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1. Introduction
To reach the beginning of the singular integral theory, which is an immense field of application, it is necessary to

go up to well-known Fourier integrals. If Fourier integrals are considered in general frame, the following integral
operators are obtained:

Lw(f ;x)=

∫
A

f(t)Kw (t− x) dt, x ∈ A, w ∈ Λ, (1.1)

where Λ is an index set consisting of w which are real numbers (parameters) and w0 is an accumulation point of
indicated index set, or it equals infinity, A is a desired subset of the set of all real numbers R and Kw is a kernel
with some assumptions on it. The operators of type (1.1) were widely studied in [4]. Also, several results and
discussions related to multidimensional analogues of the operators of type (1.1) can be found in [18, 19]. Also, for
further reading, we refer the reader to [1, 9, 15, 20–23] and references therein. In particular, Fatou-type convergence
of the operators (see [5]) is studied, for example, in [9, 16, 20, 21].

Singular integrals, in fact, have been studied in many different ways, but in this article we focus on the
convergence properties of their derivatives. In the year 1962, Taberski [20] proved a theorem concerning Fatou-type
convergence of higher order derivatives of singular integrals of type (1.1) whose kernels were supposed to be
2π−periodic. In the proof of this theorem, Taberski [20] used an auxiliary function, whose higher order derivatives
coincide with derivatives of the same order of original function. For this function, he used an asymptotic formula
for De laVallée Poussin’s singular integrals, which is given by Matsuoka [13], which can be seen as an alternative
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version of usual Taylor series in regard to trigonometric functions. In the same year, Žornickaja [24] studied the
similar problem under the concept of almost everywhere convergence by taking the set Λ as the set of all natural
numbers denoted by N. Žornickaja [24] also gave some kernel examples which does not fit the presented theorem’s
hypotheses. Later on, Gadžiev [7] proved a theorem concerning approximation by first order derivatives of the
operators of type (1.1) under the existence of right and left derivatives of the integrable functions at indicated
points by assuming that A is an arbitrary bounded interval in R. This theorem may be categorized as Fatou-type
convergence theorem. In the proof of this theorem, Gadžiev [7] used first order Taylor polynomial as an auxiliary
function (see also [6, 8]). We remark here that, in the works above, the kernel functions satisfy standard approximate
identity properties. Then, Karsli and Ibikli [10] proved some theorems concerning approximation of higher order
derivatives of functions in more general function spaces. In this respect, Karsli [11, 12] studied similar problem in
the framework of linear and nonlinear integral operators using desired order Taylor polynomial in the proving
stage, respectively. In fact, Taylor series are very important for the proofs of approximation theory. For different
usages, we refer the reader to [1–3].
Let Rn = R×R×· · ·×R denote usual finite dimensional Euclidean space with elements, such as t := (t1, ..., tn) and
x := (x1, ..., xn). Further, let Λ be an index set consisting of real numbers (parameters) w and w0 be an accumulation
point of indicated index set or w0 =∞, separately. Under the conditions assigned to the function Kw : Rn → R+

0 ,
we obtained some approximation properties of higher order partial derivatives of the operators given by

(Gwf) (x) =

∫
D

f(t)Kw (t− x) dt, x∈Do

with respect to desired component xj , where D denotes a closed box in Rn, Do stands for its interior and j is
an arbitrary number between j = 1, 2, ..., n. This study is a continuation of the study [22] and contains some
results concerning multidimensional analogues of the results proved in [10, 11, 20]. Following similar steps used in
[7, 10, 11, 20] with some additional considerations, we state and prove main theorems of this study.

2. Main Results
Case 1: Domain of integration is bounded

Let us consider the following operators

(Gwf) (x) =

∫
D

f(t)Kw (t− x) dt.

