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Abstract
In this paper, a new version of mean value theorem for interval-valued functions on time
scales is established. Meantime, some basic concepts and results associated with semi-
groups of operators for interval-valued functions on time scales are presented. As an
application of semigroups of operators, under certain conditions, we consider the initial
value problem for interval-valued differential equations on time scales. Finally, two issues
worthy of further discussion are presented.
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1. Introduction
In 1988, the notion of time scale was introduced by Hilger [6] to unify continuous and

discrete analysis. There is no doubt that the time scale calculus provide a unified frame-
work for the study of differential equations and difference equations. In practice, many
problems involve various types of uncertainty. Usually, the knowledge about the param-
eters of a real world system is imprecise or uncertain because, generally, it is difficult to
accurately observe or measure the true value of these parameters. In these cases, the value
of a parameter cannot be characterized by an ordinary real number. Accordingly, interval
numbers and fuzzy numbers are two important tools to deal with these problems. In fact,
interval numbers can be regarded as a special case of fuzzy numbers. Taking into account
the shortcoming of the difference of fuzzy numbers, it is necessary to carry out the study of
interval analysis. More importantly, interval analysis can provide important methodologies
and foundations for fuzzy analysis. In 1993, Markov [8] first studied the differentiability
and integrability of interval-valued functions. Later, Stefanini and Bede [11] together with
Chalco-Cano et al. [3] further extended the theory of calculus of interval-valued functions.
In 2013, Lupulescu [7] introduced the differentiability and integrability for interval-valued
functions on time scales by using the generalized Hukuhara differentiability.

The mean value theorem for real-valued functions has important and extensive applica-
tion in the classical calculus. In [8], the mean value theorem for interval-valued functions
was established. Afterwards, the work was extended to the interval-valued functions on
time scales by Lupulescu [7]. One purpose of this paper is to give a new version of the
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mean value theorem for interval-valued functions on time scales. In addition, semigroups
of operators are very important in the study of differential equations. In 2005, the semi-
groups of operators on spaces of fuzzy-number-valued functions were proposed by Gal and
Gal [4] and were applied to study fuzzy differential equations. Recently, Hamza and Oraby
[5] developed the theory of semigroups of operators on time scales. Motivated by these
works, the other purpose of the present paper is to present some basic concepts and results
related to semigroups of operators for interval-valued functions on time scales.

2. Preliminaries
Let Z+

0 , R+
0 and R denote the set of all nonnegative integers, nonnegative real numbers

and real numbers, respectively. Denote by K the set of all nonempty compact convex
subsets (i.e., bounded and closed intervals) of the real line R. For A = [a−, a+], B =
[b−, b+] ∈ K, λ ∈ R, the Minkowski addition A+B and scalar multiplication λ ·A (denoted
by λA) can be defined by

A + B = [a−, a+] + [b−, b+] = [a− + b−, a+ + b+]
and

λ · A = λA = λ[a−, a+] = [min{λa−, λa+}, max{λa−, λa+}].
It is well know that the addition is associative and commutative and with the neutral
element {0}. Especially, if λ = −1, then the scalar multiplication gives the opposite
−A = (−1)A = [−a+, −a−]. However, in general, A + (−A) 6= {0}. That is to say, the
opposite of A is not the inverse of A with respect to the Minkowski addition, unless A is
a singleton.

Let A, B ∈ K. If there exists C ∈ K such that A = B + C, then C is called the
Hukuhara difference (or H-difference) of A and B, and it is denoted by C := A 	 B. Note
that the H-difference is unique, but it does not always exist for any two intervals. Given
two intervals A, B ∈ K, it is easy to know that the H-difference A 	 B exists if and only if
len(A) ≥ len(B), where len(·) denotes the length of the interval, i.e., len(A) = a+ − a−.
In order to overcome this shortcoming, the generalized difference is introduced as follows.

Definition 2.1 (Markov [8], Stefanini [10]). Let A, B ∈ K. The generalized Hukuhara
difference (gH-difference for short) is defined as

A 	g B = C ⇔
{

(i) A = B + C ⇔ A 	 B = C,

or (ii) B = A + (−C) ⇔ B 	 A = −C.

According to Def. 2.1, if A = [a−, a+], B = [b−, b+] ∈ K, then we have
A 	g B = [a−, a+] 	g [b−, b+]

= [min{a− − b−, a+ − b+}, max{a− − b−, a+ − b+}]

=
{

[a− − b−, a+ − b+], len(A) ≥ len(B),
[a+ − b+, a− − b−], len(A) < len(B).

