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Abstract

This paper addresses the implementation of the new generalized (G′/G)- expansion method to the Caudrey-
Dodd-Gibbon (CDG) equation and the Lax equation which are two special case of the �fth order KdV
(fKdV) equation. The method works well to derive a new variety of travelling wave solutions with distinct
physical structures such as soliton, singular soliton, kink, singular kink, bell-shaped soltion, anti-bell-shaped
soliton, periodic, exact periodic and bell type solitary wave solutions. Solutions provided by this method are
numerous comparing to other methods. To understand the physical aspects and importance of the method,
solutions have been graphically simulated. Our results unquestionably disclose that new generalized (G′/G)-
expansion method is incredibly in�uential mathematical tool to work out new solutions of various types of
nonlinear partial di�erential equations arises in the �elds of applied sciences and engineering.
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1. Introduction

It is well observed that almost every natural phenomena is nonlinear and mathematically which appears in
the form of nonlinear evolution equations (NLEEs).The studies of NLEEs, a special type of nonlinear partial
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di�erential equations (NPDEs), becomes one of the most exciting and extremely active areas of research and
investigation because several problems in various scienti�c and engineering �elds, such as solid state physics,
chemical physics, plasma physics, optics, biology, chemical kinematics, geochemistry, �uid mechanics and
hydrodynamics are frequently describe by NLEEs. To understand the internal mechanism of these problems,
�nding the exact traveling wave solutions is becoming more and more fascinating day-by-day in nonlinear
science. But there is not any integrated method which could be utilized to deal with all types of NLEEs. That
is why a variety of e�cient and reliable methods have been developed. For example, the Painleve expansion
method [1], the inverse scattering method [2,3], the Darboux transformation method [4,5], the Cole-Hopf
transformation method [6,7] the Jacobi elliptic function method [8,9], the Hirotaâ��s bilinear transformation
method [10,11], the Backlund transformation method [12,13], the sineâ��cosine function method [14], the
tanh method [15-17], the improved F-expansion method [18], the tanh-coth method [19], the exp-function
method [20], the exp the exp (−φ(ξ))-expansion method [21], the modi�ed simple equation method [22,
23], the (G′/G)-expansion method [24,25], the novel (G′/G)-expansion method [26], the improved (G′/G)-
expansion method [27], the generalized (G′/G)-expansion method [28,29], the double (G′/G, 1/G)- expansion
method [ 30] , the modi�ed sineâ��cosine function method [31], the canonical transformation method [32],
the compatible transform method [33], the new generalized φ6-model expansion method [34], the homotopy
analysis method [35] and so on.

1.the integrable nonlinear �fth order Caudrey-Dodd-Gibbon (CDG) equation is of the form [30,31]

ut + uxxxxx + 30uuxxx + 30uxuxx + 180u2ux = 0, (1)

2. the integrable nonlinear �fth order Lax equation is of the form [32]

ut + uxxxxx + 10uuxxx + 20uxuxx + 30u2ux = 0. (2)

Although these two equations are being alike but they are being dissimilar in their coe�cients of the
derivatives. Moreover, these two equations have also been shown to be related to the integrable cases of the
He `non-Heiles [39] system. However, Eq. (1) and Eq. (2) have been studied in a series of paper [34-48].
The investigation of di�erent types of solutions of Eq. (1) and Eq. (2) has been performed by Wazwaz using
several methods namely, the tanh method [40-42], the sine-cosine method [42], the extended tanh method
[43], the tanh-coth method [38,44], Hirota's direct method combined with the simpli�ed Hereman method
[44] and Hirota's bilinear method [45,46] and the obtained solutions are periodic, soliton and multiple soliton
etc. Moreover, exact travelling wave solutions of CDG equation and Lax equation acquired by Bilige and
Chaolu applying the extended simplest equation method [47]. Furthermore, solutions of Eq. (1) examined by
Salas [48] using the projective Riccati equation method, Xu et al. [49] employing the exp-function method,
Go`mez and Salas [50] utilizing the generalized tanh-coth method, Jin [51] applying the variational iteration
method, Naheret al. [25] implementing the (G′/G)-expansion method and Bisawset al. [52] using the mod-
i�ed F-expansion method, exp-function method as well as the (G′/G) method. Also, solutions of Eq. (2)
investigated by Abbasbandy and Zakaria [53] utilizing the homotopy analysis method and Go`mez [54] using
the generalized extended tanh method. However, no one studied the solutions to the aforesaid equations
through the generalized (G′/G)-expansion method.

In this paper we aim is to investigate Eq. (1) and Eq. (2) using the generalized (G′/G)-expansion method
to explore more exact solutions which include new periodic, soliton and kink solutions.

This paper is organized as follows: In Section 2, we will review brie�y the generalized (G′/G)-expansion
method.In Section 3, we present the application of the methods to Eq. (1) and Eq. (2)and the obtained
solutions. In Section 4, we give the physical and graphical presentation of the obtained results. Finally, In
Section 5, conclusions are drawn.
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2. Description of the New Generalized (G′/G)-expansion Method

Let us consider a general nonlinear PDE in the form

P (u, ut, ux, utt, utx, uxx, . . .) = 0, (3)

where u = u(x, t) is an unknown function, P is a polynomial in u(x, t) and its partial derivatives in
which the highest order derivatives and the nonlinear terms are involved.The main steps of the general-
ized (G′/G)expansion method are as follows:

Step 1: We suppose that the combination of real variables x and t by a variable ξ as follows:

u (x, t) =u(ξ), ξ=x−ct (4)

where c is the speed of the traveling wave. The traveling wave transformation (4)allows us to reduce equation
(3) to an ODE for u=u(ξ) in the form

R
(
u, u

′
, u

′′
, u

′′′
, . . .

