Then, in the next section, the principal component analysis introduced
in Ref.[12] are described, and it is shown how this method can be used to do spectral
clustering on quantum computers. In the last part, a biased phase estimation algorithm
is introduced to decrease the number of iterations in the amplitude amplification process.
Finally, the complexity of the whole process is analyzed and the results are discussed.

1.1. k-means Clustering and Algorithm. Spectral clustering algorithms are generally
based on obtaining a clustering solution from the eigenvectors of a matrix which represents
some form of a given data. Since some of the spectral algorithms also involves the k-means
algorithm, here we first give the description of this algorithm and then describe the spectral
clustering. Given a set of n data vectors, v1, v2, . . . , vn, k-means clustering [14] tries to find
the best k centroids for assumed k number of clusters, S1 . . . Sk, by minimizing the following
objective function [15]:

min(
k∑
c=1

∑
vi∈Sc

||vi −mc||2), (1)

where mc represents the center of the cluster Sc. And ||vi −mc||2 is the Euclidean distance
measure between the data point vi and the center mc. The optimization problem defined by
the above objective function is an NP-hard problem; nonetheless, it can be approximately
minimized by using k-means algorithm, also known as Lloyd’s algorithm (which does not
necessarily find an optimal solution)[16]. The steps of this algorithm are as follows:

(1) Initialize centroids for the clusters.
(2) Assign each data point to the cluster with the closest centroid.
(3) Assign the means of data in clusters as the new means: i.e., mc =

∑
vi∈Sc

vi
|Sc| .

(4) Repeat step 2 and 3 until there is no change in the means.

The quantum version of this algorithm also has been introduced in Ref.[3] and used for the
nearest-neighbor classification. Moreover, in a prior work [17], quantum subroutines based
on Grover’s algorithm [18] are presented to speed-up the classical clustering algorithm.

1.2. Spectral Clustering. In this subsection, we mainly follow the related sections of
Ref.[19] and try to briefly summarize the concept of the spectral clustering. Similarities
between data points are most commonly represented by similarity graphs: i.e., undirected
weighted graphs in which the vertices vi and vj are connected if the data points, xi and
xj represented by these vertices are similar. And the weight wij on the edge indicates the
amount of the similarity, sij between xi and xj .
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The construction of graph G(V,E) from a given data set {x1 . . . xN} with pairwise simi-
larities sij or distances dij can be done in many different ways. Three of the famous ones are:
i) The undirected ε-neighborhood graph: The vertices vi and vj are connected if the pairwise
distance dij for xi and xj is greater than some threshold ε. ii) The k-nearest neighborhood
graph: The vertices vi and vj are connected if vertex vi is one of the k-nearest neighbor of vj
and vice versa. Note that there are some other definitions in the literature even though this
is the most commonly used criteria to construct the k-nearest neighborhood graph as an
undirected graph. iii) The fully connected graph: This describes a fully connected weighted
graph where the weights, wijs, are determined from a similarity function sij : e.g., Gaussian

similarity function sij = exp(− ||xi−xj ||
2σ2 ), where σ is a control parameter.

The clustering problem can be described as finding a partition of the graph such that the
sum of the weights on the edges from one group to another is very small. And the weights
on the edges between vertices inside the same group are very high.

1.2.1. Similarity Matrix and Its Laplacian. Let W be the adjacency matrix with the matrix
elements, wij representing the weight on the edge between vertex vi and vertex vj . The
eigenvectors of a Laplacian matrix generated from W are the main instrument for the
spectral clustering. The unnormalized Laplacian for the graph given by W is defined as:

L = D −W, (2)

where D is the diagonal degree matrix with diagonal elements dii =
∑N

j=1wij . The matrix
L is a symmetric matrix and generally normalized as:

L̃ = D−
1
2LD−

1
2 = I −D−

1
2WD−

1
2 , (3)

which preserves the symmetry. L̃ and L are semi-positive definite matrices: i.e., their
eigenvalues are greater or equal to 0. The smallest eigenvalues of both matrices are 0
and the elements of the associated eigenvector are equal to one. For undirected graphs
with non-negative weights, the multiplicity k of eigenvalue 0 gives the number of connected
components in the graph. Clustering is generally done through the first k-eigenvectors
associated to the smallest eigenvalues of the Laplacian matrix. Here, k represents the
number of clusters to be constructed from the graph. This number describes the smallest
eigenvalues λ1 . . . λk such that γk = |λk−λk+1| gives the largest eigengap among all possible
eigengaps.