From [8,10,12], some basic properties of gH-difference can be summarized as follows.
(i) A 	g A = {0}, A 	g {0} = A, {0} 	g A = −A;
(ii) A 	g B = (−B) 	g (−A) = −(B 	g A);
(iii) A 	g (−B) = B 	g (−A), (−A) 	g B = (−B) 	g A;
(iv) (A + B) 	g B = A, A 	g (A + B) = −B;
(v) (A 	g B) + B = A if len(A) ≥ len(B), A + (−1)(A 	g B) = B if len(A) < len(B);
(vi) λ(A 	g B) = λA 	g λB, λ ∈ R;
(vii) (λ + µ)A = λA + µA if λµ ≥ 0, (λ + µ)A = λA 	g (−µA) if λµ < 0.
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Lemma 2.2. Let A = [a−, a+], B = [b−, b+] and C = [c−, c+] belong to K. Then:
(i) If len(A) ≥ len(C), then (A + B) 	g C = (A 	g C) + B;
(ii) If len(A) < len(C), then (A + B) 	g C = (A 	g C) 	g (−B).

Proof. For simplicity, we write (A + B) 	g C = D, where D = [d−, d+].
(i) If len(A) ≥ len(C), then (A + B) 	g C = (A + B) 	 C. Using the representation of
endpoints, we have

(A + B) 	g C = (A + B) 	 C

= [a− + b− − c−, a+ + b+ − c+]
= [a− − c−, a+ − c+] + [b−, b+]
= (A 	 C) + B

= (A 	g C) + B.

(ii) If len(A) < len(C), then A 	g C = −(C 	 A). Therefore, we can infer from Definition
2.1 that

(A 	g C) 	g (−B)
= [a+ − c+, a− − c−] 	g [−b+, −b−]
= [min{a+ − c+ + b+, a− − c− + b−}, max{a+ − c+ + b+, a− − c− + b−}]
= (A + B) 	g C.

�
Now we define a functional ‖ · ‖ : K → [0, ∞) by ‖A‖ = max{|a−|, |a+|} for every

A = [a−, a+] ∈ K. It can easily be shown that ‖·‖ is a norm on K, and thus the quadruple
(K, +, ·, ‖ · ‖) is a normed quasilinear space [9].

Given two intervals A = [a−, a+], B = [b−, b+] ∈ K, the Hausdorff-Pompeiu metric
between A and B is defined by dH(A, B) = max{|a−−b−|, |a+−b+|}. It is well known that
(K, dH) is a complete and separable metric space. Furthermore, the following relationships
exist between the Hausdorff-Pompeiu metric dH and the norm ‖ · ‖:

‖A‖ = dH(A, {0}), dH(A, B) = ‖A 	g B‖.

In addition, for all A, B, C, D ∈ K, the metric dH has the following properties:
(i) dH(A + B, A + C) = dH(B, C),
(ii) dH(λA, λ, B) = |λ|dH(A, B), λ ∈ R,
(iii) dH(A + C, B + D) ≤ dH(A, B) + dH(C, D),
(iv) dH(A 	g B, A 	g C) ≤ dH(B, C).

Here, we briefly recall some basic notions related to the time scale. For more details, we
recommend two excellent monographs [1,2] written by Bohner and Peterson. A time scale
T is a nonempty closed subset of R. For t ∈ T, the forward jump operator σ and the back
jump operator ρ are defined as σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t},
respectively. Especially, inf ∅ = supT, sup ∅ = inf T.

A point t ∈ T is said to be right-scattered, right-dense, left-scattered and left-dense if
σ(t) > t, σ(t) = t, ρ(t) < t and ρ(t) = t, respectively. Given a time scale T, the graininess
function µ : T → [0, ∞) is defined by µ(t) = σ(t) − t. The set Tκ is derived from the time
scale T as follows: If T has a left-scattered maximum γ, then Tκ = T − {γ}. Otherwise,
Tκ = T. Especially, given a time scale interval [a, b]T = {t ∈ T| a ≤ t ≤ b}, if ρ(b) = b,
then [a, b]κ = [a, b]T. Otherwise, [a, b]κ = [a, b)T. In essence, [a, b)T = [a, ρ(b)]T.