The explicit form of these operators can be written as follows:

(Gwf) (x1, ..., xn) =

B1∫
A1

· · ·
Bn∫
An

f(t1, ..., tn)Kw(t1 − x1, ..., tn − xn)dtn · · · dt1

with x∈ Do and t ∈ D, where D = [A1, B1]× ...× [An, Bn] is a closed box in Rn and Do = ]A1, B1[× ...× ]An, Bn[
is an open box. Here, Aj and Bj with Aj 6= Bj are certain real numbers for every fixed j = 1, 2, ..., n.
Let L1(D) denote the space of all functions f which are integrable in the sense of Lebesgue on D with respect to
usual Lebesgue measure dt. Any function in this space satisfies the property such that ‖f‖L1(D) :=

∫
D

|f(t)| dt <∞.

Here, the kernel Kw (t) satisfies the following conditions:

1. Kw : Rn → R+
0 is a measurable function on its domain for every fixed w ∈ Λ.

2. lim
(x,w)→(x0,w0)

∫
D

Kw (t− x) dt = 1, where w ∈ Λ, x ∈ Do and x0 is an accumulation point of Do.

3. ‖Kw(.− x)‖L1(D) is uniformly bounded on Λ for all x ∈ D by a constant M .

Here, |.| denotes usual Euclidean distance.
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Theorem 2.1. Assume that Kw(t) and ∂v

∂tvj
Kw(t) are continuous functions with respect to t on Rn for every fixed w ∈ Λ,

v = 1, 2, ...,m and j = 1, 2, ..., n. Suppose that the following conditions

lim
w→w0

sup
|t|≥ξ

∣∣∣∣∣ ∂v∂tvj Kw(t)

∣∣∣∣∣ = 0, ∀ξ > 0 (2.1)

hold for every fixed j = 1, 2, ..., n and v = 0, 1, ...,m, together with conditions (1)-(3). If f ∈ L1(D) possesses at
a := (a1, ..., an) ∈ Do finite m − th order partial derivative with respect to j − th variable f (m)

j (a) and there exists a

neighborhood ]a1 − η, a1 + η[ × · · · × ]an − η, an + η[ ⊂ D with η > 0 of a on which the functions f (m)
j and f are

continuous, then

lim
(x,w)→(a,w0)

∂m

∂xmj
(Gwf) (x) =f

(m)
j (a)

on any set S consisting of (x,w) on which the functions expressed as

sup
w∈Λ

a1−x1+ζ∫
a1−x1−ζ

· · ·
an−xn+ζ∫
an−xn−ζ

|tj |m
∣∣∣∣∣ ∂m∂tmj Kw(t1, ..., tn)

∣∣∣∣∣ dtn · · · dt1, (2.2)

sup
w∈Λ

a1−x1+ζ∫
a1−x1−ζ

· · ·
an−xn+ζ∫
an−xn−ζ

∣∣∣∣∣ ∂m∂tmj Kw(t1, ..., tn)

∣∣∣∣∣ dtn · · · dt1 (2.3)

and

|xj − aj |v
a1−x1+ζ∫
a1−x1−ζ

· · ·
an−xn+ζ∫
an−xn−ζ

|tj |m−v
∣∣∣∣∣ ∂m∂tmj Kw(t1, ..., tn)

∣∣∣∣∣ dtn · · · dt1 ≤ Cζv (2.4)

are bounded, where j = 1, 2, ..., n and v = 1, 2, ...,m. Here, Cζv are positive constants for every fixed positive real number ζ
that makes the value of integral finite as required.

Proof. We define the function g(t) by
g(t) =: gtj ,

where

gtj := f(a) + (tj − aj)
∂f(t)

∂tj

∣∣∣∣
t=a

+ · · ·+(tj − aj)m

m!

∂mf(t)

∂tmj

∣∣∣∣∣
t=a

such that ∂kg(t)

∂tkj

∣∣∣
t=a

= f
(k)
j (a), k = 0, ...,m for a ∈ Do. By linearity of the operators, we can write

(Gwf) (x) = (Gw(f + g − g)) (x)

= (Gwg) (x) + (Gw(f − g)) (x) .