The clusters are obtained by applying k-means algorithm to the rows of the matrix V
formed by using k column eigenvectors [20]. The same clustering methodology can also be
used after the rows of V are normalized into unit vectors[21].
k-means clustering can also be done in the subspace of principal components of XXT ,

where X is the centered data matrix[22, 23]. Furthermore, for a given kernel matrix K and
a diagonal weight matrix W with K = WAW , where A is the adjacency (or similarity)

matrix and W is the diagonal weight matrix; the leading k eigenvectors of W 1/2KW 1/2

can be used for graph partitioning (clustering) by minimizing ||V V T − Y Y T || = 2k −
2trace(Y TV V TY ) or maximizing trace(Y TV V TY ). Here, V represents the k eigenvectors
and Y is the orthonormal indicator matrix representing clusters: Y = [y1, y2, . . . , yk] with

yj =
1√
Nj

[0, . . . , 0, 1, . . . , 1,︸ ︷︷ ︸
Nj

0, . . . , 0]T (4)
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Therefore, the clustering problem turns into the maximization of the following:

trace(Y TV V TY ) =
k∑
j=1

yj
TV V T yj . (5)

After finding the k eigenvectors, the maximization is done by running the weighted k means
on the rows of W 1/2V [15, 24].

2. Quantum Spectral Clustering

In the quantum version of the spectral clustering, we will use 〈y|V V T |y〉 as the similarity
measure for the clustering. This gives a similar measure to the one in Eq.(5). Here V
represents the eiegenvectors associated with the non-zero eigenvalues of either a Laplacian
L, or a data matrix XXT , or a weighted kernel matrix W 1/2KW 1/2; and |y〉 represents a
basis vector chosen from some arbitrary indicator matrix. In the following section, we first
describe how to obtain V V T |y〉 through the phase estimation algorithm then measure the
output in the basis Y consisting of |y〉.

2.1. Principal Component Analysis through Phase Estimation Algorithm. The
phase estimation algorithm [25, 26] finds the phase of the eigenvalue of a unitary matrix.
If the unitary matrix corresponds to the exponential, U = eiH , of a matrix H ∈ R⊗n
which is either a Laplacian matrix or equal to XXT , then the obtained phase represents
the eigenvalue of H. Furthermore, while the phase register in the algorithm holds the phase
value, the system register holds the associated eigenvector in the output. When given an
arbitrary input, the phase estimation algorithm yields an output state which represents
a superposition of the eigenvalues with the probabilities determined from the overlaps of
the input and the eigenvectors. In Ref.[12], we have introduced a quantum version of
the principal component analysis and showed that one can obtain the eigenvalues in certain
desired region and the associated eigenvectors by applying amplitude amplification algorithm
[26–28] to the end of the phase estimation algorithm. As done in Ref.[13] for Widrow-Hoff
learning rule, one can eliminate the extra dimensions (zero eigenvalues and eigenvectors)
and generate the output state equivalent to V V T |y〉 for some input vector |y〉 by using the
following amplification iteration:

Q = UPEAUsUPEAUf2 . (6)

Here, UPEA represents the phase estimation algorithm applied to H and Uf2 and Us are the
marking and the amplification operators described below:

Uf2 =
(
I⊗m − 2 |f2〉 〈f2|

)
⊗ I⊗n (7)

with 〈f2| = 1√
N−1 [0, 1, . . . , 1] and m represents the number of qubits in the phase register.

And,

Us =
(
I⊗m+n − 2 |0〉 〈0|

)
. (8)

In the output of the amplitude amplification process; when the first register is in the equal
superposition state, the second register holds V V T |y〉.

2.1.1. With a Biased Phased Estimation Algorithm. In the output of the phase estimation,
the probability values for different eigenpairs are determined from the overlaps of the eigen-
vectors with the initial vector |y〉: i.e. the inner product of the eigenvector and the initial
vector. Our aim in the amplitude amplification is to eliminate eigenvectors corresponding to
the zero eigenvalues. The probabilities of the chosen states (the eigenvectors corresponding
to the non-zero eigenvalues) during the amplitude amplification process oscillate: i.e., when
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Figure 1. Biased Phase Estimation Algorithm

the iteration operator is applied many times, depending on the iterations, the probabili-
ties goes up and down with some frequency. To speed up the amplitude amplification (to
decrease the frequency), we will use a biased phase estimation algorithm which generates
the same output but requires less number of iterations: In place of the quantum Fourier
transform which creates an equal superposition of the states in the first register, we use the
following operator:

Uf1 =
(
I⊗m − 2 |f1〉 〈f1|

)
⊗ I⊗n, (9)

where 〈f1| = 1/µ[κ, 1, . . . , 1] with κ being a coefficient and µ being a normalization constant.
The number of iterations can be minimized by engineering the value of κ.