Let g : T → R be a real-valued function and let t ∈ Tκ. Given any ε > 0, if there exist
a number α and a neighborhood U of t such that

|g(σ(t)) − g(s) − α(σ(t) − s)| ≤ ε|σ(t) − s|
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for all s ∈ U , then we say that g is delta differentiable (or in short: ∆-differentiable) at
t. Correspondingly, the number α is called the ∆-derivative and it is denoted by g∆(t).
More generally, the function g is said to be delta differentiable (∆-differentiable) on Tκ

provided the ∆-derivative g∆(t) exists for all t ∈ Tκ.

Definition 2.3 (Lupulescu [7]). Let F : T → K be an interval-valued function. Then
we say that F is l-nondecreasing (or l-nonincreasing) on T if the real-valued function
t → len(F (t)) is nondecreasing (or nonincreasing) on T. Generally, if F is l-nondecreasing
or l-nonincreasing on T, then we say that F is l-monotonic on T.

Definition 2.4 (Lupulescu [7]). Let F : T → K be an interval-valued function and let
A ∈ K. If for every ε > 0, there exists δ > 0 such that ‖F (t) 	g A‖ = dH(F (t), A) ≤ ε for
all t ∈ UT(t0, δ) (i.e., UT(t0, δ) = (t0 − δ, t0 + δ)∩T), then we say that A is the T-limit of F
at t0 ∈ T. If F has a T-limit A at t0, then it is unique and is denoted by A = T− lim

t→t0
F (t).

An interval-valued function F : T → K is called rd-continuous if it is continuous at all
right-dense points in T and its left-sided T-limits exist at all left-dense points in T.

Definition 2.5 (Lupulescu [7]). Let F : T → K be an interval-valued function and let
t ∈ Tκ. Then we define F ∆

gH(t) to be the interval (provided it exists) with the property
that for every ε > 0, there exists δ > 0 such that

dH(F (σ(t)) 	g F (s), (σ(t) − s)F ∆
gH(t)) ≤ ε|σ(t) − s|

for all s ∈ UT(t, δ). Here, F ∆
gH(t) is called the delta generalized Hukuhara derivative (∆gH -

derivative for short) of F at t. Meantime, if F ∆
gH(t) exists for each t ∈ Tκ, then we say

that F is delta generalized Hukuhara differentiable (∆gH -differentiable for short) on Tκ.
In particular, the ∆gH -derivative F ∆

gH degenerates into the gH-derivative F ′
gH if the time

scale T = R.

Theorem 2.6 (Lupulescu [7]). Assume that F : T → K is an interval-valued function and
let t ∈ Tκ. Then, the following statements are true:

(i) If F : T → K is ∆gH-differentiable at t ∈ Tκ, then it is continuous at t;
(ii) If F is continuous at t and t is right-scattered, then F is ∆gH-differentiable at t

with
F ∆

gH(t) = F (σ(t)) 	g F (t)
µ(t)

;

(iii) If t is right-dense, then F is ∆gH-differentiable at t if and only if the T-limit

T − lim
s→t

F (t) 	g F (s)
t − s

exists as a closed interval. In this case

F ∆
gH(t) = T − lim

s→t

F (t) 	g F (s)
t − s

;

(iv) If F is ∆gH-differentiable at t, then

F (σ(t)) 	g F (t) = µ(t)F ∆
gH(t).

Finally, the induction principle on time scales is provided, which is useful in the next
section.

Theorem 2.7 (Bohner and Peterson [7]). Let t0 ∈ T and let {S(t) : t ∈ [t0, +∞)} be a
family of statements satisfying:

(I) S(t0) is true;
(II) If t ∈ [t0, +∞) is right-scattered and S(t) is true, then S(σ(t)) is also true;
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(III) If t ∈ [t0, +∞) is right-dense and S(t) is true, then there is a neighborhood U of t
such that S(s) is true for all s ∈ U ∩ (t, +∞);

(IV) If t ∈ (t0, +∞) is left-dense and S(s) is true for all s ∈ [t0, t), then S(t) is true.
Then S(t) is true for all t ∈ [t0, +∞).

3. Mean value theorem for interval-valued functions on time scales
Based on the works of Markov [8] and Lupulescu [7], in this section, we shall establish

another version of the mean value theorem for interval-valued functions on time scales.

