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BACKSCATTERING FROM SOFT-HARD TRIANGULAR CYLINDER:
PRIMARY PTD APPROXIMATION

F. HACIVELIOGLU!, §

ABSTRACT. High-frequency diffraction from isosceles triangular cylinders with two faces
soft and one face hard is investigated for backscattering case and novel first-order physical
theory of diffraction asymptotics are derived. Only primary edge waves are taken into
account. It is shown that, by changing the apex angle of the cylinder, PTD results of
the soft-hard triangular cylinder agree-well with those of the PTD results of Soft-Hard
Strip.
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1. INTRODUCTION

One of the techniques used in the reduction of radar cross section (RCS) of an object
is ”shaping”. A polygonal cylinder is one of few objects used for this purpose. Scattering
from the polygonal cylinders has been investigated in many publications by using different
numerical and analytical techniques [1]-[7]. Backscattering from a triangular cylinder and
hexahedron are studied in [8] by modified equivalent current method. In [9] Physical Op-
tics (PO) and Physical Theory of Diffraction (PTD) solutions are derived for bi-static and
monostatic cases at both soft and hard cylinders with triangular cross section. More ac-
curate PTD results, without singularities for any incident and observation directions, are
obtained for the above-mentioned problem by Johansen in [10] using the truncated equiv-
alent edge currents. Backscattering by triangular dielectric cylinders is analyzed by the
method of analytical regularization [11]. In [12], backscattering from a dielectric cylinder
with triangular cross section is investigated in terms of ray-like wave pieces and reso-
nances. Lately, first-order PTD approximation of trilateral cylinders with combinations
of soft and hard faces is investigated in [13], and the results are confirmed by the method
of moments. The aim of this paper is to investigate the primary PTD approximation
for backscattering case, and introduce the advantages and shortcomings of the first-order
approximation. The geometry of the problem is isosceles triangular cylinder with two
faces soft and one hard. In the primary PTD approximation, the far field scattered by
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a triangular cylinder is a linear combination of the edge waves generated by the edges
on the triangular cylinder. Higher-order asymptotic fields are much weaker in magnitude
than the first-order asymptotic fields. The orders of the doubly diffracted fields along
the soft and hard faces are (kI)~%/2 and (kl)~'/? respectively [9]-[14]. Therefore, in this
paper, only first-order asymptotic fields, which are of practical interest for the engineering
purpose, are evaluated. The results when the apex angle goes to 7 are compared with the
first order PTD results of the soft-hard strip problem [15], which is validated by MoM in
[16]. The paper is organized as follows: In Section II, for the sake of completeness, exact
and asymptotic solutions of the canonical wedge problems are summarized for the cases
both faces soft and hard, and one face soft the other one hard. In Section III, geometry
of the problem is introduced and related directivity functions of the edge waves are given
for the backscattering case. PO and PTD fields are derived in Section IV. Some graphical
results of radar cross section are presented in Section V. Concluding remarks are given in
Section VI.

2. CANONICAL WEDGE PROBLEM

Diffraction at a wedge with infinite planar faces is a canonical problem in high-frequency
asymptotic techniques. Exact solution of this problem in particular case of half-plane was
first given by Sommerfeld in 1896 [17]. In 1902, Macdonald obtained general solutions for
(i) a two dimensional (2D) wedge with arbitrary angle under the plane wave and line source
illuminations, (ii) a 3D wedge with arbitrary angle under a point source illumination [18].
Later, Sommerfeld developed simple asymptotic expressions for edge-diffracted waves [19].

Incident plane wave given by

une — efikr cos(p—¢o) (1)

illuminates the wedge presented in Figure 1.

(r.¢)

FIGURE 1. Geometry of the wedge problem.
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Field outside the wedge (0 < ¢ < «) satisfies the homogeneous Helmholtz equation
Viu+Eu=0 (2)

where V2 is the Laplacian operator, u is the scattered field and k = 27/) is the wave
number, A\ the wavelenght. The time dependence is in the form of exp (—iwt) .
Here, four cases are under consideration:

1) Upper and lower faces of the wedge are soft (u =0 if ¢ =0, @)
2) Upper and lower faces of the wedge are hard (Qu/0n =0 if ¢ = 0, «)
3) Upper face is soft (u = 0 if ¢ = 0) and lower face is hard (Ou/dn =0 if ¢ = «)
4) Upper face is hard (Ou/dn = 0 if ¢ = 0) and lower face is soft (u =0 if ¢ = «)
Since the case 3 and 4 admit double electromagnetic interpretation, acoustic terms are
used for all cases avoiding possible confusing.
Helmholtz equation is solved under i) the boundary conditions given above, ii) radiation
condition

lim /7 <6“ - zku) =0 (3)

r—00 or
and iii) edge condition
u= 0O [(kr)"] (4)
where p = 7/« for cases 1, 2 and p = 7/2« for cases 3, 4.