)
= 0, (5)

where R is a function of u(ξ)and the superscripts indicate the ordinary derivatives withrespect to ξ.

Step 2: In many instances, equation (5) can be integrated term by term one or more times, yielding constants
of integration, which can be set equal to zero for straightforwardness.

Step 3: We assume that the traveling wave solution of equation (5) can be expressed as follows:

u (ξ) =
N∑
k=0

ak(d+Y )k+
N∑
k=1

bk(d+Y )−k, (6)

where either aNor bNmay be zero, but both aNand bN cannot be zero at a time, ak (k = 0, 1, 2, 3, . . . N),
bk (k = 1, 2, 3, . . . N)and d are arbitrary constants to be determined later and Y (ξ) is given by

Y (ξ) = (G′/G), (7)

where G = G(ξ) satis�es the following auxiliary nonlinear ordinary di�erential equation

AGG
′′−BGG′−EG2−C

(
G

′
)2

= 0, (8)

where prime indicates the derivative with respect to ξ and A, BC, E are real parameters.

Step 4: The positive integer N can be determined by using the homogeneous balance between the highest
order derivatives and the nonlinear terms appearing in (5).

Step 5: Substituting equations (6) and (8) including equation (7) into equation (5) together with the value
of N attained in Step 4, we reach a polynomial in (d+Y )N , (N= 0, 1, 2, . . .) and (d+Y )−N , (N= 1, 2, . . .).
We set each coe�cient of the resulting polynomial to zero, yield an over-determined set of algebraic equations
for ak ( k= 0, 1, 2, . . ., N),
bk (k= 1, 2, . . ., N), d and c.

Step 6: We stare that the values of the constants can be determined by solving the algebraic equa-
tions achieved in Step 5. Since the general solution of (7) is in general known, inserting the value of
ak (k= 0, 1, 2, . . ., N), bk (k= 1, 2, . . ., N), d and c into (6) yields the comprehensive and newly produced
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exact traveling wave solutions of the nonlinear partial di�erential equation (3).

Step 7: By using the general solution of equation (8), we admit the following solution of equation (7).

Family 1: When B= 0, ψ=A−C and Ω= ψE>0

Y (ξ) =

(
G′

G

)
=

√
Ω

ψ

rsinh(
√

Ω
ψ ξ)+scosh(

√
Ω
ψ ξ)

rcosh(
√

Ω
ψ ξ)+ssinh

(√
Ω
ψ ξ
) . (9)

Family 2: When B= 0, ψ=A−C and Ω= ψE<0,

Y (ξ) =

(
G′

G

)
=

√
−Ω

ψ

−rsin(
√
−Ω
ψ ξ)+scos(

√
−Ω
ψ ξ)

rcos(
√
−Ω
ψ ξ)+ssin

(√
−Ω
ψ ξ

) . (10)

Family 3: When B?0, ψ=A−C and ∆=B2+4E (A−C)>0,

Y (ξ) =

(
G′

G

)
=

B

2ψ
+

√
∆

2ψ

rsinh(
√

∆
2ψ ξ)+scosh(

√
∆

2ψ ξ)

rcosh(
√

∆
2ψ ξ)+ssinh

(√
∆

2ψ ξ
) . (11)

Family 4: When B 6= 0, ψ=A−C and ∆=B2+4E (A− C) < 0,

Y (ξ) =

(
G′

G

)
=

B

2ψ
+

√
−∆

2ψ

−rsin(
√
−∆
2ψ ξ)+scos(

√
−∆
2ψ ξ)

rcos(
√
−∆
2ψ ξ)+ssin

(√
−∆
2ψ ξ

) . (12)

Family 5: When B 6= 0, ψ=A−C and ∆=B2+4E (A−C) = 0,

Y (ξ) =

(
G′

G

)
=
B

2ψ
+

s

r+sξ
. (13)

3. Applications

In this section, the new generalized (G′/G)-expansion method has been put in use to examine travelling
wave solutions of the nonlinear �fth order Caudrey-Dodd-Gibbon (CDG) and Lax equations.

Example 3.1. The CDG equation (1) can be rewritten as

ut +
∂

∂x

(
uxxxx + 30uuxx + 60u3

)
= 0. (14)

Under the transformation u (x, t) =u(ξ), ξ=x−ct, Eq. (14) reduces to the ordinary di�erential equation

− cu′+
(
u(iv) + 30uu

′′
+ 60u3

)′

= 0. (15)

On integrating (15) with respect to ξ once and letting the constant of integration to zero, we obtain

− cu+
(
u(iv) + 30uu

′′
+ 60u3

)
= 0. (16)

According to the method described in Section 2, and after balancing we obtain N = 2. Therefore, we seek

solutions to (16) in the form

u (ξ) = a0 + a1 (d+ Y ) + a2(d+ Y )2 + b1(d+ Y )−1 + b2(d+ Y )−2 (17)
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where a0, a1, a2, b1, b2 and d are arbitrary constants to be determined later.

