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Abstract — Based on the Dai-Laio and Liu-Xu methods, we develop a new three-
term conjugate gradient method for solving large-scale unconstrained optimization 
problem,. The suggested method satisfies both the descent condition and the conju-
gacy condition. For uniformly convex function, under standard assumption the glob-
al convergence of the algorithm is proved. Finally, some numerical results of the 
proposed method are given. 
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1 Introduction 
   We deal with the following unconstrained optimization problem:   

          ( ),     nf x x R∈min               (1) 

where RRf n →: is continuously differentiable and it‘s gradient fg ∇=  is available. 
there are many different theories and algorithms that have been presented to solve prob-
lem (1), (see [1-4]). For solving problem (1), the iterative method is widely used and it‘s 
form is given by  

       kkk sxx +=+1 ,   kkk ds α= ,        ,...,2,1=k                (2) 

where n
k Rx ∈  is the 𝑘𝑘 −th approximation to a solution of (1). Rk ∈α  is a step-length 

usually chosen to satisfy certain line search conditions [18]. and n
k Rd ∈  is the search 

direction and defined by   
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       kkkk dgd β+−= ++ 11    ,   11 gd −=    

where Rk ∈β  is a parameter which characterizes the conjugate gradient method. For gen-
eral nonlinear functions, different choices of kβ  lead to different conjugate gradient 
methods. Well-known formulas for kβ  are called the Fletcher-Reeves (FR) [10], Heste-
nes -Stiefel (HS) [11], and Polak-Ribiere (PR) [15] are given by  
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where kkk ggy −= +1  and ‖. ‖denotes to ℓ2norm. 

    The line search in conjugate gradient algorithms is often based on the standared Wolfe 
Conditions (WC) [19]: 

Where kd is a descent direction and 10 <≤< σρ . However, for some conjugate gradient 
algorithms, a stronger version of the Wolfe line search conditions (SWC) given by (4) 
and  

is needed to ensure the convergence and to enhance the stability. 
The form represents the pure conjugacy condition  

for nonlinear conjugate gradient methods. The extension of the conjugacy condition was 
studied by Perry [14]. He tried to accelerate the conjugate gradient method by incorporat-
ing the second-order information into it. Specifically, he used the secant condition   

kkk syH =+1  (8) 

of quasi-Newton methods, where a symmetric matrix 1+kH  is an approximation to the 

inverse Hessian. For quasi-Newton methods, the search direction 1+kd  can be calculated 
in the form  

111 +++ −= kkk gHd               
(9) 

By (8) and (9), the relation   

( ) ( ) k
T
kkkkkk dgxfdxf ραα ≤−+  , 
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(4) 
(5)                                 
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(6) 

                                                        01 =+ k
T
k yd  (7)                                
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holds. By taking this relation into account, Perry replaced the conjugacy condition (7) by 
the condition  

k
T
kk

T
k sgyd 11 ++ −= . (10)  

Dai and Liao [8] generalized the condition (10) to the following 

k
T
kk

T
k stgyd 11 ++ −= ,            

(11) 

where 0≥t is a scalar. The case 0=t , (11) reduces to the usual conjugacy condition (7). 
On the other hand, the case 1=t , (11) becomes Perry‘s condition (10). To ensure that the 
search direction kd satisfies condition (11), by substituting kkkk dgd β+−= ++ 11  into (11), 
they had  

k
T
kk

T
kkk

T
k stgydyg 111 +++ −=+− β .  

This gives the Dai-Liao formula  

k
T
k

kk
T
kDL

k yd
tsyg )(1 −

= +β . 
 
(12) 

We note that the case 1=t  reduces to the Perry formula 

k
T
k

kk
T
kP

k yd
syg )(1 −

= +β . 
 
(13)      

Furthermore, if 0=t , then DLβ  reduces to the HSβ . The approach of Dai and Liao (DL) 
has been paid special attention to by many researches. In several efforts, modified secant 
equations have been applied to make modifications on the DL method. It is remarkable 
that numerical performance of the DL method is very dependent on the parameter t  for 
which there is no any optimal choice [6]. 
This paper is organized as follows. In section 2 we briefly review the Three-term conju-
gate gradient methods. In section 3, the proposed algorithm is stated. The properties and 
convergent results of the new method are given in Section 4. Numerical results and one 
conclusion are presented in Section 5 and in Section 6, respectively. 
 

