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ALMOST CONTACT METRIC AND METALLIC RIEMANNIAN
STRUCTURES

Gherici BELDJILALI

Laboratory of Quantum Physics and Mathematical Modeling (LPQ3M), University of Mascara,
ALGERIA

Abstract. The metallic structure is a fascinating topic that continually gen-
erates new ideas. In this work, new metallic manifolds are constructed starting
from both almost contact metric manifolds and we obtain some important no-
tions like the metallic deformation. We give a concrete example to confirm
this construction.

1. Introduction

Manifolds equipped with certain differential-geometric structures possess rich
geometric structures and such manifolds and relations between them have been
studied widely in differential geometry. Indeed, almost complex manifolds, almost
contact manifolds and almost product manifolds and relations between such mani-
folds have been studied extensively by many authors.
The differential geometry of the Golden on Riemannian manifolds is a popu-

lar subject for mathematicians. In 2007, Hrȩtcanu [12] introduced the Golden
structure on manifolds and in [14] the geometry of the golden structure on mani-
folds was studied. Now, Such manifolds have been studied by various authors (see
[3, 5, 11, 15, 16]). Later, the author in [3] gave a set of techniques to construct
many compatible well-known structures on a Riemannian manifold, starting from
a Golden Riemannian manifold. And also he established in [4] an interesting class
of almost Golden Riemannian manifolds such as the s-Golden manifolds.
As generalization of the Golden mean, the metallic means family appear in 1997

by Vera W. de Spinadel (see [10]) which contains the silver mean, the bronze mean,
the copper mean and the nickel mean, etc. The metallic mean family plays an
important role in establishing a relationship between mathematics and architecture.
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For example, silver and golden mean can be seen in the sacred art of India, Egypt,
China, Turkey and different ancient civilizations. Now, there are also several recent
works in this direction [13, 14, 7] and others. Recently, a new type of structure on a
differentiable manifold is studied in [9] and the relation between metallic structure
and almost quadratic ϕ-structure is considered in [17].
Here we show that there exists a correspondence between the metallic Riemann-

ian structures and the almost contact metric structures.
This text is organized in the following way:
Section 2 is devoted to the background of the structures which will be used in the
sequel.
In Section 3, starting from an almost contact metric structures we define metallic
Riemannian structures and we investigate conditions for those structures being in-
tegrable and parallel then we give an example to confirm these latter properties.
In Section 4, we give the notion of metallic transformation and we use it for some
questions of the characterization of certain geometric structures.
The Section 5 is devoted to give a generalization of the notion of metallic transfor-
mation which deduces the particular known cases.
In the last Section, we give an open question where we propose the first step to
study the reverse, i.e. the construction of an almost contact metric structure start-
ing from a metallic Riemannian structure.

2. Review of needed notions

In this section, we give a brief information for metallic Riemannian manifolds and
almost contact metric manifolds. We note that throughout this paper all manifolds
and bundles, along with sections and connections, are assumed to be of class C∞.
Let (M, g) be a Riemannian manifold. We present metallic Riemannian mani-

folds following [14]. A (p, q)-metallic structure on M is a polynomial structure of
second degree given by a (1, 1)-tensor field Φ which satisfies

Φ2 = pΦ + qI, (1)

where I is the identity transformation and p, q are fixed integers such that x2 −
px− q = 0 has a positive irrational root σp,q.
The number σp,q is usually named a member of the metallic family. These

numbers, denoted by:

σp,q =
p+

√
p2 + 4q

2
, (2)

are also called (p, q)-metallic numbers.
For example, we can talk about Golden structure if p = 1, q = 1 when the

σ1,1 is exactly the golden ratio φ = 1+
√

5
2 , or about the silver structure (p = 2,

q = 1, σ2,1 = 1 +
√

2), the bronze structure (p = 3, q = 1, σ3,1 = 3+
√

13
2 ) ,

the nickel structure (p = 1, q = 3, σ1,3 = 1+
√

13
2 ) , the copper structure (p = 1,

q = 2, σ1,2 = 2). The above numbers are closely related with different mathematical