Now substituting Eq.(17) into Eq. (16) and using (7) and (8), the left hand side of Eq. (16) is translated
into the polynomials in (d+Y )N , (N= 0, 1, 2, . . .) and (d+Y )−N , (N= 1, 2, . . .). Equating the coe�cients

of these polynomials to zero, we obtain an algebraic system (for simplicity, we leave out the displaying of the

equations) with respect to a0, a1, a2, b1, b2, c and d.

Solving the system of algebraic equations with the aid of the Maple 17 yields the following families of values

of a0, a1, a2, b1, b2, c and d.

Case 1:

a0 = −d
2ψ2 + (Bd− E)ψ

A2
, a1 =

2dψ2 +Bψ

A2
, a2 = −ψ

2

A2
,

b1 = 0, b2 = 0, c =
(B2 + 4Ω)

2

A4
, d = d, (18)

where ψ=A−C,Ω = Eψ, d,A, B,C and E are free parameters.

Case 2:

a0 = −d
2ψ2 + (Bd− E)ψ

A2
, a1 = 0, a2 = 0,

b1 =
dψ
(
2d2ψ + 3Bd− 2E

)
+B(Bd− E)

A2
,

b2 = −
dψ
(
d3ψ + 2d2B − 2dE

)
+ (Bd− E)2

A2
,

c =
(B2 + 4Ω)

2

A2
, d = d,

(19)

where ψ=A−C,Ω = Eψ, d,A, B,C and E are free parameters.

Case 3:

a0 =
−dψ (dψ +B) + 1

2

(
1−

√
105
15

)
Ω− 1

8

(
1 +

√
105
15

)
B2

A2
, a1 = 0, a2 = 0,

b1 =
dψ
(
2d2ψ + 3Bd− 2E

)
+B(Bd− E)

A2
,

b2 = −
dψ
(
d3ψ + 2d2B − 2dE

)
+ (Bd− E)2

A2
,

c =
(11 +

√
105)(B2 + 4Ω)

2

8A4 , d = d,

(20)

where ψ=A−C,Ω = Eψ, d,A, B,C and E are free parameters.

Case 4:

a0 =
−dψ(dψ+B)+ 1

2

(
1−

√
105
15

)
Ω− 1

8

(
1+

√
105
15

)
B2

A2 , a1 = 2dψ2+Bψ
A2 , a2 = −ψ2

A2 ,

b1 = 0, b2 = 0, c =
(11 +

√
105)(B2 + 4Ω)

2

8A4 , d = d, (21)

where ψ=A−C,Ω = Eψ, d,A, B,C and E are free parameters.
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Case 5:

a0 =
(B2 + 4Ω)

2A2 , a1 = 0, a2 = −ψ
2

A2
,

b1 = 0, b2 = −(B2 + 4Ω)
2

16A2ψ2
, c =

16(B2 + 4Ω)
2

A4
, d = − B

2ψ
, (22)

where ψ=A−C,Ω = Eψ, A, B,C and E are free parameters.

Case 6:

a0 =

√
105(B2 + 4Ω)

30A2 , a1 = 0, a2 = −ψ
2

A2
,

b1 = 0, b2 = −(B2 + 4Ω)
2

16A2ψ2
, c =

2(11−
√

105)(B2 + 4Ω)
2

A4
,

d = − B

2ψ
,

(23)

where ψ=A−C,Ω = Eψ, A, B,C and E are free parameters.

For Case 1:

From Case 1 putting the values of constants into Eq. (17) and combining with Eqs. (9) to (12) and simpli-

fying, we attain following traveling wave solutions for r = 0 but s 6= 0 respectively

u11 (ξ) = α1 + α2

[
d+

√
Ω

ψ
coth

(√
Ω

ψ
ξ

) ]
− ψ2

A2

[
d+

√
Ω

ψ
coth

(√
Ω

ψ
ξ

) ]2

,

u12 (ξ) = α1 + α2

[
d+

√
−Ω

ψ
cot

(√
−Ω

ψ
ξ

) ]
− ψ2

A2

[
d+

√
−Ω

ψ
cot

(√
−Ω

ψ
ξ

) ]2

,

u13 (ξ) = α1 + α2

[
d+

B

2ψ
+

√
∆

2ψ
coth

(√
∆

2ψ
ξ

) ]
− ψ2

A2

[
d+

B

2ψ
+

√
∆

2ψ
coth

(√
∆

2ψ
ξ

) ]2

,

u14 (ξ) = α1 + α2

[
d+

B

2ψ
+

√
−∆

2ψ
cot

(√
−∆

2ψ
ξ

) ]
− ψ2

A2

[
d+

B

2ψ
+

√
−∆

2ψ
cot

(√
−∆

2ψ
ξ

) ]2

,

where α1 = −d2ψ2+(Bd−E)ψ
A2 ,α2 = 2dψ2+Bψ

A2 and ξ = x− (B2+4Ω)
2

A4 t.