It is known that, the solution of the boundary value problem (2)-(4) exists and is unique.
The exact solution is as follows:

w1 = u (kr, ¢ — ¢o) F u (kr, ¢ + ¢o) (5)
upper sign in (5) refers to the wedge in cases 1, 3 and the lower to the cases 2, 4. Here,
u (kr,) = 2 ie_imlmJ (kr) cosyap (6)

) Q l:0 14

with v, = Im/a for the cases 1, 2 and v, = (21 + 1) 7/« for the cases 3, 4.
The series in (6) is converted to the Sommerfeld-type integral for an asymptotic evalu-
ation. As a result, diffracted field is found as

ei(kr+7r/4)

\V2mkr

Here, function f is directivity pattern of the edge wave.

The details of the solutions can be found in [9] for the cases 1, 2 and in [20] for the case
3. Asymptotic solution for the case 4 can be obtained easily following similar processes in
[20].

ul = [ (¢, o) (7)

3. BACKSCATTERING FROM SOFT-HARD TRIANGULAR CYLINDER

The geometry of the two dimensional triangular cylinder is depicted in Figure 2.

The points 1, 2 and 3 are the edges whose Cartesian coordinates are (0,0), (h,a), and
(h, —a) where h = lcosvy and h = [sin~y. Faces 1-2 and 1-3 are imposed to soft boundary
condition and face 2-3 is imposed hard boundary condition.

The incident wave is given by

uinc — efik(mcosgooersincpo) with 0 < 0o < or (8)
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FIGURE 2. Cross-section of the isosceles triangular cylinder.

Scattered field is evaluated in the direction ¢ = g in the far-zone (r > kI% ). Local
polar coordinates (11,23, ¢1.2.3) are used for the edge waves where ¢; 2 3 are measured from
the illuminated side of the cylinder (Figure 3).

FIGURE 3. Local coordinates for edge waves.

Diffracted fields (PO and PTD) from all edges in the far zone are given by (7). Here
the function f (¢) is fs(o) and f}(lo) for the PO field in case upper face (illuminated face)
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of the wedge is soft and hard respectively and fs, fn, fsn and fps for the PTD field in
case totally soft, totally hard, upper face is soft, lower face is hard and upper face is hard,
lower face is soft wedge respectively:

FO () = 5 tan ¢ and £ (9) = — 10 ©)
which are the result of (3.59) in [9],

fs() \ _ 1. (T 1 1
fn (9) } n (n> <cos (m/n)—1 T cos (m/n) — cos (2(;5/71)) (10)
which are the result of (2.62) and (2.64) in [9].

fsn (0) 2 o/ 1 cos (¢/n)
_2. (T 11
fns (0) nsm(2n> cos(m/n) —1 + cos (m/n) — cos (2¢/n) (11)
where fg, follows from (19) of [20]. fs, can be derived easily by using the similar process
in [20].
Here n = a/m and 0 < ¢ < a (Figure 1).

4. PO AND PTD FIELDS

PO and PTD fields for the soft-hard triangular cylinder are calculated as the sum of
the three edge waves

gif 3 i (krm+/4) -
U = mz::l&nuo (m) f (om) W (12)

Here €, = 1 when the edge m is seen, otherwise ,, = 1, m = 1,2,3. wug (1) = wuo,
ug (2) = ugeFheosetasing) and yg (3) = ugetkheosy—asing) 4 dif yepresents PO or PTD
field depending on the function f which has the forms fs(o) and f,go) for the PO field and
fsy fn, fsn and fp, for the PTD field.

For the far field (r > ki?), if we take r; = r, then 79 = 7 — hcosyp — asinp,

rg = r — hcosy + asiny where 7123 are measured from the edges 1, 2, 3 and we
have
3 i(kr+m/4)
e
u® = ug E P _— 13
o () 2mkr (13)

where @ (@) = e, f (m) e with f(m) = f(¢m), V1 = 0, o = —2klcos (y — ) and
g = =2kl cos (v + ¢).

In the interval 0 < ¢ < « diffracted fields consist of the waves from edges 2 and 3. In
this interval directivity pattern of PTD and PO fields are

(I)PTD — fhs (2) eiwz + fhs (3) eing (14)
dPO = —j cot psin (2ka sin @) e~ 2Rheos® (15)
where )
2 T 1 cos TE22
2)= s - : 16
fns (2) ng o (ng) (cos;—l +COSL_COSTI’+2‘P (16)
2 n2 no

—2p

2 T 1 cos %

fns (3) = —sin <) + n2 17
s () na ng cos 7~ —1 Cosn%—cosw (17)

n2
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For the direction ¢ =0

4 o s
1 = gin 57— .
@PTD (0) — <—22ka _ - — + n — 2712 ) e—ZQkh (18)
ng sin - COS - — 1
2 2
70 (0) = —i2kl sinye~ 057 (19)
In the interval v < ¢ < 7/2 an additional wave coming from edge 1 appears and
TP — [ (1) + fos (2) €2 + fs (3) € (20)
®FO = —jtan (v — ) sin (2kl cos (7 — @) e2/2 _ i cot psin (2kasin @) e~2kheose(97)
where
1 s 1 1
1)=—sin| — B 22
fs (1) mSln(nl) <COS,;—1 Cosg—cosw> (22)
1 ni

fns (2) and fis (3) are same as (16), (17) respectively.
In the interval 7/2 < ¢ < 7 — v edge 3 is not seen and

