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Abstract
In this paper, we consider a generalization of Horadam sequence {wn} which is defined by
the recurrence wn = awn−1 + cwn−2, if n is even, wn = bwn−1 + cwn−2, if n is odd with
arbitrary initial conditions w0, w1 and nonzero real numbers a, b, and c. We investigate
some congruence properties of the generalized Horadam sequence {wn}.
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1. Introduction
The generalized bi-periodic Horadam sequence {wn} is defined by the recurrence relation

wn =
{

awn−1 + cwn−2, if n is even
bwn−1 + cwn−2, if n is odd , n ≥ 2

with arbitrary initial conditions w0, w1 and nonzero real numbers a, b and c. It is emerged
as a generalization of the best known sequences in the literature, such as the Horadam se-
quence, the Fibonacci&Lucas sequence, the k-Fibonacci&k-Lucas sequence, the Pell&Pell-
Lucas sequence, the Jacobsthal& Jacobsthal-Lucas sequence, etc. Similar to the notation
of the classical Horadam sequence [4], we write {wn} := {wn (w0, w1; a, b, c)}. In particular,
using this notation, we define {un} = {wn (0, 1; a, b, c)} and {vn} = {wn (2, b; a, b, c)} as the
generalized bi-periodic Fibonacci sequence and the generalized bi-periodic Lucas sequence,
respectively. For the basic properties of the generalized bi-periodic Horadam sequence
and some special cases of this sequence, see [1, 3, 7, 9, 11–16].

On the other hand, it is important to investigate the congruence properties of different
integer sequences. Several methods can be applied to produce identities for the Fibonacci
and Lucas sequences. For example, Carlitz and Ferns [2] used polynomial identities in
conjunction with the Binet formula to generate new identities for these sequences. The
method of Carlitz and Ferns was used by several authors to obtain analogous results for the
generalized Fibonacci and Lucas sequences, see [6,19]. On the other hand, Keskin and Siar
[10] obtained some number theoretic properties of the generalized Fibonacci and Lucas
numbers by using matrix method. Moreover, Hsu and Maosen [5] and Zhang [18] applied
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an operator method to establish some of these properties. Recently, Yang and Zhang [17]
have studied some congruence relations for the bi-periodic Fibonacci and Lucas sequences
by using operator method. But the results [17, Theorem 4.3-4.13 ] that are obtained by
the operator method are incorrect. In this study, by using the method of Carlitz and
Ferns [2], we give more general identities involving the generalized bi-periodic Horadam
sequences and derive some congruence properties of the generalized bi-periodic Horadam
numbers. We collect our main results in Theorem 3.1, Theorem 3.6, and Theorem 3.12. In
particular, Theorem 3.1 includes the corrected version of the results given in [17, Theorem
4.7, Theorem 4.9, Theorem 4.11, Theorem 4.13], and Theorem 3.6 includes the corrected
version of the results given in [17, Theorem 4.3, Theorem 4.5 ]. Elegant multinomial
identities are given in Theorem 3.12. We also obtain a new relation for the generalized
bi-periodic Horadam numbers in Theorem 3.11.

The outline of this paper as follows: In Section 2, we give some basic properties of the
generalized bi-periodic Horadam sequence. In Section 3, we give some binomial identities
and congruence relations for the generalized bi-periodic Horadam sequence by using the
method of Carlitz and Ferns [2].

2. Some preliminary results for the sequence {wn}
In this section, we give some basic properties of the generalized bi-periodic Horadam

sequences. To this end, first we recall some properties of the sequence {un}.
The Binet formula of the sequence {un} is

un = aξ(n+1)

(ab)⌊
n
2 ⌋

(
αn − βn

α − β

)
(2.1)

which can be obtained from [16, Theorem 8]. Here α and β are the roots of the polynomial
x2 − abx − abc, that is, α = ab+

√
a2b2+4abc

2 and β = ab−
√

a2b2+4abc
2 , and ξ (n) = n − 2

⌊
n
2
⌋

is
the parity function, i.e., ξ (n) = 0 when n is even and ξ (n) = 1 when n is odd. Let assume
∆ := a2b2 + 4abc ̸= 0. Also we have α + β = ab, α − β =

√
a2b2 + 4abc and αβ = −abc.

A relation between the sequences {wn} and {un} can be given in the following lemma.