In similar fashion, substituting the values of the constants arranged in Eq. (18) into Eq. (17), as well as (9)
to (12) and simplifying, we attain following traveling wave solutions for s = 0 but r 6= 0 respectively

u15 (ξ) = α1 + α2

[
d+

√
Ω

ψ
tanh

(√
Ω

ψ
ξ

) ]
− ψ2

A2

[
d+

√
Ω

ψ
tanh

(√
Ω

ψ
ξ

) ]2

,

u16 (ξ) = α1 + α2

[
d−
√
−Ω

ψ
tan

(√
−Ω

ψ
ξ

) ]
− ψ2

A2

[
d−
√
−Ω

ψ
tan

(√
−Ω

ψ
ξ

) ]2

,

u17 (ξ) = α1 + α2

[
d+

B

2ψ
+

√
∆

2ψ
tanh

(√
∆

2ψ
ξ

) ]
− ψ2

A2

[
d+

B

2ψ
+

√
∆

2ψ
tanh

(√
∆

2ψ
ξ

) ]2

,

u18 (ξ) = α1 + α2

[
d+

B

2ψ
−
√
−∆

2ψ
tan

(√
−∆

2ψ
ξ

) ]
− ψ2

A2

[
d+

B

2ψ
−
√
−∆

2ψ
tan

(√
−∆

2ψ
ξ

) ]2

.
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But in case of Eq. (13) we didn't admit any kind (for r = 0 but s 6= 0 and s = 0 but r 6= 0) travelling wave

solution because in this case travelling wave velocity became zero.

For Case 2:

Proceeding as before, making use of the values of constants in Case 2 into Eq. (17) along with Eqs. (9) to
(12) we have the following traveling wave solutions for r = 0 but s 6= 0 respectively

u41 (ξ) = β1 + β2

[
d+

√
Ω

ψ
coth

(√
Ω

ψ
ξ

) ]−1

+ β3

[
d+

√
Ω

ψ
coth

(√
Ω

ψ
ξ

) ]−2

,

u42 (ξ) = β1 + β2

[
d+

√
−Ω

ψ
cot

(√
−Ω

ψ
ξ

) ]−1

+ β3

[
d+

√
−Ω

ψ
cot

(√
−Ω

ψ
ξ

) ]−2

,

u43 (ξ) = β1 + β2

[
d+

B

2ψ
+

√
∆

2ψ
coth

(√
∆

2ψ
ξ

) ]−1

+ β3

[
d+

B

2ψ
+

√
∆

2ψ
coth

(√
∆

2ψ
ξ

) ]−2

,

u44 (ξ) = β1 + β2

[
d+

B

2ψ
+

√
−∆

2ψ
cot

(√
−∆

2ψ
ξ

) ]−1

+ β3

[
d+

B

2ψ
+

√
−∆

2ψ
cot

(√
−∆

2ψ
ξ

) ]−2

,

where β1 = −d2ψ2+(Bd−E)ψ
A2 , β2 = 2d3ψ2+3Bd2ψ−2dΩ+B(Bd−E)

A2 , β3 = −d4ψ2+2Bd3ψ−2EdΩ+(Bd−E)2

A2 and ξ =

x− (B2+4Ω)
2

A4 t.

Now, inserting (19) into (17) and using (9) to (12), respectively we get the traveling wave solutions as

for s = 0 but r 6= 0

u45 (ξ) = β1 + β2

[
d+

√
Ω

ψ
tanh

(√
Ω

ψ
ξ

) ]−1

+ β3

[
d+

√
Ω

ψ
tanh

(√
Ω

ψ
ξ

) ]−2

,

u46 (ξ) = β1 + β2

[
d−
√
−Ω

ψ
tan

(√
−Ω

ψ
ξ

) ]−1

+ β3

[
d−
√
−Ω

ψ
tan

(√
−Ω

ψ
ξ

) ]−2

,

u47 (ξ) = β1 + β2

[
d+

B

2ψ
+

√
∆

2ψ
tanh

(√
∆

2ψ
ξ

) ]−1

+ β3

[
d+

B

2ψ
+

√
∆

2ψ
tanh

(√
∆

2ψ
ξ

) ]−2

,

u48 (ξ) = β1 + β2

[
d+

B

2ψ
−
√
−∆

2ψ
tan

(√
−∆

2ψ
ξ

) ]−1

+ β3

[
d+

B

2ψ
−
√
−∆

2ψ
tan

(√
−∆

2ψ
ξ

) ]−2

.

For Family 5 traveling wave solutions are not admit able because obtained velocity of the wave is zero.

For Case 3:

Also, from Case 3 placing the values of constants provided in Eq. (20) into Eq. (17) accompanied with (9)
to (12) and after simpli�cation, respectively we �nd the following travelling solutions for r = 0 but s 6= 0

u31 (ξ) = γ1 + γ2

[
d+

√
Ω

ψ
coth

(√
Ω

ψ
ξ

) ]−1

+ γ3

[
d+

√
Ω

ψ
coth

(√
Ω

ψ
ξ

) ]−2

,

u32 (ξ) = γ1 + γ2

[
d+

√
−Ω

ψ
cot

(√
−Ω

ψ
ξ

) ]−1

+ γ3

[
d+

√
−Ω

ψ
cot

(√
−Ω

ψ
ξ

) ]−2

,
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u33 (ξ) = γ1 + γ2

[
d+

B

2ψ
+

√
∆

2ψ
coth

(√
∆

2ψ
ξ

) ]−1

+ γ3

[
d+

B

2ψ
+

√
∆

2ψ
coth

(√
∆

2ψ
ξ

) ]−2

,

u34 (ξ) = γ1 + γ2

[
d+

B

2ψ
+

√
−∆

2ψ
cot

(√
−∆

2ψ
ξ

) ]−1

+ γ3

[
d+

B

2ψ
+

√
−∆

2ψ
cot

(√
−∆

2ψ
ξ

) ]−2

,

where

γ1 =
−d2ψ2−Bdψ+ 1

2

(
1−

√
105
15

)
Ω− 1

8

(
1+

√
105
15

)
B2

A2 ,

γ2 = 2d3ψ2+3Bd2ψ−2dΩ+B(Bd−E)
A2 ,

γ3 = −d4ψ2+2Bd3ψ−2EdΩ+(Bd−E)2

A2

and ξ = x− (11+
√

105)(B2+4Ω)
2

8A4 t.