ALMOST CONTACT METRIC AND METALLIC RIEMANNIAN STRUCTURES 1015

domains as dynamical systems, quasicristales, theory of Cantorial fractal-like micro-
space-time.
For the Riemannian manifold (M, g) endowed with the (p, q)-metallic structure,

we say that the metric g is Φ-compatible and that M is a Riemannian metallic
manifold [14], if

g(ΦX,Y ) = g(X,ΦY ), (3)
for all X, Y vectors fiels on M . If we substitute ΦX into X in (3), equation (3)
may also written as

g(ΦX,ΦY ) = g(Φ2X,Y ) = g((pΦ + qI)X,Y ) = pg(ΦX,Y ) + qg(X,Y ).

Here, we can show that such a metric always exists on a manifold with a metallic
structure Φ.

Proposition 1. If (M,Φ) is a metallic manifold, then M admits a Riemannian
metric g such that

g(ΦX,Y ) = g(X,ΦY ).

Proof. Let h be any Riemannian metric on M and define g by

g(X,Y ) = h(ΦX,ΦY ) + qh(X,Y ),

and check the details. �
Note from Proposition 3.2 of [14] that every almost product structure J induces

two metallic structures on M given as follows:

Φ1,2 =
1

2

(
pI ± (2σp,q − p)J

)
(4)

is an almost product structure on M .
Conversely, every metallic structure Φ onM induces two almost product structures
on M given as follows:

J1,2 = ± 2Φ− pI
2σp,q − p

. (5)

For a metallic manifold (M,Φ, g) and the associated almost product J , it is easy
to see that

g(JX, Y ) = g(X, JY ), (6)
for every tangent vector fields X on M .
In order that the Golden structure Φ is integrable, it is necessary and suffi cient

that it is possible to introduce a torsion-free affi ne connection ∇ with respect to
which the structure tensor Φ is covariantly constant. Also, we know that the
integrability of Φ is equivalent to the vanishing of the Nijenhuis tensor NΦ [14],
where

NΦ(X,Y ) = Φ2[X,Y ] + [ΦX,ΦY ]− Φ[ΦX,Y ]− Φ[X,ΦY ]. (7)
The link between the Nihenjuis tensors Φ and J is given by

NJ =
4

p2 + 4q
NΦ, (8)
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which show that the metallic structure Φ is integrable if and ony if the associated
almost product J is integrable.
An odd-dimensional Riemannian manifold (M2n+1, g) is said to be an almost

contact metric manifold if there exist on M a (1, 1) tensor field ϕ, a vector field ξ
(called the structure vector field) and a 1-form η such that

η(ξ) = 1, ϕ2(X) = −X + η(X)ξ and g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), (9)

for any vectors fieldsX,Y onM . In particular, in an almost contact metric manifold
we also have

ϕξ = 0 and η ◦ ϕ = 0. (10)

Such a manifold is said to be a contact metric manifold if

dη = Ω, (11)

where Ω(X,Y ) = g(X,ϕY ) is called the fundamental 2-form of M .
On the other hand, the almost contact metric structure of M is said to be normal
if

Nϕ(X,Y ) = [ϕ,ϕ](X,Y ) + 2dη(X,Y )ξ = 0, (12)

for any X and Y vectors fields on M , where [ϕ,ϕ] denotes the Nijenhuis torsion of
ϕ, given by

[ϕ,ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ].

An almost contact metric structure (ϕ, ξ, η, g) on M is said to be: (a) : Sasaki ⇔ Ω = dη and (ϕ, ξ, η) is normal,
(b) : Cosymplectic ⇔ dΩ = dη = 0 and (ϕ, ξ, η) is normal,
(c) : Kenmotsu ⇔ dη = 0, dΩ = 2Ω ∧ η and (ϕ, ξ, η) is normal.

