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LIE-POISSON INTEGRATORS FOR A RIGID SATELLITE ON A
CIRCULAR ORBIT

A. AYDIN1 §

Abstract. In the last two decades, many structure preserving numerical methods like
Poisson integrators have been investigated in numerical studies. Since the structure
matrices are different in many Poisson systems, no integrator is known yet to preserve
the Poisson structure of any Poisson system. In the present paper, we propose Lie–
Poisson integrators for Lie–Poisson systems whose structure matrix is different from the
ones studied before. In particular, explicit Lie-Poisson integrators for the equations
of rotational motion of a rigid body (the satellite) on a circular orbit around a fixed
gravitational center have been constructed based on the splitting. The splitted parts have
been composed by a first, a second and a third order compositions. It has been shown
that the proposed schemes preserve the quadratic invariants of the equation. Numerical
results reveal the preservation of the energy and agree with the theoretical treatment
that the invariants lie on the sphere in long–term with different orders of accuracy.

Keywords:Lie-Poisson integrators, symplectic integrators, rigid body equations, split-
tings.
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1. Introduction

Geometric integrators, which are well designed numerical schemes preserving some in-
variant quantities of a differential equation, have been developed by many authors for par-
ticular types of differential equation namely, Hamiltonian ordinary differential equations
(ODEs) and Hamiltonian partial differential equations (PDEs). For canonical Hamilton-
ian system ODEs, different kinds of symplectic integrators have been developed (see [1,
Chapter VI], [2, 3, 4]). For Hamiltonian ODEs in a non-canonical form with a linear struc-
ture matrix, i.e. Lie-Poisson ODEs, Lie–Poisson integrators were constructed [5, 6]. In
[7, 8] explicit Lie-Poisson integrators have been constructed for some class of Lie-Poisson
systems. For Poisson systems, i.e. Hamiltonian systems in a non-canonical form with
a non-linear structure matrix, Poisson integrators were developed. In [9], it has been
shown that the midpoint rule preserves the Poisson structure up to second order accu-
racy. In [10], preservation of the Poisson structure by the second order Lobatto IIIA-B
method has been proven for the Volterra lattice equations. In [11] it has been shown
that symplectic Runge-Kutta methods preserve the Poisson structure when the Poisson
tensor is constant. It has also been shown that the Poisson structure could be preserved
for non-constant Poisson tensor using a nonlinear change of coordinates. In [12] Poisson
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integrators for completely integrable hamiltonian systems are discussed. In [13] an explicit
Poisson integrator for symmetric rigid bodies in space is derived. For an overview of Pois-
son integrators, see [14] and references therein. For Hamiltonian PDEs, multisymplectic
integrators have been constructed (see [15, 16, 17] and references therein). A survey for
multisymplectic integrators is given in [18, Chapter 12].

Dynamical systems in celestial mechanics and dynamical astronomy attract much at-
tention. Most of these dynamical systems are Hamiltonian ODEs. One of the important
questions concerning these systems is the problem of integrability. A system is integrable
if it has an enough number of first integrals. Unfortunately, most of the dynamical systems
in celestial mechanics and dynamical astronomy are non-integrable [19, 20, 21]. Therefore,
numerical studies are essential to understand the long time behavior of these dynamical
systems.

We will consider the following system of ODEs [22]
d

dt
m = m× ω + 3Ωγ × Iγ

d

dt
γ = γ × (ω − Ωn)

d

dt
n = n× ω

(1)

which describes the rotational motion of a rigid body (the satellite) on a circular orbit
around a fixed gravitational center. Here Ω2 = gq/r3, m = Iω, I = diag(I1, I2, I3)
with g is the gravitational constant, q is the mass of the central body, r is the radius of
the orbit, I1, I2, I3 are the principal moments of inertia of the body, m = (m1,m2,m3)T is
the vector of the angular momentum, ω = (ω1, ω2, ω3)T is the vector of the total angular
velocity of the satellite, γ = (γ1, γ2, γ3)T and n = (n1, n2, n3)T are unit vectors along the
radius vector and the normal to the orbital plane, respectively. Components of all vectors
are taken here with respect to the principal axis reference frame.