Furthermore, substituting (20) into Eq. (17) along with (9) to (12) and simplifying, respectively we �nd the

following travelling solutions for s = 0 but r 6= 0

u35 (ξ) = γ1 + γ2

[
d+

√
Ω

ψ
tanh

(√
Ω

ψ
ξ

) ]−1

+ γ3

[
d+

√
Ω

ψ
tanh

(√
Ω

ψ
ξ

) ]−2

,

u36 (ξ) = γ1 + γ2

[
d−
√
−Ω

ψ
tan

(√
−Ω

ψ
ξ

) ]−1

+ γ3

[
d−
√
−Ω

ψ
tan

(√
−Ω

ψ
ξ

) ]−2

,

u37 (ξ) = γ1 + γ2

[
d+

B

2ψ
+

√
∆

2ψ
tanh

(√
∆

2ψ
ξ

) ]−1

+ γ3

[
d+

B

2ψ
+

√
∆

2ψ
tanh

(√
∆

2ψ
ξ

) ]−2

,

u38 (ξ) = γ1 + γ2

[
d+

B

2ψ
−
√
−∆

2ψ
tan

(√
−∆

2ψ
ξ

) ]−1

+ γ3

[
d+

B

2ψ
−
√
−∆

2ψ
tan

(√
−∆

2ψ
ξ

) ]−2

.

Furthermore, when we combine with Eq. (13) with Case 3 we �nd no traveling wave speed and that's why it

became impossible to get any traveling wave solutions for Eq. (13).

Similarly, Case 3, Case 4 and Case 5 exert traveling wave solutions of CDG equation for shake of simplicity

which aren't reported here.

Example 3.2. In this section we will examine the nonlinear �fth order Lax equation (2).

The �fth order Lax equation (2) can be rewritten as

ut +
∂

∂x

(
uxxxx + 10uuxx + 5(ux)2 + 10u3

)
= 0. (24)

Applying ξ=x−ct, equation (24) converts into the following ODE for u (x, t) =v(ξ),

− cv′
+

(
v(iv) + 10vv

′′
+ 5
(
v
′
)2

+ 10v3

)′

= 0. (25)

Integrating (25), setting the constant of integration to zero, we obtain

− cv + v(iv) + 10vv
′′

+ 5
(
v
′
)2

+ 10v3 = 0. (26)
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Balancing the highest order linear term v(iv) and nonlinear term of the highest order v3 in equation (26),
yields N = 2. Therefore, the solution of equation (19) appears in the following form:

v (ξ) = a0 + a1 (d+ Y ) + a2(d+ Y )2 + b1(d+ Y )−1 + b2(d+ Y )−2 (27)

where a0, a1, a2, b1, b2 and d are arbitrary constants to be determined.

Substituting (27) accompanied with (7) and (8) into (26), the left-hand side is diverted into the polynomials

in (d+Y )N , (N= 0, 1, 2, . . .) and (d+Y )−N , (N= 1, 2, . . .). We draw together each coe�cient of this re-

sulted polynomial and setting them to zero yields an over determined set of algebraic equations (for simplicity

the equations are not presented here) for a0, a1, a2, b1, b2, c and d. Solving these algebraic equations with the

help of symbolic computation software, such as, Maple 17, we obtain the following

Case 1:

a0 = −
2
(
d2ψ2 + (Bd− E)ψ

)
A2

, a1 = 0, a2 = 0, b1 =
2
(
dψ
(
2d2ψ + 3Bd− 2E

)
+B(Bd− E)

)
A2

,

b2 = −
2
(
dψ
(
d3ψ + 2Bd2 − 2Ed

)
+ (Bd− E)2

)
A2

, c =
(B2 + 4Ω)

2

A2
, d = d, (28)

where ψ=A−C,Ω = Eψ, d,A, B,C and E are free parameters.

Case 2:

a0 =
−2dψ (dψ +B) +

(
1− 1√

5

)
Ω− 1

4

(
1 + 1√

5

)
B2

A2
, a1 = 0, a2 = 0,

b1 =
2
(
dψ
(
2d2ψ + 3Bd− 2E

)
+B(Bd− E)

)
A2

,

b2 = −
2
(
dψ
(
d3ψ + 2Bd2 − 2Ed

)
+ (Bd− E)2

)
A2

,

c =
(3 +

√
5)(B2 + 4Ω)

2

4A4 , d = d,

(29)

where ψ=A−C,Ω = Eψ, d,A, B,C and E are free parameters.

