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LUCAS POLYNOMIAL SOLUTION FOR NEUTRAL DIFFERENTIAL

EQUATIONS WITH PROPORTIONAL DELAYS

S. GÜMGÜM1, N. BAYKUŞ SAVAŞANERIL2, Ö. K. KÜRKÇÜ1, M. SEZER3, §

Abstract. This paper proposes a combined operational matrix approach based on Lu-
cas and Taylor polynomials for the solution of neutral type differential equations with
proportional delays. The advantage of the proposed method is the ease of its applica-
tion. The method facilitates the solution of the given problem by reducing it to a matrix
equation. Illustrative examples are validated by means of absolute errors. Residual error
estimation is presented to improve the solutions. Presented in graphs and tables the
results are compared with the existing methods in literature.

Keywords: Neutral differential equations, Lucas and Taylor polynomials, collocation and
matrix methods.
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1. Introduction

The neutral type differential equations with proportional delays is one of the essential
classes of delay differential equations. Usually used in modeling of physical phenomena,
they play an important role in other fields of science such as physics, mechanics, electro-
dynamics, biology, astrophysics, quantum mechanics, and biomathematics. Consequently,
such equations have received significant attention in the last decades. The main difficulty
in studying delay differential equations is that they have a special transcendental nature;
therefore many of them cannot be solved by well-known exact methods.

Various numerical approaches have been used to approximate the solutions of neu-
tral differential equations (NDEs). The variational iteration method for solving NDEs
with proportional delays is studied by Chen and Wang [8]. Modified variational iteration
method is studied by Ghaneai et.al. [11]. They introduced an auxiliary parameter into
the well-known variational iteration algorithm. A new homotopy perturbation method
and Padé approximation is introduced by Abolhasani et.al. [1]. Homotopy perturbation
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method is used by Biazar and Ghanbari [6]. Sakar [19] improved the Homotopy analy-
sis method with optimal determination of auxiliary parameter with the use of residual
error function. A semi-analytical approach based on Taylor method is used by Rebenda
et. al. [18]. They combined this method with the differential transformation method
(DTM). Bhrawy et. al. [4, 5] used Legendre-Gauss collocation method and the shifted
Jacobi-Gauss-Lobatto pseudo spectral (SJGLP) method. Bezier surface form is applied
by Ghomanjani and Farahi [12]. The reproducing kernel Hilbert space method is used
by Lv and Gao [17]. Cheng et.al. [9] studied an algorithm based on reproducing kernel
theory. In their study, approximate solution is obtained by truncating the n-term of the
exact solution. Ibis and Bayram [14] presented a collocation method based on Hermite
polynomials. Polynomial least squares method is used by Cǎruntu and Bota [7] to find
analytical approximate solutions for a general class of nonlinear delay differential equa-
tions. A two-stage order-one Runge-Kutta method is applied by Bellen and Zennaro [3].
One-leg θ-method is used by Wang and Li [20]. Yüzbaşı and Sezer [21] employed the
shifted Legendre method for the approximate solution of pantograph-delay type differen-
tial equations, which are one class of the neutral differential equations.

In this study, we propose the application of a novel numerical method, developed by
Sezer et. al. [13, 2, 10], to find the approximate solution of NDEs with proportional delays
in the truncated Lucas series form. The application of the method reduces the solution of
the given problem to a matrix equation solution, corresponding to a system of algebraic
equations with unknown Lucas coefficients.

2. Lucas Polynomial Formulation of the Problem

A general class of neutral differential equations with proportional delays is given as

(y(t) + cy(αmt))
(m) + dy(t) +

m−1∑
k=0

Pk(t) y
(k)(αkt)) = g(t), 0 ≤ t ≤ b (1)

with the initial conditions,

m−1∑
k=0

aik y
(k)(0) = λi, i = 0, 1, · · · ,m− 1 (2)

where Pk(t) and g(t) are the given analytical functions defined on the interval 0 ≤ t ≤ b,
0 ≤ αm < 1. c, d, aik, b and λi are suitable constants; y(t) is unknown function to be
determined.

The solution of Eq. (1) with the initial conditions in Eq. (2) is approximated by the
Lucas series

y(t) ∼= yN (t) =

N∑
n=0

an Ln(t), 0 ≤ t ≤ b (3)

where an, n = 0, 1, ..., N are unknown coefficients to be determined and Ln(t), n =
0, 1, ..., N ; N > m, are the Lucas polynomials defined recursively as [16]

L0(t) = 2
L1(t) = t
Ln+1(t) = t Ln(t) + Ln−1(t), n ≥ 1.