Theorem 3.1 (Markov [8]). Let F be a continuous interval-valued function on [a, b] and
gH-differentiable in (a, b). Then

F (b) 	g F (a) ⊂ (b − a)F ′
gH([a, b]),

where F ′
gH([a, b]) =

⋃
ξ∈[a,b] F ′

gH(ξ).

Remark 3.2. In general, it is not true that there exists ξ ∈ [a, b] such that F (b)	g F (a) ⊂
(b − a)F ′

gH(ξ).

Theorem 3.3 (Lupulescu [7]). Let F be a continuous and l-monotonic interval-valued
function on [a, b]T and let F be ∆gH-differentiable in [a, b)T. Then

F (b) 	g F (a) ⊂ (b − a)F ∆
gH([a, b)T),

where F ∆
gH([a, b)T) =

⋃
ξ∈[a,b)T F ∆

gH(ξ).

Theorem 3.4. Let F and g be an interval-valued function and a real-valued function
defined on T, respectively. Assume that F is ∆gH-differentiable and g is ∆-differentiable
on Tκ. If

‖F ∆
gH(t)‖ ≤ g∆(t)

for all t ∈ Tκ, then
‖F (t) 	g F (r)‖ ≤ g(t) − g(r)

for all t ∈ [r, s]T with r, s ∈ T and r ≤ s.

Proof. Let r, s ∈ T with r ≤ s. For any ε > 0, we can show by the induction principle as
shown in Theorem 2.7 that

S(t) : ‖F (t) 	g F (r)‖ ≤ g(t) − g(r) + ε(t − r)
holds for all t ∈ [r, s]T. The proof is divided into four steps.

(I) If t = r, then the statement S(r) is obviously true.
(II) Assume that t is right-scattered and S(t) is satisfied. According to Definition 2.1

and Theorem 2.6 (iv), we have the following two cases:
Case (a):

‖F (σ(t)) 	g F (r)‖ = dH(F (σ(t)), F (r))

= dH(F (t) + µ(t)F ∆
gH(t), F (r))

≤ dH(F (t), F (r)) + dH(µ(t)F ∆
gH(t), {0})

= dH(F (t), F (r)) + µ(t)dH(F ∆
gH(t), {0})

= dH(F (t), F (r)) + µ(t)‖F ∆
gH(t)‖

≤ dH(F (t), F (r)) + µ(t)g∆(t)
≤ g(t) − g(r) + ε(t − r) + g(σ(t)) − g(t)
= g(σ(t)) − g(r) + ε(t − r)
≤ g(σ(t)) − g(r) + ε(σ(t) − r).
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Case (b):
‖F (σ(t)) 	g F (r)‖ = dH(F (σ(t)), F (r))

= dH(F (σ(t)) + (−1)µ(t)F ∆
gH(t), F (r) + (−1)µ(t)F ∆

gH(t))

= dH(F (t), F (r) + (−1)µ(t)F ∆
gH(t))

≤ dH(F (t), F (r)) + dH({0}, (−1)µ(t)F ∆
gH(t))

= dH(F (t), F (r)) + µ(t)dH({0}, F ∆
gH(t))

= dH(F (t), F (r)) + µ(t)‖F ∆
gH(t)‖

≤ g(σ(t)) − g(r) + ε(σ(t) − r).

Thus, the statement S(σ(t)) is satisfied.
(III) Suppose that S(t) holds and t 6= s is right-dense. Clearly, σ(t) = t. Since F is

∆gH -differentiable and g is ∆-differentiable at t, there exists a neighborhood UT of
t such that

dH(F (t) 	g F (s), F ∆
gH(t)(t − s)) ≤ ε

2
|t − s|

for all s ∈ UT and

|g(t) − g(s) − g∆(t)(t − s)| ≤ ε

2
|t − s|

for all s ∈ UT. Therefore, we can obtain that
dH(F (t), F (s)) = dH(F (t) 	g F (s), {0})

≤ dH(F (t) 	g F (s), F ∆
gH(t)(t − s)) + dH({0}, F ∆

gH(t)(t − s))

≤
(
‖F ∆

gH(t)‖ + ε

2

)
|t − s|

and
g(s) − g(t) − g∆(t)(s − t) ≥ −ε

2
|t − s|

for all s ∈ UT. Hence, for all s ∈ UT ∩ (t, ∞), we have
‖F (s) 	g F (r)‖ = dH(F (s), F (r))