(13)

where d denotes the exterior derivative.
In [20], the author proves that (ϕ, ξ, η, g) is trans-Sasakian structure if and only

if (ϕ, ξ, η, g) is normal and

dη = αΩ, dΩ = 2βη ∧ Ω, (14)

where α = 1
2nδΩ(ξ), β = 1

2ndivξ and δ is the codifferential of g.

A trans-Sasakian structure (ϕ, ξ, η, g) on M is said to be (a) : α− Sasaki if β = 0,
(b) : β −Kenmotsu if α = 0,
(c) : Cosymplectic if α = β = 0.

(15)

(see [6], [18] and [23]).
The relation between trans-Sasakian, α-Sasakian and, β-Kenmotsu structures

was discussed by Marrero [19].
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Proposition 2. (Marrero [19])
A trans-Sasakian manifold of dimension ≥ 5 is either α-Sasakian, β-Kenmotsu or
cosymplectic.

Proposition 3. (Marrero [19], Proposition 4.2)
Let (M,ϕ, ξ, η, g) be a 3-dimensional Sasakian manifold. If we take g = fg + (1−
f)η ⊗ η where f > 0 a non-constant function on M then, , (M,ϕ, ξ, η, g) is a
trans-Sasakian structure of type

(
1
f ,

1
2ξ(ln f)

)
.

3. Induced Metallic structures by almost contact structures

In this section, starting from an almost contact metric structure we define a
metallic Riemannian structure and we investigate conditions for those structures
being integrable and parallel.

Theorem 4. Every almost contact metric structure (ϕ, ξ, η, g) on a (2n + 1)-
dimensional Riemannian manifold (M, g) induces only two metallic structures on
(M, g), given as follows:

Φ1 = σp,qI + (p− 2σp,q)η ⊗ ξ, Φ2 = σ∗p,qI + (p− 2σ∗p,q)η ⊗ ξ, (16)

where ξ is the unique eigenvector of Φ1 and Φ2 associated with σ∗p,q = p− σp,q and
σp,q respectively.

Proof. We try to write the metallic structure Φi with i ∈ {1, 2} defined on a (2n+1)-
dimensional Riemannian manifold (M, g), using almost contact metric structure
(ϕ, ξ, η, g), in the form Φ = aiI + biη ⊗ ξ, where ai and bi are non-zero constant.
Thus

Φ2 = a2
i I + bi(2ai + bi)η ⊗ ξ,

and using formula (1) with Φ1ξ = σ∗p,qξ and Φ2ξ = σp,qξ, we obtain the formulas
(16). Moreover, we have

g(ΦiX,Y ) = g(X,ΦiY )⇔ g(ϕX, Y ) = −g(X,ϕY ),

for every i ∈ {1, 2} and for every tangent vectors fields X and Y on M .
On the other hand, suppose that there exist another metallic structure onM induces
by the almost contact metric structure (ϕ, ξ, η, g) denoted by Ψ and admits ξ as
the unique eigenvector associated with σp,q ( resp. σ∗p,q) then, we have

Ψ2 = pΨ + qI, Ψξ = σp,qξ (resp.Ψξ = σ∗p,qξ). (17)

First, note that for all i ∈ {1, 2} we have

ΦiΨ = ΨΦi,

and using (1) and (17) we get

Ψ2 − Φ2
i = p

(
Ψ− Φi

)
, i = 1, 2



1018 GHERICI BELDJILALI

which gives

Ψ = p− Φi ∈ {Φ1,Φ2}.
�

Remark 5. Using the two formulas in (16) we note that

Φ1 + Φ2 = pI.

Proposition 6. If (M,Φ, g) is a metallic Riemannian manifold, then (M,Φ, G) is
also a metallic Riemannian manifold, where G is a Riemannian metric given by:

G(X,Y ) = g(ϕX,ϕY ),

for all vectors fields X,Y on M .

Proof. Since the proof of the following proposition is obvious, we don’t give the
proof of it. �

Using formula (4), we get the following:

Proposition 7. Every almost contact metric manifold (M2n+1, ϕ, ξ, η, g) induces
four almost product structures on (M, g), given as follows:

J1 = I − 2η ⊗ ξ, J2 = I + 2η ⊗ ξ, (18)

J3 = −I + 2η ⊗ ξ, J4 = −I − 2η ⊗ ξ.