The unknown function y(t), the proportional delay term y(αmt) and their derivatives
in Eq. (1) can be written in the matrix form as follows
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y(t) ∼= yN (t) = L(t) A = T(t) M︸ ︷︷ ︸
L(t)

A (4)

where

A =
[
ao a1 · · · aN

]T
, T(t) =

[
1 t · · · tN

]
, and

MT =



2 0 0 · · · 0

0 1
1

(
1
0

)
0 · · · 0

2
1

(
1
1

)
0 2

2

(
2
0

)
· · · 0

0 3
2

(
2
1

)
0 · · · 0

...
...

... · · ·
...

0 n

(n+1
2 )

(
n+1
2

n−1
2

)
0 · · · n

n

(
n
0

)}
n odd

n

(n
2 )

(
n
2
n
2

)
0 n

(n+2
2 )

(
n+2
2

n−2
2

)
· · · n

n

(
n
0

)}
n even



.

The derivatives of y(t) in Eq. (4) can be approximated by the fundamental matrix
relations of Taylor and Lucas matrix methods as in [2],

y(k)(t) ∼= y
(k)
N (t) = L(k)(t) A = T(k)(t) MA = T(t) Bk MA (5)

where

B =


0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N
0 0 0 · · · 0

 and B0 =


1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 1 0
0 0 0 · · · 1

 .
Replacing t by αmt in Eq. (5) yields

y(k)(αmt) ∼= y
(k)
N (αmt) = T(k)(αmt) MA = T(αmt) B

k MA = T(t) S(αm) Bk MA (6)

where

S(αm) =


(αm)0 0 0 · · · 0

0 (αm)1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · (αm)N

 .



262 TWMS J. APP. ENG. MATH. V.10, N.1, 2020

The matrix equation for the problem defined in Eq. (1) can be obtained by substituting
the matrix relations in Eqs. (5) and (6) into Eq. (1) as follows[

T(t)BmM + cT(t)S(αm)BmM + dT(t)M +

m−1∑
k=0

Pk(t)T(t)S(αk)B
kM

]
A = G. (7)

Inserting the collocation points (tj = b
N j, j = 0, 1, · · · , N) in Eq. (7) gives[

TBm + CTS(αm)Bm + DT +
m−1∑
k=0

PkTS(αk)B
k

]
M︸ ︷︷ ︸

W

A = G (8)

where

T =


T (t0)
T (t1)

...
T (tN )

 =


1 t0 · · · tN0
1 t1 · · · tN1
...

...
. . .

...
1 tN · · · tNN


D = diag [d]
C = diag [c]
Pk = diag

[
Pk(t0) Pk(t1) · · · Pk(tN )

]
G =

[
g(t0) g(t1) · · · g(tN )

]T
Similarly, we obtain the corresponding matrix form of the initial conditions given in Eq.

(2), by using the relation in Eq. (5) as

UA = λ (9)

where

U =


U0

U1
...

Um−1

 , λ =


λ0
λ1
...

λm−1


and

Uj =
m−1∑
k=0

ajkT(0)BkM = [ujr] , j = 0, 1, . . . ,m− 1, r = 0, 1, . . . , N.

In order to find the solution of Eq. (1)-(2), we replace the m row of the augmented
matrix ([U;λ] ) of Eq. (9) by any m rows of the augmented matrix ([W;G]) of Eq. (8),
then we solve this new augmented matrix, which has the form
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[
W̃ ; G̃

]
=



w00 w01 · · · w0N ; g (t0)
w10 w11 · · · w1N ; g (t1)

...
...

...
...

...;
...

wN−m,0 wN−m,1 · · · wN−m,N ; g (tN−m)
u00 u01 · · · u0N ; λ0
u10 u11 · · · u1N ; λ1

...
...

...
...

...;
...

um−1,0 um−1,1 · · · um−1,N ; λm−1


.

If rank W̃ = rank
[
W̃ ; G̃

]
= N + 1, then the coefficient matrix A is uniquely

determined and the solution of Eq. (1)-(2) can be obtained from Eq. (4).

3. Residual error estimation

We know from [15, 21] that the residual error estimation is an efficient numerical scheme
to improve the approximate solutions. Thus, we here aim to improve the Lucas polyno-
mial solutions, constituting the residual error estimation based on Lucas polynomial and
residual function. First, we obtain the residual function RN (t) via the Lucas polynomial
solution (3) as

RN (t) = (yN (t) + cyN (αmt))
(m) + dyN (t) +

m−1∑
k=0

Pk(t) y
(k)
N (αkt)− g(t),

and eN (t) is error function, which is defined to be

eN (t) = y(t)− yN (t) = −RN (t). (10)

On the other hand, the initial conditions is taken as the homogenous form

m−1∑
k=0

aik y
(k)(0) = 0. (11)

By following the procedure described in 2, we solve the error problem, which is combination
of Eqs. (10) and (11). Then, we have

eN,M (t) =
M∑
n=0

ân Ln(t), (M > N) ,

where eN,M (t) is an estimated error function.
Thus, we improve the Lucas polynomial solution (3) as the following:

yN,M (t) = yN (t) + eN,M (t),

where yN,M (t) is a corrected Lucas polynomial solution. In addition, the corrected error
function is described as EN,M (t) = y(t)− yN,M (t).
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4. Numerical Examples

In this section, results obtained from the application of the method to three prototype
examples are given. In the first two problems, exact solutions of the problems are obtained.
Other numerical results of the second problem are also presented. The last problem is
solved numerically, and the results are compared with the exact solution as well as other
numerical solutions.