2 Three-Term Conjugate Gradient (CG) methods 
Recently many researchers have been studied three- term conjugate gradient methods. For 
example Narushima, Yab and Ford [13] have proposed a wider class of three term conju-
gate gradient methods (called 3TCG) which always satisfy the sufficient descent condi-
tion. Shanno in [17] used the well-known BFGS quasi-Newton method to obtain the fol-
lowing three-term CG method.  
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  (14)         

Furthermore, Liu and Xu in [12] was generalized the Perry conjugate gradient algorithm 
(13), the search directions were formulated as follows 
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 (15)         

where kτ  is parameter, which is Liu-Xu three-term conjugate gradient methods. When 
0>k

T
kk ysτ , the search directions defined by (15) satisfy the descent property  

 
 
 

Or the sufficient descent property  

 
Notice that if 1=kτ , then (15) reduces to the (14). It is remarkable that there is no any 
optimal choice for kτ , However different values used for kτ  in [3], for example 

3 A New Three-Term Conjugate Gradient (CG) Method 
     The aim of this section is to derive a new three-term conjugate gradient method Aynur 
and Khalil ( AK3  say ) by using Liu-Xu (LX) method (15) and Dai - Liao (DL) CG 
method (3) and (12). consider the search direction given by DL 

k
k

T
k

k
T
k

k
k

T
k

k
T
k

k
DL
k s

ys
gsts

ys
gygd 11

11
++

++ −+−=
 , 

Letting 2
k

k
T
k

y
ys

t =  in equation (17) we get  

k
k

k
T
k

k
k

T
k

k
T
k

kk s
y
gs

s
ys

gy
gd 2

11
11

++
++ −+−=  

             
             
(17) 
 
  
              
             
(18) 

Now equating the equations (15) and (18) i.e 
LX
kk dd 11 ++ =  .  

With simple algebra and with the change signal of the last term in LX
kd 1+  we get  
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Substitute (19) in the equation (15) to obtain the new search direction  
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 (20)            

Note that, if line search is exact i.e 01 =+ k
T
k sg  then the search direction 3AKd  reduces to 

the well-known Hestenes and Stiefel HSβ , furthermore if 01 =+ k
T
k sg  and successive gra-

dients are orthogonal i.e 01 =+ k
T
k gg  then 3AKd  reduces to the CD-Fletcher method de-

fined by 
k

T
k

k
T
kCD

k gs
gg 11 ++−=β  . 

In the following we summarize the our AK3 algorithm. 
 
Algorithm (AK3)  
Step (1): Select a starting point domx ∈1 f  and 0>ε  , compute ( )11 xff =  

and ( )11 xfg ∇= . Select some positive values for ρ  and σ . Set 

11 gd −=  and 𝑘𝑘 = 1. 
Step (2): Test for convergence . If ε≤

∞kg , then stop kx  is optimal ; oth-
erwise go to Step (3). 

Step (3): Determine the step length kα , by using the Wolfe line search con-
ditions (4)-(5).  

Step (4): Update the variables as: kkkk dxx α+=+1 . Compute 1+kf , 1+kg , 

kkk ggy −= +1  and kkk xxs −= +1 .  
Step (5): Compute the search direction as: If 0≠k

T
k sy  then 3

11
AK
kk dd ++ =   else 

11 ++ −= kk gd  . 
Step (6): Set  1+= kk  and go to Step 2. 

 
4   Convergence Analysis 
  
In this section. We investigate the global convergence property of the algorithm (AK3). 
For this purpose we make the following Assumptions: 
1. The level set ( ) ( ){ }0: xfxfRxS n ≤∈=  is bounded, i.e. there exists  positive constant 

0>B  such that, for all  Sx∈ , Bx ≤ . 
2. In a neighborhood N of S the function  f  is continuously   differentiable and its gradi-
ent is Lipschitz continuous, i.e. there exists a constant 0>L such that 

( ) ( ) yxLyfxf −≤∇−∇ , for all Nyx ∈, . 

   Under these assumptions on f , there exists a constant 0≥Γ  such that ( ) Γ≤∇ xf , for 

all Sx∈ . Observe that the assumption that the function f  is bounded below is weaker 
than the usual assumption that the level set is bounded. Although the search directions 
generated by (20) are always descent directions, to ensure convergence of the algorithm 
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we need to constrain the choice of the step length kα . The following proposition shows 
that the Wolfe line search always gives a lower bound for the step length kα . Based on 
the above assumptions we shall show that our method satisfies the conjugacy condition, 
the sufficient descent condition, and globally convergent with Wolfe line search condi-
tions. 
Theorem 1. Suppose that the step-size kα  satisfies the standard Wolfe conditions, con-
sider the search directions kd  generated from (20) then the search directions 1+kd  are con-
jugate for all k  that is  . 
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Theorem 2. Suppose that the step-size kα  satisfies the standard Wolfe conditions (WC), 
consider the search directions kd  generated from (20) then the search directions 1+kd  sat-

isfies the sufficient descent condition 2
kk

T
k gcgd −≤  , for all k . 