≤ dH(F (s), F (t)) + dH(F (t), F (r))

≤
(
‖F ∆

gH(t)‖ + ε

2

)
|t − s| + dH(F (t), F (r))

≤
(
g∆(t) + ε

2

)
|t − s| + dH(F (t), F (r))

≤
(
g∆(t) + ε

2

)
|t − s| + g(t) − g(r) + ε(t − r)

= g∆(t)(s − t) + ε

2
(s − t) + g(t) − g(r) + ε(t − r)

≤ g(s) − g(t) + ε

2
|t − s| + ε

2
(s − t) + g(t) − g(r) + ε(t − r)

= g(s) − g(r) + ε(s − r),

which implies that S(s) holds for all s ∈ UT ∩ (t, ∞).
(IV) Let t be left-dense and assume that S(τ) holds for all τ < t. By the continuity of F

and g, we then obtain that
‖F (t) 	g F (r)‖ = lim

τ→t−
‖F (τ) 	g F (r)‖

≤ lim
τ→t−

g(τ) − g(r) + ε(τ − r)

= g(t) − g(r) + ε(t − r),



Mean value theorem and semigroups of operators... 85

which means that the statement S(t) is true.
Due to the arbitrariness of ε, we have obtained the desired result and completed the

proof of this theorem. �
As an application of Theorem 3.4, we can obtain the following results.

Corollary 3.5. Let F, G : T → K be two ∆gH-differentiable interval-valued functions on
Tκ. Then

(i) If D is a compact interval with endpoints r, s ∈ T, then

‖F (s) 	g F (r)‖ ≤
(

sup
t∈Dκ

‖F ∆
gH(t)‖

)
|s − r|.

(ii) If F ∆
gH(t) = {0} for all t ∈ Tκ, then F is a constant interval.

(ii) If both F and G are l-nondecreasing or l-nonincreasing, and F ∆
gH(t) = G∆

gH(t) for
all t ∈ Tκ, then

F (t) 	g G(t) = C

for all t ∈ T, where C is a constant interval.
(iv) If F and G are such that one is l-nondecreasing and the other is l-nonincreasing,

and F ∆
gH(t) = −G∆

gH(t) for all t ∈ Tκ, then
F (t) + G(t) = C

for all t ∈ T, where C is a constant interval.

Proof. (i) Let r, s ∈ T with r ≤ s. Define

g(t) :=
(

sup
τ∈[r,s]κ

‖F ∆
gH(τ)‖

)
(t − r)

for t ∈ T. Then, it is easy to know that
g∆(t) = sup

τ∈[r,s]κ
‖F ∆

gH(τ)‖ ≥ ‖F ∆
gH(t)‖

for all τ ∈ [r, s]κ. By Theorem 3.4, the desired result can be obtained.
(ii) It is a direct consequence of part (i).
(iii) By Theorem 4 in [7], we have

(F (t) 	g G(t))∆
gH = F ∆

gH(t) 	g G∆
gH(t) = F ∆

gH(t) 	g F ∆
gH(t) = {0}

for t ∈ Tκ. The desired result follows immediately from (ii).
(iv) Similar to part (iii), since

(F (t) + G(t))∆
gH = F ∆(t) 	g (−G∆

gH(t)) = F ∆
gH(t) 	g F ∆

gH(t) = {0}
for t ∈ Tκ. �
Remark 3.6. If F and G are differently l-monotonic in (iii) of Corollary 3.5, in general,
there is no constant interval C such that F (t) 	g G(t) = C. Analogously, F and G are
equally l-monotonic in (iv), then the result is not necessarily true.

Remark 3.7. The results (iii) and (iv) of Corollary 3.4 coincide with Corollary 2 in [7].

Example 3.8. (i) Let T = [0, 1] and let F (t) = [t, 2t] and G(t) = [2t − 1, t]. Note that
len(F (t)) = t is nondecreasing on T and len(G(t)) = 1− t is nonincreasing on T. It is easy
to check that F (t) and G(t) are ∆gH -differentiable on Tκ = [0, 1] and F ∆

gH(t) = F ′
gH(t) =

[1, 2] = G′
gH(t) = G∆

gH(t) for each t ∈ [0, 1](Only consider the unilateral derivative at the
endpoints 0 and 1). However, there is no constant interval C such that F (t) 	g G(t) = C.