Lemma 2.1. For any integer n > 0, we have

wn = unw1 + c

(
b

a

)ξ(n)
un−1w0.

Proof. It can easily be proven by induction. �

If we take c = 1 in Lemma 2.1, it gives the result in [3, Theorem 8].
Now we give the Binet formula of the sequence {wn}. We note that the extended Binet

formula for the general case of this sequence was given in [7, Theorem 9]. But here we
express it in a different manner; that is, our α and β are different from the roots which
are used in [7].

Theorem 2.2. (Binet Formula) For n > 0, we have

wn = aξ(n+1)

(ab)⌊
n
2 ⌋ (Aαn − Bβn) ,

where A := w1− β
a

w0
α−β and B := w1− α

a
w0

α−β .



2086 E. Tan, H.H. Leung

Proof. By using Lemma 2.1 and the Binet formula of {un} in (2.1), we have

wn = unw1 + c

(
b

a

)ξ(n)
un−1w0

= aξ(n+1)

(ab)⌊
n
2 ⌋

(
αn − βn

α − β

)
w1 + cbξ(n)

(ab)⌊
n−1

2 ⌋

(
αn−1 − βn−1

α − β

)
w0.

If n is even, we have

wn = a

(ab)
n
2

((
αn − βn

α − β

)
w1 + bc

(
αn−1 − βn−1

α − β

)
w0

)
. (2.2)

If n is odd, we have

wn = 1
(ab)

n−1
2

((
αn − βn

α − β

)
w1 + bc

(
αn−1 − βn−1

α − β

)
w0

)
. (2.3)

From (2.2) and (2.3), we have

wn = aξ(n+1)

(ab)⌊
n
2 ⌋

((
αn − βn

α − β

)
w1 + bc

(
αn−1 − βn−1

α − β

)
w0

)

= aξ(n+1)

(ab)⌊
n
2 ⌋

(((
αnw1 + bcαn−1w0

)
α − β

)
−
(

βnw1 + bcβn−1w0
α − β

))

= aξ(n+1)

(ab)⌊
n
2 ⌋

((
w1 + bc

α w0

α − β

)
αn −

(
w1 + bc

β w0

α − β

)
βn

)
.

Since αβ = −abc, we get the desired result. �
By taking initial conditions w0 = 2, w1 = b in Theorem 2.2, we have

vn = a1−ξ(n)

(ab)⌊
n
2 ⌋

(
ab − 2β

a (α − β)
αn − ab − 2α

a (α − β)
βn
)

,

and by using the relation α + β = ab, we obtain the Binet formula for the sequence {vn}
as follows:

vn = a−ξ(n)

(ab)⌊
n
2 ⌋ (αn + βn) . (2.4)

Also by using Lemma 2.1, we have vn = bun + 2c
(

b
a

)ξ(n)
un−1. Thus we get a relation be-

tween the generalized bi-periodic Fibonacci and the generalized bi-periodic Lucas numbers
as:

vn =
(

b

a

)ξ(n)
(un+1 + cun−1) . (2.5)

It should be noted that the generalized Lucas sequence {tn} in [17] is a special case of the
generalized bi-periodic Horadam sequence. That is, {tn} = {wn (2a, ab; a, b, 1)}.

The generating function of the sequence {wn} is

G (x) = w0 + w1x + (aw1 − (ab + c) w0) x2 + c (bw0 − w1) x3

1 − (ab + 2c) x2 + c2x4 , (2.6)

which can be obtained by taking r = 2 in [7, Theorem 6].
Also we need the following identity which can be found in [15]:

umn+r = a1−ξ(mn+r)

(ab)⌊
mn+r

2 ⌋

n∑
i=0

(
n

i

)
cn−iui

mun−i
m−1ui+rδ[m, n, r, i] (2.7)

where δ[m, n, r, i] := (ab)⌊
i+r

2 ⌋+n⌊ m
2 ⌋ a−ξ(m+1)i−1+ξ(i+r)bξ(m)(n−i).
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3. Main results
In this section, we give some binomial and multinomial identities for the generalized

bi-periodic Horadam sequence. As a consequence of these identities, we derive some con-
gruence relations for the sequence {wn}. Let a, b and c are positive integers.