Equation (1) possesses four integrals, namely the energy

H(z) =
1
2

< m, I−1m > +
3
2
Ω < γ, Iγ > −Ω < m,n >, (2)

and three geometrical integrals

G(z) =< γ, γ >, N(z) =< n,n >, K(z) =< γ,n >, (3)

where z = (mT , γT ,nT ) and < ·, · > stands for the standard inner product in R3. For the
real system we consider [22]

G(z) = N(z) = 1, and K(z) = 0. (4)

In this paper, explicit Lie-Poisson integrators are constructed for the numerical solution
of the system (1). In section 2, the Lie-Poisson equations and the Lie-Poisson integrators
are reviewed. The Lie-Poisson structure of the system (1) is also presented. In section 3,
symplectic integrators like the implicit midpoint and the multi–stage implicit symplectic
scheme are discussed. In section 4, it is shown that the numerical methods presented in
section 3 are conservative Lie-Poisson integrators for the system (1). Section 5 is devoted
to some numerical experiments.

2. Lie-Poisson Equations and Lie-Poisson Integrators

The system considered in this paper is the Hamiltonian system of odes in Rn

dx
dt

= Λ(x)∇H(x), (5)
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with the Hamiltonian function H : Rn → R. Here Λ(x) is a skew-symmetric matrix, i.e.,
ΛT (x) = −Λ(x). ∇H(x) is defined with respect to the standard inner product in Rn.

If Λ(x) is linear in x, then the system (5) is called a Hamiltonian system on a Lie-
Poisson structure or a Lie-Poisson equation. For the smooth functions F, G : Rn → R, we
can define the Poisson bracket

{F, G} (x) = ∇F (x)Λ(x)∇GT (x). (6)

In view of (6), the Lie-Poisson equation (5) can be written as

dx
dt

= {x,H} .

Let Ψh(x(t)) = x(t+h) denote the phase flow of the equation (5). The Poisson bracket
(6) is preserved by the phase flow Ψh(x(t)), i.e.,

{F, G} ◦Ψh = {F ◦Ψh, G ◦Ψh}
or equivalently (

∂Ψh

∂x

)
Λ(x)

(
∂Ψ
∂x

)T

= Λ (Ψ(x)) . (7)

When Λ is a symplectic matrix,

Λ =
(

0 I
−I 0

)
(8)

where I is an n× n identity matrix, we obtain the symplecticness condition
(

∂Ψh

∂x

)
Λ

(
∂Ψ
∂x

)T

= Λ.

But, in general, this property is not satisfied when Λ is not the symplectic matrix [11].
Therefore, these properties have to be reflected in the numerical integration. In a view
of Lie-Poisson setting, a difference scheme for the system (5) is said to be a Lie-Poisson
integrator if, and only if it preserves the Lie-Poisson structure (7), i.e.

(
∂x1

∂x0

)
Λ(x0)

(
∂x1

∂x0

)T

= Λ(x1). (9)

where the notations x0 := xn and x1 := xn+1 have been used for simplicity.
The equation (1), rotational motion of a rigid body (satellite) on a circular orbit around

a fixed gravitational center, is a Lie-Poisson system [23]. It can be written in the form of
(5) with the Hamiltonian function (2), and the 9× 9 structure matrix

Λ(x) =




J(m) J(γ) J(n)
J(γ) 0 0
J(n) 0 0


 (10)

where x = (mT , γT ,nT ) and J(u) is the 3× 3 matrix

J(u) =




0 −u3 u2

u3 0 −u1

−u2 u1 0


 .