(ii) Let T = [0, 1] and let F (t) = [−t, 2t] and G(t) = [t−1, 2(1−t)]. Clearly, len(F (t)) =
3t is nondecreasing and len(G(t)) = 3(1−t) in nonincreasing on T. It can easily be verified
that F (t) and G(t) are ∆gH -differentiable on Tκ = [0, 1]. Moreover, F ∆

gH(t) = F ′
gH(t) =
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[−1, 2], G∆
gH(t) = G′

gH(t) = [−2, 1] for each t ∈ [0, 1]. Then, we have F ∆
gH(t) = −G∆

gH(t)
for each t ∈ [0, 1]. By Corollary 3.5, there exists an interval C = [−1, 2] such that
F (t) + G(t) = [−1, 2] = C.

Example 3.9. Let T = hZ+
0 = {hk : k ∈ Z+

0 }, h > 0. Suppose F (t) = [t, t2] and
G(t) = [t + a, t2 + b], where a and b are two fixed constants with a ≤ b. Obviously, both
len(F (t)) = t(t−1) and len(G(t)) = t(t−1)+b−a are l-nondecreasing on T. By Theorem
2.6, we can obtain F ∆

gH(t) = [1, 2t] = G∆
gH(t) for each t ∈ T. Therefore, we can find an

interval C = [−b, −a] such that F (t) 	g G(t) = C on T.

Example 3.10. Let T = R and let F (t) = [−2e−t −1, e−t +2] and G(t) = [−2e−t, e−t +1].
Obviously, len(F (t)) = 3 + 3e−t and len(G(t)) = 1 + 3e−t are nonincreasing on R. It is
easy to know that F (t) and G(t) are ∆gH -differentiable on R and F ∆

gH(t) = F ′
gH(t) =

[−1, 2]e−t = G′
gH(t) = G∆

gH(t) for each t ∈ R. By Corollary 3.5, we can find an interval
C = [−1, 1] such that F (t) 	g G(t) = C.

Example 3.11. Let T = qZ = {qk|k ∈ Z}, where q > 1. Assume F (t) = [−t, 2t2] and
G(t) = [−2t2 + 1, t + 2]. According to Theorem 2.6, for each t ∈ T, it follows that

F ∆
gH(t) = F (σ(t)) 	g F (t)

µ(t)

= F (qt) 	g F (t)
(q − 1)t

= [−qt, 2q2t2] 	g [−t, 2t2]
(q − 1)t

= [−(q − 1)t, 2(q2 − 1)t2]
(q − 1)t

= [−1, 2(q + 1)t].

Using the similar method, we can obtain G∆
gH(t) = [−2(q + 1)t, 1] = −F ∆

gH(t). However,
len(F (t)) = 2t2 + t and len(G(t)) = 2t2 + t + 1 are nondecreasing on T. Therefore, the
conditions of Corollary 3.5 are not satisfied. Indeed, there does not exist an interval C
such that F (t) + G(t) = C.

Example 3.12. Let T = N2
0 = {n2|n ∈ N0} and let F (t) = [−

√
t,

√
t] and G(t) =

[min{1 −
√

t,
√

t}, max{1 −
√

t,
√

t}]. For every t ∈ T, it is easy to know that t is right-
scattered. By Theorem 2.6, we can obtain

F ∆
gH(t) = F (σ(t)) 	g F (t)

µ(t)

= F ((
√

t + 1)2) 	g F (t)
2
√

t + 1

= [−
√

t − 1,
√

t + 1] 	g [−
√

t,
√

t]
2
√

t + 1

= 1
2
√

t + 1
[−1, 1].

Similarly, we can infer that G∆
gH(t) = 1

2
√

t+1 [−1, 1] = F ∆
gH(t). Although len(F (t)) = 2

√
t

is nondecreasing on T, len(G(t)) = |2
√

t − 1| is not monotonic on T. Therefore, the
conditions of Corollary 3.5 are not satisfied. In fact, there does not exist an interval C
such that F (t) 	g G(t) = C.
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4. C0-Semigroups for interval-valued functions on time scales
In this section, we shall introduce some basic notions and results associated with semi-

groups of operators for interval-valued functions on time scales.

Definition 4.1. Let Ã : K → K. Ã is said to be a linear operator on K if

Ã(α · x + β · y) = α · Ã(x) + β · Ã(y)

for all x, y ∈ K and α, β ∈ R.