Theorem 3.1. For any nonnegative integers n, r and m with m > 1, we have

wmn+r = a1−ξ(mn+r)

(ab)⌊
mn+r

2 ⌋

n∑
i=0

(
n

i

)
cn−iui

mun−i
m−1wi+rδ[m, n, r, i]

where δ[m, n, r, i] := (ab)⌊
i+r

2 ⌋+n⌊ m
2 ⌋ a−ξ(m+1)i−1+ξ(i+r)bξ(m)(n−i).

Proof. Similar to the relation γn = γFn+Fn−1 for the classical Fibonacci numbers, where
γ is one of the root of the equation x2 − x − 1 = 0, we have

αm = a−1a
m+ξ(m)

2 b
m−ξ(m)

2 αum + ca
m−ξ(m)

2 b
m+ξ(m)

2 um−1

and
βm = a−1a

m+ξ(m)
2 b

m−ξ(m)
2 βum + ca

m−ξ(m)
2 b

m+ξ(m)
2 um−1.

By using the binomial theorem, we have

αmn =
n∑

i=0

(
n

i

)
a−iai

m+ξ(m)
2 +(n−i) m−ξ(m)

2 bi
m−ξ(m)

2 +(n−i) m+ξ(m)
2 cn−iui

mun−i
m−1αi,

βmn =
n∑

i=0

(
n

i

)
a−iai

m+ξ(m)
2 +(n−i) m−ξ(m)

2 bi
m−ξ(m)

2 +(n−i) m+ξ(m)
2 cn−iui

mun−i
m−1βi.

Multiplying both sides of the above equalities by Aαr and Bβr, respectively, and using
the Binet formula of {wn} , we get(

Aαmn+r − Bβmn+r
)

= a−ξ(mn+r+1) (ab)⌊
mn+r

2 ⌋ wmn+r

=
n∑

i=0

(
n

i

)
(ab)⌊

i+r
2 ⌋+n⌊ m

2 ⌋ a−ξ(m+1)i−1+ξ(i+r)bξ(m)(n−i)cn−iui
mun−i

m−1wi+r.

which gives the desired result.
We note that it can also be obtained by using Lemma 2.1 and the identity (2.7) as:

wmn+r

= w1
a1−ξ(mn+r)

(ab)⌊
mn+r

2 ⌋

n∑
i=0

(
n

i

)
cn−iui

mun−i
m−1ui+rδ[m, n, r, i]

+w0c

(
b

a

)ξ(mn+r) a1−ξ(mn+r−1)

(ab)⌊
mn+r−1

2 ⌋

n∑
i=0

(
n

i

)
cn−iui

mun−i
m−1ui+r−1δ[m, n, r − 1, i]

= a1−ξ(mn+r)

(ab)⌊
mn+r

2 ⌋

n∑
i=0

(
n

i

)
cn−iui

mun−i
m−1δ[m, n, r, i]

(
w1ui+r + cw0

(
b

a

)ξ(i+r)
ui+r−1

)

= a1−ξ(mn+r)

(ab)⌊
mn+r

2 ⌋

n∑
i=0

(
n

i

)
cn−iui

mun−i
m−1wi+rδ[m, n, r, i].

�
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Remark 3.2. Let c = 1 in Theorem 3.1. Then we have the following results:
(1) For m = 2s and r = 2k, we have

w2sn+2k =
n∑

i=0

(
n

i

)(
b

a

) i−ξ(i)
2

qi
2sqn−i

2s−1wi+2k.

(2) For m = 2s and r = 2k + 1, we have

w2sn+2k+1 =
n∑

i=0

(
n

i

)(
b

a

) i+ξ(i)
2

qi
2sqn−i

2s−1wi+2k+1.

(3) For m = 2s + 1 and r = 2k, we have

w(2s+1)n+2k =
n∑

i=0

(
n

i

)(
b

a

)−i−ξ(i)+n+ξ(n)
2

qi
2s+1qn−i

2s wi+2k.

(4) For m = 2s + 1 and r = 2k + 1, we have

w(2s+1)n+2k+1 =
n∑

i=0

(
n

i

)(
b

a

)−i+ξ(i)+n−ξ(n)
2

qi
2s+1qn−i

2s wi+2k+1.

We should note that the above results are the corrected results which are given in
[17, Equations (21), (24), (27), (30)], respectively. In particular, see the following example
which shows that the results in [17, Equations (21), (24), (27), (30)] do not hold.