Differentiating both sides of the following equation up to order m with respect to xj and writing the definition of g
in (Gwg) (x) such that

(Gwg) (x) =

∫
D

g(t)Kw(t− x)dt,

one easily obtains

∂m

∂xmj
(Gwg) (x) =

∂m

∂xmj

∫
D

g(t)Kw(t− x)dt

= (−1)m
∫
D

g(t)
∂m

∂tmj
Kw(t− x)dt.
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In view of Fubini’s Theorem (see [14]) and m times application of integration by parts with respect to tj , we have
the following equality:

(−1)
m


∫

Π
i6=j

[Ai,Bi]


Bj∫
Aj

gtj
∂m

∂tmj
Kw(t− x)dtj

 Π
i6=j
dti


= (−1)

m


∫

Π
i6=j

[Ai,Bi]


m−1∑
k=0

(−1)
k
g

(k)
tj

∂m−1−k

∂tm−1−k
j

Kw(t− x)

∣∣∣∣∣
Bj

Aj

 Π
i6=j
dti


+

∫
D

g
(m)
tj Kw(t− x)dt

= : J1(x,w) + J2(x,w),

where 1 ≤ i, j ≤ n. Performing some analysis on J1(x,w), we deduce that it tends to zero as (x,w)→ (a,w0) as a
straightforward consequence of (2.1). Obviously, there holds for J2(x,w)

lim
(x,w)→(a,w0)

∫
D

Kw(t− x)
∂m

∂tmj
g(t)dt

= lim
(x,w)→(a,w0)

∂mf

∂tmj

∣∣∣∣∣
t=a

∫
D

Kw(t− x)dt.

Hence, by condition (2), the desired result follows, that is,

lim
(x,w)→(a,w0)

∂m

∂xmj
(Gwg) (x) =

∂mf

∂tmj

∣∣∣∣∣
t=a

= f
(m)
j (a).

To complete the proof, we will show that

lim
(x,w)→(a,w0)

∂m

∂xmj
(Gw(f − g)) (x) =0.

By the hypotheses, the functions ∂m

∂tmj
f(t) for m = 1, ..., n and f(t) are continuous at a ∈ Do. Therefore, according to

ε− δ criterion of continuity for all ε > 0 there exists a number δ > 0 such that the following relations hold there (see
also [20]):

i. |f(t)− f(a)| < ε provided that t ∈ D1, where D1 = ]a1 − δ, a1 + δ[× · · · × ]an − δ, an + δ[ .

ii. |f(a1, ..., tj , ..., an)− f(a1, ..., aj , ..., an)| < ε provided that |tj − aj | < δ.

iii.

∣∣∣∣ (f(a1,...,tj ,...,an)−gtj )
(tj−aj)m

∣∣∣∣ < ε provided that |tj − aj | < δ, since

lim
tj→aj

(
f(a1, ..., tj , ..., an)− gtj

)
(tj − aj)m

= 0,

where a ∈ Do and

gtj = f(a) + (tj − aj)
∂f(t)

∂tj

∣∣∣∣
t=a

+ . . .+
(tj − aj)m

m!

∂mf(t)

∂tmj

∣∣∣∣∣
t=a

.

Here, δ > 0 represents the smallest number for which the relations written above are provided simultaneously.
In the light of above observations, for a sufficiently small δ > 0, we obtain the following equality:
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∂m

∂xmj
(Gw(f − g)) (x) = (−1)

m
∫
D

[f(t)− g(t)]
∂m

∂tmj
Kw(t− x)dt

= (−1)
m


∫
D1

+

∫
D\D1

 [f(t)− g(t)]
∂m

∂tmj
Kw(t− x)dt

= : k(x,w) + l(x,w).