4.1. Example 1:
As a first example, we consider the following second-order neutral differential equation

with proportional delays y′′(t) = 3
4y(t) + y

(
t
2

)
+ y′

(
t
2

)
+ 1

2y
′′ ( t

2

)
− t2 − t+ 1, 0 ≤ t ≤ 1

y(0) = y′(0) = 0

where


P0(t) = −1, P1(t) = −1,

α0 = 1
2 , α1 = 1

2 , α2 = 1
2

g(t) = −t2 − t+ 1, c = −1
2 , d = −3

4 .

The collocation points for N = 2 are computed as
{
t0 = 0, t1 = 1

2 , t2 = 1
}

. Follow-
ing the procedure in the previous section, the fundamental matrix equation of the given
example becomes[

TB2 + CT S(α2)B
2 + DT + P0T S(α0)B

0 + P1T S(α1)B
]
M︸ ︷︷ ︸

W

A = G, (12)

where the matrices are

T =

 1 0 0
1 1

2
1
4

1 1 1

 , B =

 0 1 0
0 0 2
0 0 0

 , C =

 −1
2 0 0

0 −1
2 0

0 0 −1
2

 ,

D =

 −3
4 0 0

0 −3
4 0

0 0 −3
4

 , P0 =

 −1 0 0
0 −1 0
0 0 −1

 , P1 =

 −1 0 0
0 −1 0
0 0 −1

 ,

B2 =

 0 0 2
0 0 0
0 0 0

 , S(α0) = S(α1) = S(α2) =

 1 0 0
0 1

2 0
0 0 1

4

 , M =

 2 0 2
0 1 0
0 0 1

 .
So the augmented matrix of Eq. (12) is

[
W ; G

]
=

 −7
2 −1 −5

2 ; 1
0 −5

4 −1 ; 1
4

0 0 −1 ; −1

 .
Now, let’s find the augmented matrix of the initial conditions:
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y(0) = 0 ⇒ y(0) = T(0)MA = 0

⇒
[

1 0 0
]  2 0 2

0 1 0
0 0 1

A = 0

⇒
[

2 0 2 ; 0
]
,

y′(0) = 0 ⇒ y′(0) = T(0)BMA = 0

⇒
[

1 0 0
]  0 1 0

0 0 2
0 0 0

 2 0 2
0 1 0
0 0 1

A = 0

⇒
[

0 1 0 ; 0
]
,

[
U ; λ

]
=

[
2 0 2 ; 0
0 1 0 ; 0

]
.

Interchanging the last two rows of [W;G] by these two rows yields[
W̃ ; G̃

]
=

 −7
2 −1 −5

2 ; 1
2 0 2 ; 0
0 1 0 ; 0


Solving this system for A gives A =

[
−1 0 1

]T
. From Eq. (4), y(t) is obtained as

y(t) = T(t)MA =
[

1 t t2
]  2 0 2

0 1 0
0 0 1

 −1
0
1

 .
Thus, the solution of the problem becomes

y(t) = t2

which is the exact solution, illustrating the accuracy, efficiency and applicability of the
present method.

4.2. Example 2:
Consider the following third-order neutral differential equation with proportional delays

[8]

{
y′′′(t) = y(t) + y′

(
t
2

)
+ y′′

(
t
3

)
+ 1

2y
′′′ ( t

4

)
− t4 − t3

2 −
4
3 t

2 + 21t, 0 < t < 1
y(0) = y′(0) = y′′(0) = 0

where


P0(t) = 0, P1(t) = −1, P2(t) = −1,

α0 = 0, α1 = 1
2 , α2 = 1

3 , α3 = 1
4

g(t) = −t4 − t3

2 −
4t2

3 + 21t, c = −1
2 , d = −1.
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The exact solution of this problem is y (t) = t4. Lucas matrix method has been applied,
following the same steps described in Section 2. The resulting augmented matrix is as
follows

[W̃; G̃] =


−2 −1 −4 0 −10 ; 0
−2 −1.25 −4.3125 −1.3125 −6.09505 ; 5.15495
2 0 2 0 2 ; 0
0 1 0 3 0 ; 0
0 0 1 0 4 ; 0

 .