Since the structure matrices are different in many Poisson systems, no integrator is
known yet to preserve the Poisson structure of any Poisson system. In this paper, Lie–
Poisson integrators are proposed for the structure matrix (10) for which a Lie–Poisson
integrator has never been studied in the literature before.
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To prove that a numerical scheme is a Lie-Poisson integrator for the structure matrix
(10) of the system (1), we have to show that (9) is satisfied, i.e.,




∂m1

∂m0
∂m1

∂γ0
∂m1

∂n0

∂γ1

∂m0
∂γ1

∂γ0
∂γ1

∂n0

∂n1

∂m0
∂n1

∂γ0
∂n1

∂n0







J(m0) J(γ0) J(n0)
J(γ0) 0 0
J(n0) 0 0







∂m1

∂m0
∂m1

∂γ0
∂m1

∂n0

∂γ1

∂m0
∂γ1

∂γ0
∂γ1

∂n0

∂n1

∂m0
∂n1

∂γ0
∂n1

∂n0




T

=




J(m1) J(γ1) J(n1)
J(γ1) 0 0
J(n1) 0 0


 . (11)

A numerical method for the system (1) preserves the geometric integrals (3) if the condi-
tions

G(z1) = G(z0), N(z1) = N(z0), K(z1) = K(z0). (12)

are hold.

3. Numerical Methods

In this section, some numerical schemes are presented to integrate the system (1) nu-
merically, using a Lie-Poisson splitting.

3.1. The Implicit Midpoint Rule. We discretize the equation (5) using the implicit
midpoint rule

x1 = x0 + hΛ
(

x1 + x0

2

)
∇H

(
x1 + x0

2

)
(13)

If Λ(x) ≡ Λ is a constant matrix, then the midpoint rule (13) preserves the Poisson
structure (7) [9]. For the canonical case, i.e. Λ(x) ≡ Λ in (8), the scheme (13) is also a
symplectic integrator [24]. When Λ(x) is not a constant matrix, in general, the midpoint
rule (13) does not preserve the Poisson structure (6). In a Lie-Poisson setting, i.e. when
Λ(x) is linear in x, (13) is not a Lie-Poisson integrator but it preserves the Lie-Poisson
structure up to second order [9]. However, for a separable Hamiltonian system, explicit
Lie-Poisson integrators can be constructed as for the canonical Hamiltonian systems [7, 25].

3.2. Multi-Stage Implicit Symplectic Schemes. For a Hamiltonian system of the
form

dx

dt
= J−1∇H(z)

some implicit symplectic schemes can be obtained in [26]. Since the Hamiltonian H is
quadratic in this work, we can write the vector field J−1∇H(z) = Wz, and implement
the schemes as follows: {

U1 = x0 + 1
2hWU1

x1 = 2U1 − x0 (14)





U1 = x0 + 1
4hWU1

U2 = 2U1 − x0 + 1
4hWU2

x1 = 2(U2 − U1) + x0
(15)

The schemes (14) and (15) are first order and second order, respectively. Third and fourth
order schemes can be obtained in [27].
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4. Lie-Poisson Integrators for Satellite Equation

In this section, it is shown that the equation of the motion (1) can be numerically inte-
grated by means of explicit Lie-Poisson integrators. Any system of differential equations
can be integrated by a so-called ’splitting method’ if only one can split the vector field in
such a way that each of the splitted term generates an explicitly solvable dynamics. An
overview of the splitting methods can be found in [28].

We consider the Satellite equation (1) in Lie-Poisson form

dx
dt

= Λ(x)∇H(x), x = (mT , γT ,nT ) (16)

with the structure matrix (10) and the Hamiltonian function (2). We split the Hamiltonian
(2) in to nine pieces

H = H1 + H2 + · · ·+ H9 (17)

where Hi = 1
2

m2
i

Ii
for i = 1, 2, 3, Hi = −Ωnimi for i = 4, 5, 6 and Hi = 3Ω

2 Iiγ
2
i for i = 7, 8, 9.

Substituting H = Hi, i = 1, 2 · · · , 9 into (16), we get nine different subsystems each of
which is completely integrable; in other words an exact solution can be found.

For example, substituting H = H1 in (16), the solution evolves according to

dm1

dt
= 0,

dm2

dt
= am1m3,

dm3

dt
= −am1m2,

dγ1

dt
= 0,

dγ2

dt
= am1γ3,

dγ3

dt
= −am1γ2,

dn1

dt
= 0,

dn2

dt
= am1n3,

dn3

dt
= −am1n2,

(18)

where a = 1/I1. We notice that m1, γ1 and n1 are constant. Therefore, an exact solution
can be obtained.