We first consider k(x,w) such that

k(x,w) = (−1)
m
∫
D1

[f(t)± f(a1, ..., tj , ..., an)± f(a)− g(t)]
∂m

∂tmj
Kw(t− x)dt

= (−1)
m
∫
D1

[−f(a1, ..., tj , ..., an) + f(a)]
∂m

∂tmj
Kw(t− x)dt

+(−1)
m
∫
D1

[f(a1, ..., tj , ..., an)− g(t)]
∂m

∂tmj
Kw(t− x)dt

+(−1)
m
∫
D1

[f(t)− f(a)]
∂m

∂tmj
Kw(t− x)dt

= : k1(x,w) + k2(x,w) + k3(x,w).

Let |xi − ai| < δ
2 , where i = 1, 2, ..., n. Using relations (i) and (ii), we obtain the following inequality for |k1(x,w)|+

|k3(x,w)|

(|k1(x,w)|+ |k3(x,w)|) ≤ 2ε

∫
D2

∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt,
where D2 = ]a1 − x1 − δ, a1 − x1 + δ[×· · ·× ]an − xn − δ, an − xn + δ[ . By the hypothesis (2.3), we can write with
peace of mind that

lim
(x,w)→(a,w0)

(|k1(x,w)|+ |k3(x,w)|) = 0

on S. If we deal with k2(x,w) using relation (iii), we obtain

|k2(x,w)| =

∣∣∣∣∣∣(−1)
m
∫
D1

(
f(a1, ..., tj , ..., an)− gtj

)
(tj − aj)m

(tj−aj)
m ∂m

∂tmj
Kw(t− x)dt

∣∣∣∣∣∣
≤ ε

∫
D2

∣∣∣∣∣(tj + xj − aj)m
∂m

∂tmj
Kw(t)

∣∣∣∣∣ dt
= ε

∫
D2

∣∣∣∣∣((tj + xj − aj)m − tmj + tmj
) ∂m
∂tmj

Kw(t)

∣∣∣∣∣ dt
≤ ε

∫
D2

∣∣(tj + xj − aj)m − tmj
∣∣ ∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt
+ε

∫
D2

|tj |m
∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt
= : εk21(x,w) + εk22(x,w).
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It is easy to see that k22(x,w) is bounded on S by condition (2.2). Using well-known formula (see [17]) given by

zs1 − zs2 = (z1 − z2)(zs−1
1 + zs−2

1 z2 + . . .+ zs−1
2 ), z1, z2 ∈ R,

where s is a natural number with s 6= 0, for k21(x,w), we obtain

k21(x,w)

=

∫
D2

∣∣(tj + xj − aj)m − tmj
∣∣ ∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt
≤ |xj − aj |

∫
D2

∣∣∣(tj + xj − aj)m−1
∣∣∣ ∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt
+ |xj − aj |

∫
D2

∣∣∣(tj + xj − aj)m−2
∣∣∣ |tj |

∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt
+ . . .+

+ |xj − aj |
∫
D2

|tj + xj − aj | |tj |m−2

∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt
+ |xj − aj |

∫
D2

|tj |m−1

∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt.
If we apply same operations to each integral above, we see that k21(x,w) is bounded above by a sum consisting of
the following expressions:

|xj − aj |v
∫
D2

|tj |m−v
∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt, v = 1, 2, ...,m.

By the hypothesis (2.4), k21(x,w) is bounded on S. Hence

lim
(x,w)→(a,w0)

k2(x,w) = 0

on S. Since f − g is Lebesgue integrable on D and

|l(x,w)| ≤

∣∣∣∣∣∣∣
∫

D\D1

[f(t)− g(t)]
∂m

∂tmj
Kw(t− x)dt

∣∣∣∣∣∣∣
≤ sup

δ
2≤|u|

∣∣∣∣∣ ∂m∂tmj Kw(u)

∣∣∣∣∣
∫
D

|f(t)− g(t)| dt,

we see that
lim

(x,w)→(a,w0)
l(x,w) = 0.