We note that through out this paper, we shall be setting

Φ = σp,qI + (p− 2σp,q) η ⊗ ξ. (19)

Observe that,

σ2
p,q = pσp,q + q, σp,q + σ∗p,q = p and σp,q.σ

∗
p,q = −q.

We know that the metallic structure Φ is integrable ( i.e. NΦ = 0 ) if and only
if the almost product J is integrable ( i.e. NJ = 0) with

NJ(X,Y ) = [X,Y ] + [JX, JY ]− J [X, JY ]− J [JX, Y ].

So, for all X,Y vectors fields on M and using (18), we get

1

8
NJ(X,Y ) =

(
dη(X,Y ) + η(X)dη(ξ, Y ) + η(Y )dη(X, ξ)

)
ξ, (20)

witch give the following theorem:

Theorem 8. Let (M2n+1,Φ, g) be a metallic Riemannian manifold induced by the
almost contact metric manifold (M2n+1, ϕ, ξ, η, g). Then Φ is integrable if and only
if η is closed.
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Proof. Using the formula (20) with supposing that dη = 0, we get NJ = 0.
For the inverse, suppose that NJ = 0. From (20) we have

dη(X,Y ) + η(X)dη(ξ, Y ) + η(Y )dη(X, ξ) = 0, (21)

taking Y = ξ we obtain for all X vector field on M ,

dη(X, ξ) = 0, (22)

Applying (22) in (21) we get
dη(X,Y ) = 0,

for all X and Y vectors fields tangent to M . �

Remark 9. If (M,ϕ, ξ, η, g) is an almost cosymplectic or an almost Kenmotsu
manifold then (M,Φ, g) is an integrable metallic Riemannian manifold but for the
contact case it is never integrable.

Lemma 10. If (Φ, g) is a metallic Riemannian structure induced by an almost
contact metric structure (ϕ, ξ, η, g) on M then we have

ϕΦ = Φϕ = σp,qϕ. (23)

Proof. Using formulas (19) and (10), the proof is direct. �

Proposition 11. Let (M2n+1,Φ, g) be a metallic Riemannian manifold induced
by the almost contact metric manifold (M2n+1, ϕ, ξ, η, g). If ∇ is the Levi-Cevita
connection then for all X and Y vectors fields tangent to M we have

(∇XΦ)Y = (p− 2σp,q)
(
g(∇Xξ, Y )ξ + η(Y )∇Xξ

)
. (24)

Proof. From
(∇XΦ)Y = ∇XΦY − Φ∇XY,

and using formula (19), the proof is direct. �

On the other hand, we know that the integrability of Φ is equivalent to the
existence of a torsion-free affi ne connection with respect to which the equation
∇Φ = 0 holds. Now we shall introduce another possible suffi cient condition of the
integrability of metallic structures on Riemannian manifolds.

Proposition 12. Let (M2n+1,Φ, g) be a metallic Riemannian manifold induced by
the almost contact metric manifold (M2n+1, ϕ, ξ, η, g). Then Φ is integrable ( i.e.
∇Φ = 0 ) if and only if ∇Xξ = 0 for all X vector field on M where ∇ is the the
Levi-Cevita connection of g.

Proof. The necessity was observed above (see (24)). For the suffi ciency, it suffi ces
to replace Y by ξ in (24). �

Remark 13. If (ϕ, ξ, η, g) is a cosymplectic structure then (Φ, g) is a parallel metal-
lic Riemannian structure.
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Example 14. For this example, we rely on our example in [1]. We denote the
Cartesian coordinates in a 3-dimensional Euclidean space E3 by (x, y, z) and define
a symmetric tensor field g by

g =

 ρ2 + τ2 0 −τ
0 ρ2 0
−τ 0 1


where ρ and τ are functions on E3 such that ρ 6= 0 everywhere.
Further, we define an almost contact metric (ϕ, ξ, η) on E3 by

ϕ =

 0 −1 0
1 0 0
0 −τ 0

 , ξ =

 0
0
1

 , η = (−τ , 0, 1).