Theorem 4.1. The midpoint rule for the system (18) is Poisson.

Proof. We discretize (18) using the implicit midpoint rule and obtain

m1
1 = m0

1,

m1
2 = m0

2 + ham0
1m

1
2
3 ,

m1
3 = m0

3 − ham0
1m

1
2
2 ,

γ1
1 = γ0

1 ,

γ1
2 = γ0

2 + ham0
1γ

1
2
3 ,

γ1
3 = γ0

3 − ham0
1γ

1
2
2 ,

n1
1 = n0

1,

n1
2 = n0

2 + ham0
1n

1
2
3 ,

n1
3 = n0

3 − ham0
1n

1
2
2 .

(19)
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where y
1
2 := 1

2(y1 + y0). Solving for m1
i , γ

1
i , n1

i , i = 1, 2, 3 we get

m1
1 = m0

1,

m1
2 =

4− a2h2m0
1
2

4 + a2h2m0
1
2 m0

2 +
4ahm0

1

4 + a2h2m0
1
2 m0

3,

m1
3 =

4− a2h2m0
1
2

4 + a2h2m0
1
2 m0

3 −
4ahm0

1

4 + a2h2m0
1
2 m0

2,

γ1
1 = γ0

1 ,

γ1
2 =

4− a2h2m0
1
2

4 + a2h2m0
1
2 γ0

2 +
4ahm0

1

4 + a2h2m0
1
2 γ0

3 ,

γ1
3 =

4− a2h2m0
1
2

4 + a2h2m0
1
2 γ0

3 −
4ahm0

1

4 + a2h2m0
1
2 γ0

2

n1
1 = n0

1,

n1
2 =

4− a2h2m0
1
2

4 + a2h2m0
1
2 n0

2 +
4ahm0

1

4 + a2h2m0
1
2 n0

3,

n1
3 =

4− a2h2m0
1
2

4 + a2h2m0
1
2 n0

3 −
4ahm0

1

4 + a2h2m0
1
2 n0

2.

(20)

We notice the Jacobi matrices ∂m1

∂γ0 = ∂m1

∂n0 = ∂γ1

∂n0 = ∂n1

∂γ0 = 0. The matrices ∂m1

∂m0 , ∂γ1

∂m0 , ∂n1

∂m0 , ∂γ1

∂γ0

and ∂n1

∂n0 can be easily obtained from (20). For example,

∂n1

∂n0
=




∂n1
1

∂n0
1

∂n1
1

∂n0
2

∂n1
1

∂n0
3

∂n1
2

∂n0
1

∂n1
2

∂n0
2

∂n1
2

∂n0
3

∂n1
3

∂n0
1

∂n1
3

∂n0
2

∂n1
3

∂n0
3


 =




1 0 0

0 4−h2a2m0
1
2

4+h2a2m0
1
2

4ham0
1

4+h2a2m0
1
2

0 − 4ham0
1

4+h2a2m0
1
2

4−h2a2m0
1
2

4+h2a2m0
1
2


 .

It is seen that (11) is satisfied by substituting these Jacobian matrices into (11). This
proves that the implicit midpoint rule is a Lie-Poisson integrator for the subsystem (18).

Note that the system (20) is an explicit scheme which is an advantage in contrast to
the implicit scheme which requires several Newton steps in order to find an approximate
solution. ¤

Similarly, one can show that the implicit midpoint rule produces an explicit Lie-Poisson
integrator for the subsystems obtained by replacing H = Hi, i = 2, 3, · · · , 9 in (16).

Let us now consider the symplectic integration of the Lie–Poisson system (16). Lie–
Poisson integrators can also be obtained from the symplectic integration of Hamiltonian
systems [29, 30].

Theorem 4.2. The multi-stage implicit symplectic scheme (14) for the system (18) is
Poisson.