Using Uf1 in lieu of the quantum Fourier transform leads to the algorithm drawn in Fig.1,
which produces a biased superposition of the eigenpairs in the output which speeds-up the
amplitude amplification: The amplification is done by inversing the marked item about
the mean amplitude. As the amplitude of the marked item becomes closer to the mean
amplitude, the amplification process gets slower (i.e., it requires more iterations). In fact,

when κ =
√
M , κ/µ ≈ (

√
P|0〉 +

√
1− P|0〉)/2.: i.e. the mean amplitude. In this case, no

increment or a decrement will be seen in the amplitude amplification. Therefore, setting the
initial probability further away from the mean probability, we can speed-up the amplitude
amplification. As an example, we show the iterations of the amplitude amplification with
the standard phase estimation in Fig.2 and with the biased phase estimation using Uf1 with
κ = 1, and κ = 20, respectively in Fig.3 and Fig.4: As seen from Fig.2, the probability
and the fidelity in PEA with QFT are maximized after 12 iterations. Here, the fidelity is
defined as the overlap of the expected output V V T |y〉 with the actual output. However,
the maximum probability and the fidelity can be observed after 6 iterations when we use
Uf1 with κ = 1, which generates a very low initial success probability but approaches to
the maximum faster. Using Uf1 with κ = 20 increases the initial success probability and
decrease the required number of iterations downto 2 iterations.

At the end of the phase estimation algorithm either the biased or the standard, we have
V V T |y〉, where a column of V represents a principal eigenvector (eigenvector corresponding
to a non-zero eigenvalue). 〈y|V V T |y〉 provides a similarity measure for the data point
y to the XXT . 〈y|V V T |y〉 can be obtained either measuring the final state in a such
basis in which |y〉 is the first basis vector. Or one can apply a Householder transformation
I − 2 |y〉 〈y| to the final state and then measure this state in the standard basis. In that
case, the probability for measuring |0〉 yields the nearness (similarity) measure.

Below, we summarize the steps of both the biased phase estimation and the amplitude
amplification algorithms: As shown in Fig.1, the steps of the biased phase estimation,
UBPEA, are as follows:

(1) First, assume we have a mechanism to produce U2j used in the phase estimation
algorithm. Here, U represents the circuit design for the data matrix. In the next
section, we will discuss how to find this circuit by writing the data matrix as a sum
of unitary matrices.
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Figure 2. The iterations of the amplitude amplification with the standard
phase estimation algorithm for a random 16 × 16 matrix with six non-zero
eigenvalues.
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Figure 3. The iterations of the amplitude amplification with the biased
phase estimation algorithm for the same matrix as in Fig.2: In the construc-
tion of Uf1 , the value of κ = 1 and the initial success probability is around
0.028.

(2) Then, prepare the input state |0〉 |0〉, where |0〉 represents the first vector in the
standard basis. The phase estimation uses two registers: the phase and the system
register. In our case, the final state of the system register becomes equivalent to the
state obtained from V V T |y〉.

(3) To prepare |y〉 on the system register, apply an input preparation gate, Uinput, to
the system register.

(4) Then, apply Uf1 = I − 2 |f1〉 〈f1| ⊗ I⊗n to put the phase register into a biased
superposition.

(5) Then, apply controlled U2j s to the system register.

(6) Finally, apply U †f1 to get the eigenpairs on the output with some probability.

The steps of the amplitude amplification process are as follows:
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Figure 4. The iterations of the amplitude amplification with the biased
phase estimation algorithm for the same matrix as in Fig.2: in the construc-
tion of Uf1 , the value of κ = 20 and the initial success probability is around
0.43.

(1) After applying UBPEA to the initial state |0〉 |0〉, apply the following iteration oper-
ator:

Q = UBPEAUsUBPEAUf2 . (10)

(2) Measure one of the qubits in the phase register:
• If it is close to the equal superposition state, then stop the algorithm.
• If it is not in the superposition state, then apply the iteration operator given

above again.
• Repeat this step until one of the qubits in the phase register is in the equal

superposition state (Individual qubits present the same behavior as the whole
state of the register. If one of the qubits approaches to the equal superposition
state, it generally indicates all qubit approaches to the equal superposition
state.).

(3) Measure the second register in the basis in which |y〉 is a basis vector.