Example 3.3. Consider the sequence {qn} = {wn (0, 1; 2, 1, 1)}. From the recurrence
relation of {qn} , the terms of the sequence are

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
qn 1 2 3 8 11 30 41 112 153 418 571 1560 2131 5822 7953 ... .

If we take n = 2, m = 2, k = 1 in [17, Equation (21)], the right hand side of the equation
gives

n∑
i=0

(
n

i

)
qi

2mqn−i
2m−1qi+2k =

2∑
i=0

(
2
i

)
qi

4q2−i
3 qi+2 = q2

3q2 + 2q2
3q4 + q3

4 = 674,

which contradicts q10 = 418.
If we take n = 2, m = 2, k = 1 in [17, Equation (24)], the right hand side of the equation

gives
2∑

i=0

(
2
i

)(1
2

)i

qi
4q2−i

3 qi+3 = q3
3 + q3q2

4 + 1
4

q2
4q5 = 395,

which contradicts q11 = 571.
If we take n = 2, m = 1, k = 1 in [17, Equation (27)], the right hand side of the equation

gives
2∑

i=0

(
2
i

)(1
2

)2−i

qi
3q2−i

2 qi+2 = 1
4

q3
2 + q2

3q2 + q2
3q4 = 92,

which contradicts q8 = 112.
If we take n = 2, m = 1, k = 1 in [17, Equation (30)], the right hand side of the equation

gives
2∑

i=0

(
2
i

)
qi

3q2−i
2 qi+3 = q2

2q3 + 2q3q2q4 + q2
3q5 = 207,

which contradicts q9 = 153.
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By considering the identity ξ(mn+r) = ξ(mn)+ξ(r)−2ξ(mn)ξ(r), we have the following
corollary.
Corollary 3.4. For m, n, r > 0, we have

wmn+r −
(

b

a

)ξ(m)
(

n+ξ(n)
2

)
−ξ(mn)ξ(r)

cnun
m−1wr ≡ 0 (mod um).

Now we give a generalization of the Ruggles identity [8] which also generalizes the
identities in [17, Theorem 2.2 (3-4)] and [16, Theorem 1]. Then we give a related binomial
identity for the generalized bi-periodic Horadam sequence.

For n ≥ 0 and k ≥ 1, the Ruggles identity [8] is given by

Fn+2k = LkFn+k + (−1)k+1 Fn,

where {Fn} and {Ln} are the Fibonacci and Lucas numbers, respectively. Horadam [4]
generalized this result to a general second order recurrence relation

Wn+2k = VkWn+k + (−1)k+1 qkWn,

where Wk = pWk−1+qWk−2 with arbitrary initial conditions W0, W1 and arbitrary integers
p, q. The sequence {Vk} satisfies the same recurrence relation as the sequence {Wk} , but
it begins with V0 = 2, V1 = p.

A generalization of the Ruggles identity can be given in the following lemma.
Lemma 3.5. For integers n ≥ 0 and k ≥ 1, we have

wn+2k =
(

a

b

)ξ(n+1)ξ(k)
vkwn+k − (−c)k wn

where {wn} is the generalized bi-periodic Horadam sequence and {vn} is the generalized
bi-periodic Lucas sequence.
Proof. It can be obtained simply by the Binet formula of {wn} . �
Theorem 3.6. For nonnegative integers n, r and m with m > 1, we have the following
identity:

w2mn+r =
n∑

i=0

(
n

i

)
(−1)(m+1)(n−i)

(
a

b

)ξ(m)
(

i+ξ(i)
2

)
−ξ(im)ξ(r)

cm(n−i)vi
mwim+r.

Proof. From the Binet formula of {vk} and αβ = −abc, it is clear to see that

α2m = a
m+ξ(m)

2 b
m−ξ(m)

2 vmαm − (−abc)m .

By using the binomial theorem, we have

α2mn =
n∑

i=0

(
n

i

)
ai

m+ξ(m)
2 bi

m−ξ(m)
2 (−1)(m+1)(n−i) (abc)m(n−i) vi

mαim.

Similarly, we have

β2mn =
n∑

i=0

(
n

i

)
ai

m+ξ(m)
2 bi

m−ξ(m)
2 (−1)(m+1)(n−i) (abc)m(n−i) vi

mβim.