Once we solve this system for A, we get A =
[

3 0 −4 0 1
]T

. Thus, the solution
can be obtained from Eq. (4) as

y(t) = L(t)A =
[

2 t t2 + 2 t3 + 3t t4 + 4t2 + 2
]


3
0
−4
0
1

 = t4

which is the exact solution. This problem has also been solved by two-stage order-one
Runge-Kutta method [3] and variational iteration method [8] using n = 4, 5, and 6. The
two-stage order-one Runge-Kutta method has five decimal place accuracy only at t = 0.1.
The accuracy decreases to two decimal places at t = 1. The variational iteration method
has four decimal places accuracy at t = 1 when n = 4, and this increases to six decimal
places when n = 6. When the results are compared, one can assume that the present
method is both effective and accurate.

4.3. Example 3: The last example is the first-order neutral differential equation with
proportional delay [20]

{
y′(t) = −y(t) + 0.1y (0.8t) + 0.5y′(0.8t) + (0.32t− 0.5)e−0.8t + e−t, 0 ≤ t ≤ T
y(0) = 0

which has the exact solution y(t) = te−t. This problem is solved by applying the present
method and residual error estimation with N = 4; M = 5, 6 and T = 1, 7. Table 1 shows
the comparison of the present method with the two-stage order-one Runge-Kutta method
[3], One-leg θ-method [20] and variational iteration method with n = 5 and n = 6 in terms
of absolute errors. Based on results presented in Table 1, one can see that the present
method has better accuracy even with N = 4.
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Table 1. Comparison of accuracy of the present method with other nu-
merical methods in terms of absolute errors

ti Two-stage
order-one
Runge-
Kutta
meth.
|e(ti)| [3]

One-leg
θ-meth.
|e(ti)|
[20]

Variational
iteration
method
|e5(ti)| [8]

Variational
iteration
meth.
|e6(ti)| [8]

Present
meth.
|e4(ti)|

Present
meth.
|E4,5(ti)|

Present
meth.
|E4,6(ti)|

0.1 8.68e–04 4.65e–03 2.62e–03 1.30e–03 4.78e–05 4.01e–06 2.64e–07
0.2 1.49e–03 1.45e–02 4.36e–03 2.14e–03 1.04e–04 6.93e–06 3.67e–07
0.3 1.90e–03 2.57e–02 5.40e–03 2.63e–03 1.11e–04 5.88e–06 2.74e–07
0.4 2.16e–03 3.60e–02 5.89e–03 2.84e–03 7.86e–05 3.88e–06 2.12e–07
0.5 2.28e–03 4.43e–02 5.96e–03 2.83e–03 4.31e–05 3.30e–06 1.95e–07
0.6 2.31e–03 5.03e–02 5.71e–03 2.67e–03 3.78e–05 3.42e–06 1.37e–07
0.7 2.27e–03 5.37e–02 5.23e–03 2.39e–03 6.22e–05 1.89e–06 9.25e–08
0.8 2.17e–03 5.47e–02 4.59e–03 2.04e–03 5.67e–05 6.14e–07 1.90e–07
0.9 2.03e–03 5.35e–02 3.84e–03 1.64e–03 1.20e–04 7.38e–06 1.07e–07
1.0 1.86e–03 5.03e–02 3.04e–03 1.22e–03 7.12e–04 5.85e–05 3.74e–06

Figure 1 presents the numerical and the exact solution of the problem on the interval
[0, 7]. It could be seen that the numerical results agree perfectly with the exact solution.
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Figure 1. Comparison of numerical and exact solutions on [0, 7].

5. Conclusion

In this paper, we have demonstrated the applicability of the Lucas polynomial approach
in solving neutral differential equations with proportional delays. The said method has
been applied to three test problems, and the method yields high-accuracy approximate,
or even exact, solutions. One can see that the results of the Lucas matrix method have
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better accuracy than those generated by some other numerical methods. Hence, it is an
effective and convenient approach to solve the indicated problems, producing approximate
and exact solutions.
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Ömür Kıvanç Kürkçü is Research Assistant in Department of Mathematics, Izmir
University of Economics. His research interests are ordinary, partial and fractional
(integro-)differential equations, numerical analysis, graph theory, algorithms, and cal-
culus; and has performed 28 scientific articles since 2014.

Mehmet Sezer received his B.Sc. from the Department of Mathematics of Ege
University in 1976 and was research assistant at Balikesir Engineering Academy. His
M.Sc. was from Ege University in 1977. He received his Ph.D. at Ege University
in 1982. In 1995 Professor at Faculty of Education of Dokuz Eylul University. His
main research interests are ordinary and partial differntial equations, integral and
difference equations, and their numerical solutions. Prof. Sezer has been reviewer for
numerous influential journals, has published research articles related to differential
equations, linear algebra, analytic geometry and calculus; and has authored over 80
papers.