3. Circuit Implementation and Computational Complexity

3.1. Circuit for XXT and Complexity Analysis. Most of the Laplace matrices used
in the clustering algorithm are generally very large but sparse. The sparse matrices can
be simulated in polynomial time (polynomial in the number of qubits) on quantum com-
puters(see e.g. Ref.[29, 30]). When the matrix H is dense (from now on we will use H
to represent XXT or L), the phase estimation algorithm requires eiH . This exponential
is generally approximated through the Trotter-Suzuki decomposition. However, the order
of the decomposition increases the complexity dramatically. Recently in Ref.[31], we have
showed that one can use a matrix directly in the phase estimation by converting the matrix
into the following form:

H̃ = I − iH
k
, (11)

where k is a coefficient equal to ||H||1 × 10, which guarantees that the imaginary parts

of the eigenvalues of H̃ represent the eigenvalues of H/k and are less than 0.1 so that
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sin(λj/k) ≈ λj/k. Here, λj is an eigenvalue of H. When phase estimation algorithm is

applied to H̃, the obtained phase gives the value of λj/k.

The circuit implementation of H̃ can be achieved by writing H̃ as a sum of unitary
matrices which can be directly mapped to quantum circuits. This sum can be produced
through the Householder transformation matrices formed by the data vectors. For the
matrix H = XXT , this can be done as follows: [31]:

H = −1

2

L∑
j=1

[(I − 2 |xj〉 〈xj |)− I] (12)

In the above, H consists of (L + 1) number of Householder matrices each of which can be
implemented by using O(N) number of quantum gates. H can be generated in an ancilla
based circuit combining the circuits for each Householder matrix. The resulting circuit will
require O(LN) quantum operations. In the phase estimation, if we use m number of qubits
in the first register, the complexity of the whole process becomes O(2mLN). In the case
of H written as a some of simple unitaries which can be represented by O(logN) quantum
gates, the complexity can be further reduced to O(2mLlog(N)) number of quantum gates.

3.2. Comparison to Classical Computers. Spectral clustering on classical computers
requires some form of the eigendecomposition of the matrix H or at least the singular value
decomposition of the matrix X. The classical complexity in general form can be bounded by
O(L3+LN), where O(L3) is considered complexity for the eigendecomposition of the matrix
and LN for processing the matrix X at least once. As a result, if H can be written in terms
of simple unitaries, then quantum computers are likely to provide a dramatic improvement
in the computational complexity of spectral clustering. However, on the other cases, the
complexity of the clustering is not much different than the classical complexity even though
improvements specific to some applications are still possible. Note that since the amplitude
amplification is run only a few times, it does not change the bound of the complexity.
However, we need to run the whole process a few times with different |y〉 indicator vectors
so as to find the maximum similarity and determine the right clustering. Therefore, there is
an additional coefficient c indicating the number of trials in the complexity: i.e. O(c2mLN).
Since the coefficient c also exists in the classical complexity, it does not change the argument
in the comparison of the complexities.

3.3. Measurement of the Output. If only tensor product of the eigenvectors of Pauli
operators {I, σx, σy, σz} are used, the number of nonzero elements can be either one of
the followings: N,N/2, . . . 1. This produces a disentangled quantum state |y〉, which can
be efficiently implemented. We can also use an operator similar to Y =

∑
i σ

i
x, where i

indicates a σx gate on the ith qubit of the system, to approximate the best clustering (This
operator is also used in Ref.[32] in the description of a quantum optimization algorithm). In
this case, the initial state is taken as an equal superposition state and multiplied by eiY . In
the end, the operator eiY is applied again. Then, t measurement-outcome yields the index
of the column of Y which can be considered as an approximate clustering solution. Since
the circuit implementation of eiY requires only n single σx-gates and the solution is obtained
only from one trial, the total complexity becomes O(2mLN).

As mentioned before, the other measurements can be approximated through the mapping
to the standard basis by applying the Householder transformation (I − 2 |y〉 〈y|) to the
system register. In that case, the probability to see the system register in |0〉 represents the
similarity measure.
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4. Conclusion

Here, we have described how to do spectral clustering on quantum computers by employ-
ing the famous quantum phase estimation and amplitude amplification algorithms. We have
shown the implementation steps and analyzed the complexity of the whole process. When
the data matrix can be written in terms of simple unitaries, because of the superposition,
all the eigenvectors can be processed simultaneously in the phase estimation. Therefore,
quantum computers can provide a dramatic improvement in the computational complexity
of spectral clustering. In addition, we have shown that the required number of iterations
in the amplitude amplification process can be dramatically decreased by using a biased
operator instead of the quantum Fourier transform in the phase estimation algorithm.
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