Multiplying both sides of the above equalities by Aαr and Bβr, respectively, and using
the Binet formula of {wn} , we get(

Aα2mn+r − Bβ2mn+r
)

= a−ξ(2mn+r+1) (ab)⌊
2mn+r

2 ⌋ w2mn+r

=
n∑

i=0

(
n

i

)
ai

m+ξ(m)
2 bi

m−ξ(m)
2 (−1)(m+1)(n−i) (abc)m(n−i) vi

m

(
Aαim+r − Bβim+r

)
.
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Thus, again by using the identity ξ(mn + r) = ξ(mn) + ξ(r) − 2ξ(mn)ξ(r), we have

w2mn+r =
n∑

i=0

(
n

i

)
(−1)(m+1)(n−i) cm(n−i)vi

mwim+r

×ai
m+ξ(m)

2 bi
m−ξ(m)

2 (ab)m(n−i)−⌊ 2mn+r
2 ⌋+⌊ im+r

2 ⌋ aξ(2mn+r+1)a−ξ(im+r+1)

which gives the desired result. �

Remark 3.7. Let c = 1 in Theorem 3.6. Then we have the following results:
(1) For m = 3 and r = 2k, we obtain the identity

w6n+2k =
n∑

i=0

(
n

i

)(
a

b

) i+ξ(i)
2

bi (ab + 3)i w3i+2k.

(2) For m = 3 and r = 2k + 1, we obtain the identity

w6n+2k+1 =
n∑

i=0

(
n

i

)(
a

b

) i−ξ(i)
2

bi (ab + 3)i w3i+2k+1.

We should note that the above results are the corrected results which are given in
[17, Equations (14), (17)], respectively. In particular, see the following example which
shows that the results in [17, Equation (14),(17)] do not hold.

Example 3.8. Consider the same sequence which is given in Example 3.3; that is, {qn} =
{wn (0, 1; 2, 1, 1)}.

If we take n = 2, k = 1 in [17, Equation (14)], the right hand side of the equation gives

n∑
i=0

(
n

i

)
ai (ab + 3)i w3i+2k =

2∑
i=0

(
2
i

)
10iq3i+2 = q2 + 20q5 + 100q8 = 11422,

which contradicts the result q6n+2k = q14 = 5822.
If we take n = 2, k = 1 in [17, Equation (17)], the right hand side of the equation gives

n∑
i=0

(
n

i

)
bi (ab + 3)i w3i+2k+1 =

2∑
i=0

(
2
i

)
5iq3i+3 = q3 + 10q6 + 25q9 = 4128,

which contradicts the result q6n+2k+1 = q15 = 7953.

Corollary 3.9. For m, n, r > 0, we have the following identity:

w2mn+r − (−1)(m+1)n cmnwr ≡ 0 (mod vm).

Note that for the generalized Fibonacci and Lucas sequences, Corollary 3.9 reduces the
identities in [10, 3.3. Corollary].

Lemma 3.10. For m, r > 0, we have the following identity:

− (−abc)m+r + a
r+ξ(r)

2 b
r−ξ(r)

2 vr (−abc)m zr + z2(m+r)

= zm+2ra
m+ξ(m)

2 b
m−ξ(m)

2 vm

where z is either α or β.
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Proof. From the Binet formula of {vn} and αβ = −abc, it is clear to see that z2r =
a

r+ξ(r)
2 b

r−ξ(r)
2 vrzr − (−abc)r . Thus we have

− (−abc)m+r + a
r+ξ(r)

2 b
r−ξ(r)

2 vr (−abc)m zr + z2(m+r)

= (−abc)m
(

a
r+ξ(r)

2 b
r−ξ(r)

2 vrzr − (−abc)r
)

+ z2(m+r)

= (−abc)m z2r + z2(m+r)

= zm+2r ((−abc)m z−m + zm)
= zm+2r (βm + αm)

= zm+2ra
m+ξ(m)

2 b
m−ξ(m)

2 vm.

�

Theorem 3.11. For n, m, r > 0, we have the following identity:

− (−c)m+r wn + (−c)m
(

a

b

)ξ(r)ξ(n+1)
vrwr+n + w2(m+r)+n

=
(

a

b

)ξ(m)ξ(n+1)
vmwm+2r+n.