Using the formula (19) we get

Φ =

 σp,q 0 0
0 σp,q 0

τ(2σp,q − p) 0 1− σp,q

 ,

where we can check that Φ2 = pΦ + qI.
The fundamental 1-form η have the form,

η = dz − τdx,

and hence

dη = τ2dx ∧ dy + τ3dx ∧ dz.
With a straightforward computation, one can get

∇∂xξ =
1

ρ2

 ρρ3 + ττ3

τ2

τρρ3 + ττ3

 ; ∇∂yξ =
1

ρ2

 −τ2

ρ3

−ττ2

 ; ∇∂zξ =
1

ρ2

 −τ3

0
−ττ3

 ,

where ρi = ∂ρ
∂xi

and τ i = ∂τ
∂xi

.

On the other hand, according to the cases given in [1], the structure (ϕ, ξ, η, g)
is a:

(1) Cosymplectic when ρ3 = τ2 = τ3 = 0 ,
(2) Kenmotsu when ρ3 = ρ, τ2 = 0 and τ3 = 0.

So,

(a) If τ2 = τ3 = 0 ( i.e. dη = 0 ) then the metallic structure Φ is integrable.
(b) If ρ3 = τ2 = τ3 = 0 ( i. e. ∇Xξ = 0 ) then the metallic structure Φ is

parallel.
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4. Metallic transformation

Let (M2n+1,Φ, g) be a metallic Riemannian manifold induced by the almost
contact metric manifold (M2n+1, ϕ, ξ, η, g).
We mean a change of structures tensors of the form

ϕ̃ = ϕ, ξ̃ =
1

p− σp,q
ξ, η̃ = (p− σp,q)η,

g̃(X,Y ) = g(ΦX,ΦY ) = σ2
p,qg + p(p− 2σp,q)η ⊗ η.

Proposition 15. If (ϕ, ξ, η, g) is an almost contact metric structure, then (ϕ̃, ξ̃, η̃, g̃)
is also an almost contact metric structure.

Proof. Obvious (using formulas (9)). �

We refer to this construction as metallic deformation.

Theorem 16. Let (M,ϕ, ξ, η, g) be an almost contact metric manifold and (M, ϕ̃, ξ̃, η̃, g̃)
is an almost contact metric manifold obtained as above, then it is:

(a) α-Sasaki with α =
p−σp,q
σ2p,q

if and only if (M,ϕ, ξ, η, g) is a Sasakian mani-
fold.

(b) β-Kenmotsu with β = 1
p−σp,q if and only if (M,ϕ, ξ, η, g) is a Kenmotsu

manifold.
(c) Cosymplectic if and only if (M,ϕ, ξ, η, g) is a cosymplectic manifold.

Proof. Let (M,ϕ, ξ, η, g) be a trans-Sasakian manifold of type (α, β). The funda-
mental 1-form η̃ and the 2-forme Ω̃ of the structure (ϕ̃, ξ̃, η̃, g̃) defined as above
have the forms,

η̃ = (p− σp,q)η and Ω̃ = σ2
p,qΩ,

where Ω is the 2-form of the almost contact metric structure (ϕ, ξ, η, g) and hence

dη̃ = (p− σp,q)dη and dΩ̃ = σ2
p,qdΩ, (25)

using the formulas (14) we get

dη̃ =
p− σp,q
σ2
p,q

αΩ̃ and dΩ̃ =
2β

p− σp,q
η̃ ∧ Ω̃. (26)

Knowing that the trans-Sasakian manifolds of type (1, 0), (0, 1) and (0, 0) are called
Sasakian, Kenmotsu and cosymplectic manifolds respectively then the proof is com-
pleted. �

Remark 17. Note that the metallic transformation preserve the structure cosym-
plectic for all two positive integers p and q and the Kenmotsu structure only for
q = p+ 1 but the Sasakian structure is never preserved.