Proof. Writing the system (18) as
dz
dx

= Wz

with z = (mT , γT ,nT ) and

W =




B 0 0
0 B 0
0 0 B


 , B =




0 0 0
0 0 am1

0 −am1 0



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where a = 1/I1, we apply the multi-stage symplectic scheme (14) and obtain

m1
1 = m0

1

m1
2 = ( 8

4+h2a2m0
1
2 − 1)m0

2 + 4ha
m0

1

4+h2a2m0
1
2 m0

3

m1
3 = ( 8

4+h2a2m0
1
2 − 1)m0

3 − 4ha
m0

1

4+h2a2m0
1
2 m0

2

γ1
1 = γ0

1

γ1
2 = ( 8

4+h2a2m0
1
2 − 1)γ0

2 + 4ha
m0

1

4+h2a2m0
1
2 γ0

3

γ1
3 = ( 8

4+h2a2m0
1
2 − 1)γ0

3 − 4ha
m0

1

4+h2a2m0
1
2 γ0

2

n1
1 = n0

1

n1
2 = ( 8

4+h2a2m0
1
2 − 1)n0

2 + 4ha
m0

1

4+h2a2m0
1
2 n0

3

n1
3 = ( 8

4+h2a2m0
1
2 − 1)n0

3 − 4ha
m0

1

4+h2a2m0
1
2 n0

2

(21)

We note the Jacobian matrices ∂m1

∂γ0 = ∂m1

∂n0 = ∂γ1

∂n0 = ∂n1

∂γ0 = 0. The matrices ∂m1

∂m0 , ∂γ1

∂m0 , ∂n1

∂m0 , ∂γ1

∂γ0

and ∂n1

∂n0 can be obtained easily. For example,

∂γ1

∂γ0
=




γ1
1

γ0
1

γ1
1

γ0
2

γ1
1

γ0
3

γ1
2

γ0
1

γ1
2

γ0
2

γ1
2

γ0
3

γ1
3

γ0
1

γ1
3

γ0
2

γ1
3

γ0
3


 =




1 0 0

0 4−h2a2m0
1
2

4+h2a2m0
1
2

4ham0
1

4+h2a2m0
1
2

0 − 4ham0
1

4+h2a2m0
1
2

4−h2a2m0
1
2

4+h2a2m0
1
2


 .

Substituting these matrices into (11), we see that (11) is satisfied. This proves that the
multi-stage implicit symplectic scheme (14) is an explicit Lie-Poisson integrator for the
system (18). ¤

Similarly, one can show that the multi-stage implicit symplectic scheme (14) is an
explicit Lie-Poisson integrator for the subsystems obtained by replacing H = Hi, i =
2, 3, · · · , 9 in (16).

Theorem 4.3. The multi-stage implicit symplectic scheme (15) for the system (18) is
Poisson.

Proof. Similar to the proof of Theorem 2. ¤
Besides being Lie–Poisson integrators, the schemes considered in this section preserve

the quadratic invariants (3) for the subsystem (18)[31]. For this, we have to show that
(12) is satisfied under midpoint discretization. From (20), we can write

γ1
2 = Aγ0

2 + Bγ0
3 , and γ1

3 = Aγ0
3 −Bγ0

2 ,

where A = 4−a2h2m0
1
2

4+a2h2m0
1
2 and B = 4ahm0

1

4+a2h2m0
1
2 . Then

(γ1
1)2 + (γ1

2)2 + (γ1
3)2 = (γ0

1)2 + (Aγ0
2 + Bγ0

3)2 + (Aγ0
3 −Bγ0

2)2

= (γ0
1)2 + (A2 + B2)(γ0

2)2 + (A2 + B2)(γ0
3)2

= (γ0
1)2 + (γ0

2)2 + (γ0
3)2

(22)

where we have used the fact that (A2 + B2) = 1. This shows that the condition G(z1) =
G(z0) in (12) is satisfied under midpoint discretization for the subsystem (18). Similarly,
one can show that midpoint discretization for the subsystem (18) satisfies the other con-
ditions N(z1) = N(z0) and K(z1) = K(z0) in (12) where N(z) and K(z) in (3). It can
be shown that the implicit midpoint discretization satisfies the conditions in (3) for the
subsystem obtained by replacing H = Hi, i = 2, 3, · · · , 9 in (16).
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Similarly, one can show that the conditions in (3) are satisfied by each subsystem
obtained by replacing H = Hi, i = 1, 2, · · · , 9 in (16) and discretizing by the schemes (14)
and (15).