Case 3:

a0 =
−2dψ (dψ +B) +

(
1− 1√

5

)
Ω− 1

4

(
1 + 1√

5

)
B2

A2
, a1 =

2
(
2dψ2 +Bψ

)
A2

, a2 = −2ψ2

A2
,

b1 = 0, b2 = 0, c =
(3 +

√
5)(B2 + 4Ω)

2

4A4 , d = d, (30)

where ψ=A−C,Ω = Eψ, d,A, B,C and E are free parameters.

Case 4:

a0 = −
2
(
d2ψ2 + (Bd− E)ψ

)
A2

, a1 =
2
(
2dψ2 +Bψ

)
A2

, a2 = −2ψ2

A2
,

b1 = 0, b2 = 0, c =
(B2 + 4Ω)

2

A4
, d = d, (31)
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where ψ=A−C,Ω = Eψ, d,A, B,C and E are free parameters.

Case 5:

a0 =
(B2 + 4Ω)

A2
, a1 = 0, a2 = −2ψ2

A2
,

b1 = 0, b2 = −(B2 + 4Ω)
2

8A2ψ2
, c =

16(B2 + 4Ω)
2

A4
, d = − B

2ψ
, (32)

where ψ=A−C,Ω = Eψ, A, B,C and E are free parameters.

Case 6:

a0 =
(B2 + 4Ω)
√

5A
2 , a1 = 0, a2 = −2ψ2

A2
,

b1 = 0, b2 = −(B2 + 4Ω)
2

8A2ψ2
, c =

4(3−
√

5)(B2 + 4Ω)
2

A4
, d = − B

2ψ
, (33)

where ψ=A−C,Ω = Eψ, A, B,C and E are free parameters.

For Case 1:

By use of the values of constants from Case 1 into Eq. (27) and combining with Eqs. (9) to (12) we obtain

the following travelling wave solutions for r = 0 but s 6= 0 respectively

v11 (ξ) = σ1 + σ2

[
d+

√
Ω

ψ
coth

(√
Ω

ψ
ξ

) ]−1

+ σ3

[
d+

√
Ω

ψ
coth

(√
Ω

ψ
ξ

) ]−2

,

v12 (ξ) = σ1 + σ2

[
d+

√
−Ω

ψ
cot

(√
−Ω

ψ
ξ

) ]−1

+ σ3

[
d+

√
−Ω

ψ
cot

(√
−Ω

ψ
ξ

) ]−2

,

v13 (ξ) = σ1 + σ2

[
d+

B

2ψ
+

√
∆

2ψ
coth

(√
∆

2ψ
ξ

) ]−1

+ σ3

[
d+

B

2ψ
+

√
∆

2ψ
coth

(√
∆

2ψ
ξ

) ]−2

,

v14 (ξ) = σ1 + σ2

[
d+

B

2ψ
+

√
−∆

2ψ
cot

(√
−∆

2ψ
ξ

) ]−1

+ σ3

[
d+

B

2ψ
+

√
−∆

2ψ
cot

(√
−∆

2ψ
ξ

) ]−2

,

where σ1 = −2(d2ψ2+(Bd−E)ψ)
A2 , σ2 =

2(dψ(2d2ψ+3Bd−2E)+B(Bd−E))
A2 ,

σ3 = −2(dψ(d3ψ+2Bd2−2Ed)+(Bd−E)2)
A2 and ξ = x− (B2+4Ω)

2

A4 t.

Again, substituting the values of the constants arranged in Eq. (28) into Eq. (27), as well as Eqs. (9) to (12)
and simplifying, we attain following traveling wave solutions for s = 0 but r 6= 0 respectively

v15 (ξ) = σ1 + σ2

[
d+

√
Ω

ψ
tanh

(√
Ω

ψ
ξ

) ]−1

+ σ3

[
d+

√
Ω

ψ
tanh

(√
Ω

ψ
ξ

) ]−2

,

v16 (ξ) = σ1 + σ2

[
d−
√
−Ω

ψ
tan

(√
−Ω

ψ
ξ

) ]−1

+ σ3

[
d−
√
−Ω

ψ
tan

(√
−Ω

ψ
ξ

) ]−2

,

v17 (ξ) = σ1 + σ2

[
d+

B

2ψ
+

√
∆

2ψ
tanh

(√
∆

2ψ
ξ

) ]−1

+ σ3

[
d+

B

2ψ
+

√
∆

2ψ
tanh

(√
∆

2ψ
ξ

) ]−2

,

v18 (ξ) = σ1 + σ2

[
d+

B

2ψ
−
√
−∆

2ψ
tan

(√
−∆

2ψ
ξ

) ]−1

+ σ3

[
d+

B

2ψ
−
√
−∆

2ψ
tan

(√
−∆

2ψ
ξ

) ]−2

.
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Since wave speed become zero for Eq. (13) when combine with (27) so traveling wave solution is not attainable.