From above observations, we deduce that

lim
(x,w)→(a,w0)

∂m

∂xmj
(Gw(f − g))(x) =0.

Therefore, the claim follows, that is,

lim
(x,w)→(a,w0)

∂m

∂xmj
(Gwf)(x) =f

(m)
j (a).

Thus, the proof is completed.
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Case 2: Domain of integration is Rn

We consider the following operators

(Ewf) (x) =

∫
Rn

f(t)Kw (t− x) dt.

The explicit form of these operators can be written as follows:

(Ewf) (x1, ..., xn) =

∞∫
−∞

· · ·
∞∫
−∞

f(t1, ..., tn)Kw(t1 − x1, ..., tn − xn)dtn · · · dt1,

with x∈Rn.
Let L1(Rn) denote the space of all functions f which are integrable in the sense of Lebesgue on Rn with respect to
usual Lebesgue measure dt.Any function in this space satisfies the property such that ‖f‖L1(Rn) :=

∫
Rn
|f(t)| dt <∞.

Here, the kernel Kw (t) satisfies the following conditions:

1. Kw : Rn → R+
0 is a measurable function on its domain for every fixed w ∈ Λ.

2. lim
w→w0

∫
Rn
Kw (t) dt = 1, where w ∈ Λ.

3. ‖Kw(.)‖L1(Rn) is uniformly bounded on Λ by a constant K.

4. lim
w→w0

∫
|t|≥ξ

Kw (t) dt = 0, ∀ξ > 0.

Here, |.| denotes usual Euclidean distance.
Now, we state and prove the last theorem.

Theorem 2.2. Assume that Kw(t) and ∂v

∂tvj
Kw(t) are continuous functions with respect to t on Rn for every fixed w ∈ Λ,

v = 1, 2, ...,m and j = 1, 2, ..., n. Suppose that the following conditions

lim
w→w0

sup
|t|≥ξ

∣∣∣∣∣ ∂v∂tvj Kw(t)

∣∣∣∣∣ = 0, ∀ξ > 0

sup
w∈Λ

∫
Rn

|tj |m
∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt <∞ (2.5)

hold for every fixed j = 1, 2, ..., n and v = 0, 1, ...,m, together with conditions (1)-(4). If f ∈ L1(Rn) possesses at
a := (a1, ..., an) ∈ Rn finite m − th order partial derivative with respect to j − th variable f (m)

j (a) and there exists a

neighborhood ]a1 − η, a1 + η[× · · · × ]an − η, an + η[ with η > 0 of a on which the functions f (m)
j and f are continuous,

then
lim

(x,w)→(a,w0)

∂m

∂xmj
(Ewf) (x) =f

(m)
j (a),

on any set S consisting of (x,w) on which the functions expressed as

sup
w∈Λ

∫
Rn

∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt (2.6)

and

|xj − aj |v
∫
Rn

|tj |m−v
∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt ≤ Tv (2.7)

are bounded, where j = 1, 2, ..., n and v = 1, 2, ...,m. Here, Tv are certain positive constants.
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Proof. By the hypotheses, the functions ∂m

∂tmj
f(t) for m = 1, ..., n and f(t) are continuous at a ∈ Rn. Therefore, for all

ε > 0 there exists an appropriate number δ > 0 such that the following relations hold there:
i. |f(t)− f(a)| < ε provided that t ∈ D1, where D1 = ]a1 − δ, a1 + δ[× · · · × ]an − δ, an + δ[ .
ii. |f(a1, ..., tj , ..., an)− f(a1, ..., aj , ..., an)| < ε provided that |tj − aj | < δ.

Further, for above δ > 0, we define an auxiliary function h1 as follows:

h1(t) =

{
h(t), t ∈ D1,

0, t ∈ Rn\D1,

where h(t) is defined by h(t) =: htj , where

htj := f(a) + (tj − aj)
∂f(t)

∂tj

∣∣∣∣
t=a

+ . . .+
(tj − aj)m

m!