A straightforward computation yields the following proposition:
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Proposition 18. If (Φ, g) be a metallic Riemannian structure induced by the almost
contact metric structure (ϕ, ξ, η, g), then the structure (ϕ̂, ξ̂, η̂, ĝ) given by

ϕ̂ = ϕ, ξ̂ =
1

(p− σp,q)n
ξ, η̂ = (p− σp,q)nη,

ĝ(X,Y ) = g(ΦnX,ΦnY ) = σ2n
p,qg +

(
σ2n
p,q − (p− σp,q)2n

)
η ⊗ η.

for any integer number n, is also an almost contact metric structure.

5. Generalized D-homothetic transformation

Let (M,ϕ, ξ, η, g) be an almost contact metric manifold with dimM = 2n + 1.
The equation η = 0 defines a 2n-dimensional distribution D on M . By an 2n-
homothetic deformation or D-homothetic deformation [22] we mean a change of
structure tensors of the form

ϕ = ϕ, η = aη, ξ =
1

a
ξ, g = ag + a(a− 1)η ⊗ η,

where a is a positive constant. If (M,ϕ, ξ, η, g) is a contact metric structure with
contact form η, then (M,ϕ, ξ, η, g) is also a contact metric structure [22].

This idea works equally well for almost contact metric structures. The deforma-
tion

ϕ̃ = ϕ, ξ̃ =
1

h
ξ, η̃ = hη, g̃(X,Y ) = f2g + (h2 − f2)η ⊗ η,

is again an almost contact metric structure where f and h are two non-zero functions
on M .
From the theorem (16), we can deduce the following proposition:

Proposition 19. Let (M,ϕ, ξ, η, g) be an almost contact metric manifold and
(M, ϕ̃, ξ̃, η̃, g̃) is an almost contact metric manifold obtained as above, then it is:

(a) α-Sasaki with α = h
f2 and h is constant if and only if (M,ϕ, ξ, η, g) is a

Sasakian manifold.
(b) β-Kenmotsu with β = 1

h with f is constant if and only if (M,ϕ, ξ, η, g) is
a Kenmotsu manifold.

(c) Cosymplectic where f, h are constant if and only if (M,ϕ, ξ, η, g) is a cosym-
plectic manifold.

Special cases:

• For h = ±f , we get the conformal transformation [21].
• For h = f2 and f = constant, we get the deformation of Tanno [22].
• For h = ±1, we get the deformation of Marrero [19].
• For f = ±1 , we get the D-isometric [2].
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6. Open problem

Finally, we propose the first steps to construct an almost contact metric struc-
ture from a metallic Riemannian structure.
Let (M2n+1,Φ, g) be a metallic Riemannian manifold and ξ be the unique eigen-
vector of Φ associated with σ∗p,q = p − σp,q ( resp. σp,q) which give Φξ = σ∗p,qξ (
resp. Φξ = σp,qξ) and let η be the g-dual of ξ i.e. η(X) = g(X, ξ) for all vector
field X on M such that η(ξ) = 1.

Proposition 20. The metallic structure Φ admits the following expression:

Φ = σp,qI + (p− 2σp,q)η ⊗ ξ,
(
resp. Φ = σ∗p,qI + (p− 2σ∗p,q)η ⊗ ξ

)
, (27)

Proof. We try to write the metallic structure Φ in the form Φ = aI + bη⊗ ξ, where
a, b ∈ R∗. Thus

Φ2 = a2I + b(a+ σ∗p,q)η ⊗ ξ,
on the other hand, we have

pΦ + qI = (ap+ q)I + pb η ⊗ ξ,
using formulas (1) we obtain the formulas (27). �

One can construct onM2n+1 an almost contact metric structure (ϕ, ξ, η, g) start-
ing from a metallic Riemannian structure and study its nature taking into account
the two parameters p and q.
Acknowledgement. The author would like to thank the referees for their

helpful suggestions and their valuable comments which helped to improve the man-
uscript.
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