For Case 2:

In similar fashion, determined values of the constants, presenting in Case 2, putting into (27) accompanied
with (9) to (12) respectively we obtain the travelling wave solutions for r = 0 but s 6= 0 as follows

v21 (ξ) = ρ1 + ρ2

[
d+

√
Ω

ψ
coth

(√
Ω

ψ
ξ

) ]−1

+ ρ3

[
d+

√
Ω

ψ
coth

(√
Ω

ψ
ξ

) ]−2

,

v22 (ξ) = ρ1 + ρ2

[
d+

√
−Ω

ψ
cot

(√
−Ω

ψ
ξ

) ]−1

+ ρ3

[
d+

√
−Ω

ψ
cot

(√
−Ω

ψ
ξ

) ]−2

,

v23 (ξ) = ρ1 + ρ2

[
d+

B

2ψ
+

√
∆

2ψ
coth

(√
∆

2ψ
ξ

) ]−1

+ ρ3

[
d+

B

2ψ
+

√
∆

2ψ
coth

(√
∆

2ψ
ξ

) ]−2

,

v24 (ξ) = ρ1 + ρ2

[
d+

B

2ψ
+

√
−∆

2ψ
cot

(√
−∆

2ψ
ξ

) ]−1

+ ρ3

[
d+

B

2ψ
+

√
−∆

2ψ
cot

(√
−∆

2ψ
ξ

) ]−2

,

where ρ1 =
−2dψ(dψ+B)+

(
1− 1√

5

)
Ω− 1

4

(
1+ 1√

5

)
B2

A2 , ρ2 =
2(dψ(2d2ψ+3Bd−2E)+B(Bd−E))

A2 ,

ρ3 = −2(dψ(d3ψ+2Bd2−2Ed)+(Bd−E)2)
A2 and ξ = x− (3+

√
5)(B2+4Ω)

2

4A4 t.

Again setting (29) into Eq. (27) along with (9) to (12) and simplifying we get following traveling wave solu-

tions for s = 0 but r 6= 0 respectively

v25 (ξ) = ρ1 + ρ2

[
d+

√
Ω

ψ
tanh

(√
Ω

ψ
ξ

) ]−1

+ ρ3

[
d+

√
Ω

ψ
tanh

(√
Ω

ψ
ξ

) ]−2

,

v26 (ξ) = ρ1 + ρ2

[
d−
√
−Ω

ψ
tan

(√
−Ω

ψ
ξ

) ]−1

+ ρ3

[
d−
√
−Ω

ψ
tan

(√
−Ω

ψ
ξ

) ]−2

,

v27 (ξ) = ρ1 + ρ2

[
d+

B

2ψ
+

√
∆

2ψ
tanh

(√
∆

2ψ
ξ

) ]−1

+ ρ3

[
d+

B

2ψ
+

√
∆

2ψ
tanh

(√
∆

2ψ
ξ

) ]−2

,

v28 (ξ) = ρ1 + ρ2

[
d+

B

2ψ
−
√
−∆

2ψ
tan

(√
−∆

2ψ
ξ

) ]−1

+ ρ3

[
d+

B

2ψ
−
√
−∆

2ψ
tan

(√
−∆

2ψ
ξ

) ]−2

.

Also using (29) in to (27) together with (13) no traveling wave solution exist for both cases (when r = 0 but

s 6= 0 and s = 0 but r 6= 0).

For Case 3:

By means of the values of the constants contained in Eq. (30) into (27), together with Eqs. (9) to (12) and
simplifying, we attain the traveling wave solutions as follows for r = 0 but s 6= 0 respectively

v31 (ξ) = ε1 + ε2

[
d+

√
Ω

ψ
coth

(√
Ω

ψ
ξ

) ]
− 2ψ2

A2

[
d+

√
Ω

ψ
coth

(√
Ω

ψ
ξ

) ]2

,

v32 (ξ) = ε1 + ε2

[
d+

√
−Ω

ψ
cot

(√
−Ω

ψ
ξ

) ]
− 2ψ2

A2

[
d+

√
−Ω

ψ
cot

(√
−Ω

ψ
ξ

) ]2

,
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v33 (ξ) = ε1 + ε2

[
d+

B

2ψ
+

√
∆

2ψ
coth

(√
∆

2ψ
ξ

) ]
− 2ψ2

A2

[
d+

B

2ψ
+

√
∆

2ψ
coth

(√
∆

2ψ
ξ

) ]2

,

v34 (ξ) = ε1 + ε2

[
d+

B

2ψ
+

√
−∆

2ψ
cot

(√
−∆

2ψ
ξ

) ]
− 2ψ2

A2

[
d+

B

2ψ
+

√
−∆

2ψ
cot

(√
−∆

2ψ
ξ

) ]2

,

where ε1 =
−2dψ(dψ+B)+

(
1− 1√

5

)
Ω− 1

4

(
1+ 1√

5

)
B2

A2 ,ε2 =
2(2dψ2+Bψ)

A2 and ξ = x− (3+
√

5)(B2+4Ω)
2

4A4 t.

Again, substituting (30) into (27), accompanied with Eqs. (9) to (12) and after simpli�cation, we �nd the

following traveling wave solutions for s = 0 but r 6= 0 respectively

v35 (ξ) = ε1 + ε2

[
d+

√
Ω

ψ
tanh

(√
Ω

ψ
ξ

) ]
− 2ψ2

A2

[
d+

√
Ω

ψ
tanh

(√
Ω

ψ
ξ

) ]2

,

v36 (ξ) = ε1 + ε2

[
d−
√
−Ω

ψ
tan

(√
−Ω

ψ
ξ

) ]
− 2ψ2

A2

[
d−
√
−Ω

ψ
tan

(√
−Ω

ψ
ξ

) ]2

,

v37 (ξ) = ε1 + ε2

[
d+

B

2ψ
+

√
∆

2ψ
tanh

(√
∆

2ψ
ξ

) ]
− 2ψ2

A2

[
d+

B

2ψ
+

√
∆

2ψ
tanh

(√
∆

2ψ
ξ

) ]2

,

v38 (ξ) = ε1 + ε2

[
d+

B

2ψ
−
√
−∆

2ψ
tan

(√
−∆

2ψ
ξ

) ]
− 2ψ2

A2

[
d+

B

2ψ
−
√
−∆

2ψ
tan

(√
−∆

2ψ
ξ

) ]2

.