Proof. From Lemma 3.10, we have

− (−abc)m+r + a
r+ξ(r)

2 b
r−ξ(r)

2 vr (−abc)m αr + α2(m+r)

= αm+2ra
m+ξ(m)

2 b
m−ξ(m)

2 vm. (3.1)

Similarly, we have

− (−abc)m+r + a
r+ξ(r)

2 b
r−ξ(r)

2 vr (−abc)m βr + β2(m+r)

= βm+2ra
m+ξ(m)

2 b
m−ξ(m)

2 vm. (3.2)

By multiplying both sides of the equations (3.1) and (3.2) by Aαn and Bβn, respectively,
we get

− (Aαn − Bβn) (−abc)m+r

+a
r+ξ(r)

2 b
r−ξ(r)

2 vr (−abc)m
(
Aαr+n − Bβr+n

)
+
(
Aα2(m+r)+n − Bβ2(m+r)+n

)
= a

m+ξ(m)
2 b

m−ξ(m)
2 vm

(
Aαm+2r+n − Bβm+2r+n

)
.

Then by using the Binet formula of {wn}, we have

− (ab)m+r (−c)m+r a
n+ξ(n)

2 b
n−ξ(n)

2 wn

+ (−c)m (ab)m+r a
n+ξ(r+n)+ξ(r)

2 b
n−ξ(r+n)−ξ(r)

2 vrwr+n

+ (ab)m+r a
n+ξ(n)

2 b
n−ξ(n)

2 w2(m+r)+n

= (ab)m+r a
n+ξ(m+n)+ξ(m)

2 b
n−ξ(m+n)−ξ(m)

2 vmwm+2r+n.

By considering the identity ξ(mn + r) = ξ(mn) + ξ(r) − 2ξ(mn)ξ(r), we get the desired
result. �

If we take r = 1, m = 2, c = 1 in Theorem 3.11, we get

(ab + 2) wn+4 = wn + aξ(n+1)bξ(n)wn+1 + wn+6
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which reduces to the identity

(ab + 1) wn+4 = wn + aξ(n+1)bξ(n)wn+1 + aξ(n+1)bξ(n)wn+5.

Theorem 3.12. The symbol
(

n

i, j

)
is defined by

(
n

i, j

)
:= n!

i!j!(n−i−j)! . For n, m, r, d > 0,

we have the following identities:

w(m+2r)n+d = v−n
m

∑
i+j+s=n

(
n

i, j

)
(−1)s (−c)mj+(m+r)s vj

rw2(m+r)i+rj+d

×
(

a

b

)ξ(r) j+ξ(j)
2 −ξ(m) n+ξ(n)

2 −ξ(rj)ξ(d)+ξ(mn)ξ(d)
(3.3)

and

w2(m+r)n+d =
∑

i+j+s=n

(
n

i, j

)
(−1)j (−c)s(m+r)+mj vi

mvj
rw(m+2r)i+rj+d

×
(

a

b

)ξ(m) i+ξ(i)
2 +ξ(r) j+ξ(j)

2 −ξ(mi)ξ(rj)−ξ(mi+rj)ξ(d)
. (3.4)

Proof. By using Lemma 3.10 and the multinomial theorem, we obtain the following iden-
tities:

an
m+ξ(m)

2 bn
m−ξ(m)

2 vn
mz(m+2r)n

=
∑

i+j+s=n

(
n

i, j

)
(−1)s (−abc)s(m+r)+mj aj

r+ξ(r)
2 bj

r−ξ(r)
2 vj

rz2(m+r)i+rj

and

z2(m+r)n

=
∑

i+j+s=n

(
n

i, j

)
(−1)j (−abc)s(m+r)+mj a

im+iξ(m)+jr+jξ(r)
2 b

im−iξ(m)+jr−jξ(r)
2 vi

mvj
rz(m+2r)i+rj .

By multiplying both sides in the preceding equalities by zd and using the Binet formula
of {wn} , we have (3.3) and (3.4), respectively. �

From (3.4), by using the decomposition∑
i+j+s=n

=
∑

i+j+s=n,i=0
+

∑
i+j+s=n,i ̸=0

and Theorem 3.6, we get the following corollary.

Corollary 3.13. For n, m, r, d > 0, we have

w2(m+r)n+d − (−1)n(m+1) cmnw2rn+d ≡ 0 (mod vm).
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