Consider the subsystems obtained by replacing H = Hi, i = 1, 2, · · · , 9 in (16) where
Hi, i = 1, 2, · · · , 9 are defined in (17). Let H1[h],H2[h], · · · ,H9[h] denote the discrete
flow obtained by applying the implicit midpoint rule for these subsystems. For exam-
ple, we have proven in Theorem 1 that the discrete flow H1[h] is a Lie-Poisson integra-
tor for the subsystem (18). In a similar way, it can be shown that the discrete flows
H2[h],H3[h], · · · ,H9[h] are also Lie-Poisson integrators. Thus, an explicit Lie-Poisson in-
tegrators can be constructed by composing the discrete flows H1[h],H2[h], · · · ,H9[h] on
the bases of the implicit midpoint rule.

A simple composition is given by the Lie-Trotter formula [1]

xn+1 = H1[h] ◦ H2[h] ◦ · · · ◦ H9[h]xn. (23)

which is first-order. A more accurate composition is the Strang splitting [1]

xn+1 = H1[
h

2
] ◦ · · · ◦ H8[

h

2
] ◦ H9[h] ◦ H8[

h

2
] ◦ · · · ◦ H1[

h

2
]xn. (24)

which is second-order and symplectic. Higher-order compositions can be obtained using
higher–order decompositions, such as the fourth–order Suzuki–Trotter decomposition [32]

xn+1 =

(
5∏

i=1

H1[pi
h

2
] ◦ · · · ◦ H8[pi

h

2
] ◦ H9[pih] ◦ H8[pi

h

2
] ◦ · · · ◦ H1[pi

h

2
]

)
xn (25)

where p1 = p2 = p4 = p5 = p = 1

4−4
1
3
, p3 = 1− 4p.

Here, we point out that the integrators (23), (24) and (25) are first, second and fourth–
order Lie-Poisson integrators for system (1) respectively based on the implicit midpoint
discretization. Let H1, · · · ,H9 denote the discrete flow obtained by the one-stage (14)
and two-stage (15) schemes. Then one can construct a first, a second or a fourth–order
Lie-Poisson integrators based on the one-stage (14) and two-stage (15) schemes for the
system (1) using the Theorem 2 and Theorem 3 respectively.

5. Numerical Results

In this section, numerical results for the solution of the rigid body equation (1) are
presented. Three Lie–Poisson integrators, based on the Hamiltonian splitting namely the
implicit midpoint rule, the one-stage and the two-stage implicit symplectic schemes, have
been used for numerical integration. The splitted parts are then composed to obtain the
first–order (23),the second–order (24) and the fourth–order (25) integrators for each case.

All computations are done on the time interval [0, 1000] with the uniform grids tm =
t0 + m∆t ,m = 0, 1, · · · , 1000/∆t for different time step length ∆t. Figures 1–3 show
the numerical results for the implicit midpoint rule. The results for the one-stage and
two-stage implicit symplectic schemes are similar to the results of the implicit midpoint
rule, therefore they are not shown here.

The accuracy of the methods is tested by looking at the four invariants, namely the
energy (2) and the three quadratic first integrals (3). The errors are computed using the
L∞ norm defined by

Err(H) = ‖H(z0)−H(zm)‖∞,
Err(G) = ‖G(z0)−G(zm)‖∞,
Err(N) = ‖N(z0)−N(zm)‖∞,
Err(K) = ‖K(z0)−K(zm)‖∞,

(26)
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1st order 2nd order 4th order
∆t Err(H) p Err(H) p Err(H) p
1
10 7.418E − 1 − 9.199E − 2 − 2.024E − 3 −
1
20 3.414E − 1 1.119 2.159E − 2 2.091 1.138E − 4 4.153