In this case also traveling wave solution for (13) is not exist able.

In similar way rest of the case also provide exact traveling wave solutions of Lax equation,to elude the pes-

tering which aren't presented here.

4. Graphical and physical explanation of the acquired solutions

Herein, we put forth to represent some three dimensionals Figures of the modulus of the extracted solutions
of CDG equation and Lax equation. Figures are constructed, by choosing suitable values of the parameters
in order to understand the mechanism of the original equations (1) & (2), with the help of mathematical
software Maple 17.

From our obtained solutions, we observe that solutions u11(ξ), u12(ξ), u13(ξ), u14(ξ) and u28(ξ) of CDG
equation and v18(ξ) of Lax equation are singular soliton. Fig. 1(a). shows the shape of the singular soliton
solutionu11(ξ) for d = 1, A = 2, B = 0, C = 1, E = 1 within the range −10 ≤ x, t ≤ 10.Moreover, solutions
u21(ξ)and u22(ξ)of CDG equation and v11(ξ)and v13(ξ) of Lax equation represent soliton solutions. The
modulus of the plot of soliton pro�le of v11(ξ) for d = −10, A = 2, B = 0, C = 1, E = 1 within the interval
−10 ≤ x, t ≤ 10 are shown in Fig.1(b).
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(a) (b)

Fig.1. Modulus plot of (a) singular soliton wave, shape ofu11(ξ)and (b) soliton wave, shape ofv11(ξ).

Also, solutions v17(ξ), v27(ξ), v31(ξ), v33(ξ), v35(ξ) and v37(ξ) illustrate the kink type wave solutions. Kink
type wave solution of v17(ξ) appeared in Fig. 2(a). by choosing the value of parameters d = −1, A =
2, B = 4, C = 3, E = 3 with range −10 ≤ x, t ≤ 10. Furthermore, the solution of CDG equation u15(ξ) and
the solutions of Lax equation v21(ξ), v23(ξ)and v25(ξ) are singular kink traveling wave solutions. Fig.2 (b).
shows the shape of singular kink traveling wave solution of u15(ξ) for d = 5, A = 2, B = 0, C = 1, E = 1
within the limit−10 ≤ x, t ≤ 10.

(a) (b)

Fig.2. Modulus plot of (a) kink type wave, shape ofv17(ξ) and (b) singular kink type wave,shape of u15(ξ).

Obtained solutions u31(ξ), u33(ξ) and u37(ξ) represent the bell-shaped soliton and u35(ξ) represent anti-
bell-shaped soliton. Fig. 3(a). is plotted for the bell-shaped soliton solution of u33(ξ) with d = −1, A =
4, B = 2, C = 3, E = 1 within the interval−1.5 ≤ x, t ≤ 1.5 and Fig. 3(b). is plotted for the anti-bell-shaped
soliton solution of u35(ξ) for d = −10, A = 4, B = 0, C = 3, E = 3 with range−1 ≤ x, t ≤ 1.
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(a) (b)

Fig.3. Modulus plot of(a) bell-shaped soliton wave, shape ofu33(ξ) and (b) anti-bell-shaped

Fig.4. Modulus plot of bell-shaped sech2 solitary traveling wave, shape of v15(ξ).

The modulus of solutions u16(ξ), u18(ξ), u22(ξ), u24(ξ), u26(ξ)and u34(ξ) of CDG equation and v12(ξ), v14(ξ),
v16(ξ), v24(ξ), v28(ξ), v34(ξ) and v38(ξ)of Lax equation exude exact periodic traveling wave solutions. The
graphical illustration of exact periodic traveling wave solutions of u34(ξ) with d = 1, A = 2, B = 2, C =
3, E = 2 and −.10 ≤ x, t ≤ 10 is given in Fig. 5(a). And, solutions v22(ξ), v26(ξ), v32(ξ), and v36(ξ) are
periodic traveling wave solutions. Fig. 5(b). illustrates the shape of the periodic traveling wave solution of
v32(ξ) for d = 5, A = 2, B = 0, C = 3, E = 5 within the range −1 ≤ x, t ≤ 1.
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(a) (b)

Fig.5. Modulus plot of (a) exact periodic wave, shape of u34(ξ) and (b) periodic wave, shape of v32(ξ).

5. Conclusion

In this research, we succeeded in applying generalized (G′/G) expansion method on two speci�c �fth order
KdV (fKdV) equations namely, CDG equation (1) and Lax equation (2). And we successfully obtained wider
classes of exact travelling wave solutions with a variety of distinct physical structures such as soliton, singular
soliton, kink, singular kink, bell-shaped soltion, anti-bell-shaped soliton, periodic, exact periodic and bell
type solitary wave solutions which are shown in Fig. 1- Fig. 5. On comparing our results in this paper with
the well-known results obtained in [43-57], most of the obtained solutions are exclusively new. The pivotal
privilege of this implemented method against other methods is that the method provides more general and
huger amount of new wave solutions which validate the superiority of this method.
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