Proof: The proof is by induction. 

If    1=k    ⇒     11 gd −=  ,  2
111 ggd T −=∴              

know let kk
T
k gcgs −<  to proof for 1+k , multiply (20) by T

kg 1+  to get  
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Proposition 1 ([15,16]).  Suppose  that kd is a descent direction and that the gradient f∇  
satisfies the Lipschitz condition for all x  on the line segment connecting kx  and 1+kx  ,  If 
the line search satisfies the Wolfe conditions (4) and (5), then  

Proposition 2 ([12]). Suppose that assumptions (1) and (2) hold. Consider the algorithm 
(2) and (20), where kd  is a descent direction and kα  is computed by the general Wolfe 
line search (4) and (5). Then 

Proposition 3 ([16]).  Suppose that assumptions (1) and (2) hold, and consider any con-
jugate gradient algorithm (2), where kd  is a descent direction and kα  is obtained by the 
Strong Wolfe line search (4) and (6).If  
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For uniformly convex functions, we can prove that the norm of the direction 1+kd  gener-
ated by (20) is bounded above. Therefore, by Proposition 3, we can prove the following 
result. 

 
 
 
 
 
 
 
 

 
Proof: The proof is obtained by Contradiction.  
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algorithm (2) and (20), where  kd  is a descent direction and kα  is computed 
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Taking the sum for both sides and considering Γ≥= 2
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Contradiction we have 0inflim =
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5   Numerical Results and Comparison                       

   In this section, we report some numerical results obtained with an implementation of 
the AK3 algorithm. The code of the AK3  Algorithm is written in Fortran and compiled 
with f77 (default compiler settings), taken from N. Andrei web page. We selected 71 
Large-scale unconstrained optimization test functions in the generalized or extended form 
presented in [1]. For each test function, we undertook ten numerical experiments with the 
number of variables increasing as n=100, 200,…, 1000. The algorithm implements the 

Wolfe line search conditions with 0.0001,   0.9ρ σ= =  and the same stopping criterion 
6

2
10−≤kg . In all algorithms we considered in this numerical study the maximum num-

ber of iterations is limited to 1000. The comparisons of algorithms are given in the fol-

lowing context. Let 
1ALG

if  and 
2ALG

if  be the optimal values found by ALG1 and ALG2, 
for problem i = 1. . . 710, respectively. We say that, in the particular problem i, the per-
formance of ALG1 was better than the performance of ALG2 if   
 

1 2 310ALG ALG
i if f −− <

 

and the number of iterations (iter), or the number of function-gradient evaluations (fg) or 
the CPU time of ALG1 was less than  the number of iterations, or the number of function-
gradient evaluations, or the CPU time corresponding to ALG2 respectively. Figures (1), 
(2) and (3) shows the Dolan and Moré [5] (iterations (iter), function-gradient evaluations 
(fg) and CPU time) performance profile of AK3  versus DL, LX, CD and HS conjugate 
gradient algorithms. In a performance profile plot, the top curve corresponds to the 
method that solved the most problems in a( iter) or (fg) or CPU time that was within a 
given factor of the best(( iter) or (fg) or CPU time). The percentage of the test problems 
for which a method is the fastest is given on the left axis of the plot. The right side of the 
plot gives the percentage of the test problems that were successfully solved by these algo-
rithms, respectively. The right is a measure of the robustness of an algorithm.  When 

bdk Γ
≥∴

+

11

1

 
                                                                            

        ∞=
Γ

+Γ=
Γ

+Γ= ∑∑∑
∞

=

∞

=

∞

= + 000
2

1

1111
kkk k

bbd
      

                          
 
                           



K. K.  Abbo and A.  J.  Namik 

44 
 

comparing AK3 with the DL and LX subject (iter, fg, CPU) as in figures(1), (2) and (3) 
we see that AK3 is the top performer.    

 

 

 

 

 

                   

 

Figure 1: Performance based on number of iteration 

 

 

Figure 2: Performance based on number of function-gradient evaluation 

6 Conclusion 

In this paper, a new three –term conjugate gradient algorithm, as a modification of the DL 
and PS methods which generates sufficient descent and conjugate directions. Under suit-
able assumptions our method has been shown to converge globally. In numerical experi-
ments, we have confirmed the effectiveness of the proposed method by using perform-
ance profile. 



A new three-term conjugate gradient algorithm 

45 
 

 
                                  Figure 3: Performance based on time 
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