ST = fo (1) + fun (2) V2 (23)
®PO = —itan (v — @) sin (kl cos (y — @) eV2/? (24)
In the interval m — v < ¢ < 7 scattered field is generated by all three edges again:
OFTD = [ (1) + fon (2) €2 + fon (3) €™V (25)
®PO = —itan (v — @) sin (kl cos (v — ¢)) €¥2/2 —itan (v + @) sin (kl cos (7 + ¢)) €'¥3/2
(26)
where
2 T 1 cOS %
_ 2. (7 _ P
fsh (3) no S11 <n2> (COSTZ 1 COS,’% oS 27r—iz—2<p ( 7)

fsn (2) in (25) coincides with fzs (2) the function in (16).

5. NUMERICAL RESULTS

Numerical calculations are carried out for the normalized scattering cross section which

is defined as [9]

@ (p)[?

kl

Calculations are performed only in the interval 0 < ¢ < 7 due to the symmetric
scattering with respect to r—axis.

In Figure 4, the curves PTD-Soft and PTD-Hard represent the backscattering field
from totally soft and totally hard cylinders with v = 7/6, and were calculated according
to Section 5.2.4 in [9]. It is seen that the discontinuities in the directions ¢ = - and
¢ = m — v in the case of totally hard cylinder are removed in the soft-hard cylinder.
This is due to the doubly diffracted fields. Doubly diffracted field generated by the single
diffracted field along the soft face is of the order of (kl)_3/2. This is in the order of (l{:l)_l/2
in the case of hard face. That is why the discontinuity in the direction ¢ = 7/2 is still
preserved. In the direction ¢ = 7/2, backscattering field has double diffracted field along
the hard face from the edge 3.

In Figure 5, the curves PO-Soft and PO-Hard represent the backscattering field from
totally soft and totally hard cylinders and were calculated according to Section 5.2.2 in [9].
The PO field in the region 40° < ¢ < 80° for the soft-hard triangular cylinder differs from

Tnorm = 101og (28)
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FIGURE 4. Comparison of PTD fields from Soft-Hard cylinder, totally soft and
totally hard cylinder (y = 30°, kl = 67).
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FIGURE 5. Comparison of PO fields from Soft-Hard cylinder, totally soft and
totally hard cylinder (y = 30°, kl = 67).

the PO fields for the totally soft and totally hard cylinders. That is why the backscattering
PO field consists of the sum of the edge waves from the all edges. In this region, edges 1, 2,
and 3 are illuminated from the soft, soft and hard, and hard face, respectively. Although
the backscattering field in the region 150 < ¢ < 180° consists of the edge waves from the
all edges, it is same as the totally soft or totally hard cylinder. Because, in this region,
as in the case of totally soft cylinder, all edges are illuminated from the soft faces. Note
that, directivity pattern of totally soft and totally hard cylinders differ only in sign [9].

Figure 6 demonstrates the PTD, PO and Fringe fields for right-angle triangular cylinder
where v = /4. Fringe field is calculated subtracting PO field from PTD field:

ufm'nge — UPTD o UPO (29)

Effect of the double diffracted fields is also seen in this figure in the direction ¢ = /2.

Figure 7 compares the backscattering field from soft-hard triangular cylinder and soft-
hard strip in [15]. When the apex angle of the triangular cylinder approaches 7, results
from the soft-hard triangular cylinder get close to the results from soft-hard strip in [15]
which is validated by MoM in [16].

In all figures [ = 3\ is taken.
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FIGURE 6. Backscattering at the right-angle triangular cylinder (y = 45°, ki = 67).
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FIGURE 7. Comparison of backscattering fields from Soft-Hard cylinder and Soft-
Hard strip (kl = 67).

6. CONCLUSION

The novel first-order asymptotics, consist of first-order edge waves scattered by three
canonical wedges, for the backscattering from soft-hard isosceles triangular cylinder have
been derived using physical theory of diffraction. Numerical calculations of these solutions
given by trigonometric functions are very easy. Normalized scattering cross section in
dB scale is calculated for the soft-hard equilateral and right-angle triangular cylinders
and are compared with the results from totally soft and hard cylinders. It is seen that,
discontinuities due to doubly diffracted fields in the backscattering field for the totally
hard cylinder are removed in the backscattering field for the soft-hard cylinder, except in
the direction ¢ = w/2. The solutions when the half of the apex angle of the triangular
cylinder approaches 7, results from the soft-hard triangular cylinder and the results from
soft-hard strip also agree very well with MoM solutions.

Acknowledgement. The author would like to thank to the authors of the reference [16]
for the MoM codes in Figure 7.
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