Remark 4.2. Unlike the property of linear operators on a linear space, it should be noticed
that the continuity of a linear operator Ã at {0} ∈ K does not imply the continuity of Ã at
each x ∈ K, because (K, +, ·) is not a linear space, in general, the equality x0 = (x0	gx)+x
does not hold, unless len(x0) ≥ len(x).

Lemma 4.3. Let Ã be a linear operator on K. Then, for all x, y ∈ K, we have

Ã(x 	g y) = Ã(x) 	g Ã(y).

Proof. Let z = x 	g y. Then, we get x = y + z or y = x + (−z). According to Definition
4.1, it follows that {

Ã(x) = Ã(y + z) = Ã(y) + Ã(z),
or Ã(y) = Ã(x + (−z)) = Ã(x) + Ã(−z),

which is equivalent to {
Ã(x) = Ã(y) + Ã(z),
or Ã(y) = Ã(x) + (−1)Ã(z).

Therefore, Ã(x 	g y) = Ã(z) = Ã(x) 	g Ã(y). �

L(K) = {Ã : K → K| Ã is linear and continuous at each x ∈ K}.

Let us introduce the addition and scalar multiplication in L(K) as follows

(Ã + B̃)(x) = Ã(x) + B̃(x), (λ · Ã)(x) = λ · Ã(x),

for Ã, B̃ ∈ L(K) and λ ∈ R. Consider the metric DH : L(K) × L(K) → [0, +∞) defined
by

DH(Ã, B̃) = sup{dH(Ã(x), B̃(x)) : ‖x‖ ≤ 1},

where ‖x‖ = dH(x, 0). From the properties of dH , it can easily be verified that
(i) DH(Ã + B̃, C̃ + D̃) ≤ DH(Ã, C̃) + DH(B̃, D̃);
(ii) DH(λ · Ã, λ · B̃) = |λ|DH(Ã, B̃);
(iii) DH(Ã, B̃) ≤ DH(Ã, 0) + DH(0, B̃) = ‖Ã‖ + ‖B̃‖;
(iv) DH(Ã + B̃, C̃) ≤ DH(Ã, C̃) + DH(B̃, C̃),
where Ã, B̃, C̃, D̃ ∈ L(K) and λ ∈ R.

As a special case of Corollary 3.6 in [4], it is easy to know that (L(K), DH) is a complete
metric space.

Definition 4.4. Let T ⊆ R+
0 be a semigroup time scale. A C0-semigroup T on K is a

family of continuous linear operators {T (t) : t ∈ T} ⊂ L(K), which satisfies
(i) T (0) = I, I is the identity operator on K;
(ii) T (t + s) = T (t)T (s) for every t, s ∈ T;
(iii) lim

t→0+
T (t)x = x for each x ∈ K, i.e., T (·)x : T → K is continuous at 0.
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Definition 4.5. Let T be a C0-semigroup on K. A linear operator Ã is called the generator
of the C0-semigroup T if for all x ∈ K, the limit

lim
s→0+

T (µ(t))x 	g T (s)x
µ(t) − s

= Ãx

exists uniformly in t. Here the limit are considered in the metric dH .

Example 4.6. Let T = hZ+
0 = {hk : k ∈ Z+

0 }, h > 0 and Ã be a continuous linear
operator on K. Then Ã is the generator of T (t) = (I + tÃ)t/h for t ∈ hZ+

0 . In fact, for
x ∈ K, we have

lim
s→0+

T (µ(t))x 	g T (s)x
µ(t) − s

= lim
s→0+

T (h)x 	g T (s)x
h − s

= T (h)x 	g Ix

h

= (I + hÃ)x 	g x

h
= Ãx.

Lemma 4.7. Let Ã ∈ L(K) and Ã0 = I, Ãk+1 = ÃkÃ, k = 0, 1, 2, . . .. Then the sequence

of operators {Sn(t)}, t ∈ R+
0 , is a Cauchy sequence in L(K), where Sn(t) =

n∑
k=0

tk

k!
· Ãk.

Proof. It is a direct consequence of Theorem 3.9 in [4]. �

In view of the completeness of L(K) and Lemma 4.3, there exists T (t) ∈ L(K) such
that the sequence of operators {Sn(t)} converges to T (t) for each t ∈ R+

0 . Formally, we
denote T (t) by

et·Ã ,
∞∑

k=0

tk

k!
· Ãk.