∂mf(t)

∂tmj

∣∣∣∣∣
t=a

such that ∂kh
∂tkj

∣∣∣
t=a

= f
(k)
j (a), k = 0, ...,m.

We continue further with the following observation:

iii.

∣∣∣∣ (f(a1,...,tj ,...,an)−htj )
(tj−aj)m

∣∣∣∣ < ε provided that |tj − aj | < δ, since

lim
tj→aj

(
f(a1, ..., tj , ..., an)− htj

)
(tj − aj)m

= 0.

Let |xj − aj | < δ
2 , where j = 1, 2, ..., n. By linearity of the operators, we can write

(Ewf) (x) =
(
Ew(f + h1 − h1)

)
(x)

=
(
Ewh

1
)

(x) +
(
Ew(f − h1)

)
(x) .

Differentiating both sides of the following equation up to order m with respect to xj such that one easily obtains

∂m

∂xmj

(
Ewh

1
)

(x) =
∂m

∂xmj

∫
Rn

h1(t)Kw(t− x)dt

= (−1)m
∫
Rn

h1(t)
∂m

∂tmj
Kw(t− x)dt.

In view of Fubini’s Theorem andm times application of integration by parts with respect to tj , we have the following
equality:

lim
(x,w)→(a,w0)

∫
D1

Kw(t− x)
∂m

∂tmj
h(t)dt

= lim
(x,w)→(a,w0)

∂mf

∂tmj

∣∣∣∣∣
t=a

∫
Rn

Kw(t− x)dt− lim
(x,w)→(a,w0)

∂mf

∂tmj

∣∣∣∣∣
t=a

∫
Rn\D1

Kw(t− x)dt.

Hence, by conditions (2) and (4), the desired result is obtained, that is,

lim
(x,w)→(a,w0)

∂m

∂xmj

(
Ewh

1
)

(x) =
∂mf

∂tmj

∣∣∣∣∣
t=a

= f
(m)
j (a).

To complete the proof, we will show that

lim
(x,w)→(a,w0)

∂m

∂xmj

(
Ew(f − h1)

)
(x) =0.

In the light of observations given in the beginning of the proof, for δ > 0, we obtain the following equality:
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∂m

∂xmj

(
Ew(f − h1)

)
(x) = (−1)

m
∫
Rn

[
f(t)− h1(t)

] ∂m
∂tmj

Kw(t− x)dt

= (−1)
m


∫
D1

+

∫
Rn\D1

[f(t)− h1(t)
] ∂m
∂tmj

Kw(t− x)dt

= : k(x,w) + l(x,w).

We first consider k(x,w) such that

k(x,w)

= (−1)
m
∫
D1

[f(t)± f(a1, ..., tj , ..., an)± f(a)− h(t)]
∂m

∂tmj
Kw(t− x)dt

= (−1)
m
∫
D1

[−f(a1, ..., tj , ..., an) + f(a)]
∂m

∂tmj
Kw(t− x)dt

+(−1)
m
∫
D1

[f(a1, ..., tj , ..., an)− h(t)]
∂m

∂tmj
Kw(t− x)dt

+(−1)
m
∫
D1

[f(t)− f(a)]
∂m

∂tmj
Kw(t− x)dt

= : k1(x,w) + k2(x,w) + k3(x,w).

Let |xj − aj | < δ
2 , where j = 1, 2, ..., n. Using relations (i) and (ii), we obtain the following inequality for

|k1(x,w)|+ |k3(x,w)|

(|k1(x,w)|+ |k3(x,w)|) ≤ 2ε

∫
Rn

∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt.
By (2.6), we can write

lim
(x,w)→(a,w0)

(|k1(x,w)|+ |k3(x,w)|) = 0.