MP 1
40 1.582E − 1 1.109 5.370E − 3 2.008 6.980E − 6 4.027
1
80 7.640E − 2 1.050 1.337E − 3 2.006 4.337E − 7 4.009
1

160 3.756E − 2 1.024 3.340E − 4 2.000 2.710E − 8 4.000
1
10 7.418E − 1 − 9.199E − 2 − 2.024E − 3 −
1
20 3.414E − 1 1.119 2.159E − 2 2.091 1.138E − 4 4.152

1-STG 1
40 1.582E − 1 1.109 5.370E − 3 2.008 6.980E − 6 4.027
1
80 7.640E − 2 1.050 1.337E − 3 2.006 4.337E − 7 4.009
1

160 3.756E − 2 1.024 3.340E − 4 2.000 2.710E − 8 4.000
1
10 7.517E − 1 − 8.712E − 2 − 2.111E − 3 −
1
20 3.350E − 1 1.166 2.027E − 2 2.104 1.186E − 4 4.153

2-STG 1
40 1.589E − 1 1.076 4.962E − 3 2.030 7.271E − 6 4.028
1
80 7.653E − 2 1.054 1.234E − 3 2.008 4.516E − 7 4.009
1

160 3.761E − 2 1.025 3.084E − 4 2.000 2.825E − 8 4.000
Table 1. Comparison of the convergence rate from L∞-errors for the
first-order, second-order and fourth-order compositions. MP:Midpoint rule,
1-STG: one–stage scheme, 2-STG: two–stage scheme.
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Figure 1. Preservation of the geometric invariants G and N in (3) on the
unit sphere. The implicit midpoint rule with the first–order composition.

where H(z0), G(z0), N(z0) and K(z0) are the values of the invariants at t = 0 and H(zm),
G(zm), N(zm) and K(zm) are the values of the invariants at t = z0+m∆t. We take Ω = 1,
the inertia parameters I1 = 1.1, I2 = 2.1, I3 = 2.5 and the initial values [22]

m0
1 = −10, m0

2 = 0.1, m0
3 = 0.2,

γ0
1 = 0.1, γ0

2 = −0.3, γ0
3 ' 0.94898,

n0
1 ' 0.6993786, n0

2 = n0
1, n0

3 ' 0.14744.
(27)

Figure 1 provides the results obtained by the first–order composition (23) based on the
implicit midpoint rule with the time step length ∆t = 1/20. Similar results are obtained
by the second–order (24) and the fourth–order (25) compositions. From the figure, we
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Figure 2. Numerical errors for the preservation of the energy H and the
geometric invariants G, N and K in (3). The implicit midpoint rule with
the first–order composition.

see that the invariants G(z) and N(z) in (3) remain on the unit sphere. The errors in
(26) can be found in Figure 2. Notice that the error in the energy (2) is oscillating and
does not grow in time which is a typical behavior for a symplectic integrator. However,
it is not preserved exactly though it is a quadratic invariant. It can be eliminated by
using a higher–order composition instead of a simple first–order composition. The error in
the energy for the second–order and the fourth–order compositions for various time step
lengths ∆t can be found in Table 1. Note that increasing the order of the composition
decreases the error in conserved quantities.

The rate of the convergence of the integrators, discussed in this paper, can be calculated
from the formula [33]

p = log
(‖H(z0)−H(zm)∆t1‖
‖H(z0)−H(zm)∆t2‖

)/
log

(
∆t1
∆t2

)
(28)

where the value p is called the rate of convergence. The errors in the Hamiltonian H and
the rate of convergence p of the methods are shown in Table 1 for decreasing time step
lengths ∆t. We present the L∞ error for the terminating time t = 32. Notice that halving
the time step ∆t results in a decrease in the maximum error in H by a factor of 2−1 in the
first–order, 2−2 in the second–order and 2−4 in the fourth–order methods. It can be seen
from the Table 1 that the Hamiltonian H is preserved more accurately by increasing the
order of the composition method. Furthermore, the rate of convergence p is almost equal
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Figure 3. Numerical errors for the preservation of the energy H in (3).
The implicit midpoint rule with the first, second and fourth–order compo-
sition for different step sizes.

to 1, 2 and 4 for the first, second and fourth–order compositions, respectively. Figure 3
justifies the expected rate of convergence.
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