If we deal with k2(x,w) using relation (iii), we obtain

|k2(x,w)| =

∣∣∣∣∣∣(−1)
m
∫
D1

(
f(a1, ..., tj , ..., an)− htj

)
(tj − aj)m

(tj−aj)
m ∂m

∂tmj
Kw(t− x)dt

∣∣∣∣∣∣
≤ ε

∫
Rn

∣∣∣∣∣(tj + xj − aj)m
∂m

∂tmj
Kw(t)

∣∣∣∣∣ dt
= ε

∫
Rn

∣∣∣∣∣((tj + xj − aj)m − tmj + tmj
) ∂m
∂tmj

Kw(t)

∣∣∣∣∣ dt
≤ ε

∫
Rn

∣∣(tj + xj − aj)m − tmj
∣∣ ∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt
+ε

∫
Rn

|tj |m
∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt
= : εk21(x,w) + εk22(x,w),
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where

k21(x,w) =

∫
Rn

∣∣(tj + xj − aj)m − tmj
∣∣ ∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt
and

k22(x,w) =

∫
Rn

|tj |m
∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt.
It is easy to see that k22(x,w) is bounded on S by condition (2.5). Using well-known formula given by

zs1 − zs2 = (z1 − z2)(zs−1
1 + zs−2

1 z2 + ...+ zs−1
2 ), z1, z2 ∈ R,

where s is a natural number with s 6= 0, for k21(x,w), we obtain

k21(x,w)

=

∫
Rn

∣∣(tj + xj − aj)m − tmj
∣∣ ∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt
≤ |xj − aj |

∫
Rn

∣∣∣(tj + xj − aj)m−1
∣∣∣ ∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt
+ |xj − aj |

∫
Rn

∣∣∣(tj + xj − aj)m−2
∣∣∣ |tj |

∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt
+ . . .+

+ |xj − aj |
∫
Rn

|tj + xj − aj | |tj |m−2

∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt
+ |xj − aj |

∫
Rn

|tj |m−1

∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt.
If we apply same operations to each integral, we see that k21(x,w) is bounded above by a sum consisting of the
following expressions:

|xj − aj |v
∫
Rn

|tj |m−v
∣∣∣∣∣ ∂m∂tmj Kw(t)

∣∣∣∣∣ dt, v = 1, 2, ...,m.

By the hypothesis (2.7), k21(x,w) is bounded on S. Hence

lim
(x,w)→(a,w0)

k2(x,w) = 0

on S. Since f is Lebesgue integrable on Rn and

|l(x,w)| ≤

∣∣∣∣∣∣∣
∫

Rn\D1

f(t)
∂m

∂tmj
Kw(t− x)dt

∣∣∣∣∣∣∣
≤ sup

δ
2≤|u|

∣∣∣∣∣ ∂m∂tmj Kw(u)

∣∣∣∣∣
∫
Rn

|f(t)| dt,

we see that
lim

(x,w)→(a,w0)
l(x,w) = 0.
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From above observations, we deduce that

lim
(x,w)→(a,w0)

∂m

∂xmj
(Ew(f − h1))(x) =0.

Therefore, the claim follows, that is,

lim
(x,w)→(a,w0)

∂m

∂xmj
(Ewf)(x) =f

(m)
j (a).

Thus, the proof is completed.

3. Application

Example 3.1. Let f : R2 → R be defined by f(x, y) = e−(x2+y2) and

(Ewf) (x, y) =
1

4πw

∞∫
−∞

∞∫
−∞

f(t, s)e−
((x−t)2+(y−s)2)

4w dsdt,

where the used kernel is of Gauss-Weierstrass type. This version is obtained by applying change of variables
method to well-known version. Here, Λ = (0, 1) and w0 = 0. Some properties of above operators can be found in
[15]. Figure 1 demonstrates the convergence of ∂

2(Ewf)(x,y)
∂x2 to ∂2f(x,y)

∂x2 (dark blue) for w = 0.5 (green) and w = 0.2
(red) on [−5, 5]× [−5, 5]. Figure 1 is generated by using a computer algebra system (CAS) Mathematica.

Figure 1. Demonstration
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