Lemma 4.8. Let T = R+
0 and Ã ∈ L(K). Define T (t) = et·Ã, t ∈ T, then

(i) T (t + s) = T (t)T (s) for all t, s ∈ T;

(ii) lim
s→0+

T (s)x 	g x

s
= Ãx for each x ∈ K.

Proof. (i) By Theorem 3.9 (ii) in [4], it is obvious.
(ii) According to Proposition 5 in [7], this result can be proved in a similar way as in
Theorem 3.9 in [4]. �

Example 4.9. Let T = R+
0 and Ã ∈ L(K). Then Ã is the generator of T (t) = et·Ã for

t ∈ R+
0 . In fact, by Lemma 4.8, for x ∈ K, we have

lim
s→0+

T (µ(t))x 	g T (s)x
µ(t) − s

= lim
s→0+

T (s)x 	g T (0)x
s

= Ãx.

Lemma 4.10. Let T ⊆ R+
0 be a semigroup time scale. Then for each x ∈ K, the function

T (·)x : t 7→ T (t)x is continuous from T into K.
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Proof. Let t ∈ T. For all 0 < s ∈ T, we get
dH(T (t + s)x, T (t)x) = dH(T (t + s)x 	g T (t)x, 0)

= dH(T (t)T (s)x 	g T (t)x, 0)
= ‖T (t)(T (s)x 	g x)‖
≤ ‖T (t)‖‖T (s)x 	g x‖.

Letting s → 0+, ‖T (s)x 	g x‖ → 0, which implies the continuity of T (t)x at t ∈ T. �

Theorem 4.11. Let T ⊆ R+
0 be a semigroup time scale with the constant graininess func-

tion µ(t) = h. Suppose that T is a C0-semigroup on K. Then T (t) is ∆gH-differentiable
in t ∈ T, and

T ∆
gH(t) = Ã[T (t)].

Proof. (i) If µ(t) = h > 0, then t is right-scattered. By Lemma 2.3 in [5], we know
T = hZ+

0 . Furthermore, according to Lemma 4.4, T (t) is continuous at t, so T (t) is
∆gH -differentiable. From Example 4.6, we can obtain

T ∆
gH(t) = T (σ(t)) 	g T (t)

µ(t)

= T (t + h) 	g T (t)
h

= T (h)T (t) 	g T (t)
h

= Ã[T (t)].

(ii) If µ(t) = h = 0, then t is right-dense. In view of Lemma 2.3 in [5], T = R+
0 . Based on

Lemma 4.8, we can obtain the above result by using a similar argument as in Theorem
3.9 (iv) in [4]. �
Definition 4.12. Let T ⊆ R+

0 be a semigroup time scale and let T be a C0-semigroup
on K. We say that T is a l-monotonic C0-semigroup on K if the interval-valued function
T (·)x : T → K is l-monotonic for every x ∈ K.

Lemma 4.13. Let T ⊆ R+
0 be a semigroup time scale and let T be a C0-semigroup on K.

Assume that g : T → K is rd-continuous on T. Define F (t) =
∫ t

0 T (t − s)g(s)∆s. If T is
l-nondecreasing on K, then F is also l-nondecreasing on K.

Proof. Let t1, t2 ∈ T with t1 < t2. Then, we have

T (t2 − t1)F (t1) =
∫ t1

0
T (t2 − s)g(s)∆s

⊆
∫ t1

0
T (t2 − s)g(s)∆s +

∫ t2

t1
T (t2 − s)g(s)∆s

=
∫ t2

0
T (t2 − s)g(s)∆s = F (t2).

Since T is l-nondecreasing on K, it follows that
F (t1) ⊆ T (t2 − t1)F (t1) ⊆ F (t2),

which implies len(F (t1)) ≤ len(F (t2)). Namely, F is l-nondecreasing on K. �
Theorem 4.14. Let T ⊆ R+

0 be a semigroup time scale with the constant graininess
function µ(t) = h. Assume that x0 ∈ K and g : T → K is rd-continuous on T. If T is a
l-nondecreasing C0-semigroup on K, then

x(t) = T (t)(x0) +
∫ t

0
T (t − s)g(s)∆s (4.1)
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is ∆gH-differentiable on Tκ. And then, x(t) satisfies{
x∆

gH(t) = Ã[x(t)] + T (µ(t))(g(t)),
x(0) = x0,

t ∈ Tκ, (4.2)

where the integral (including the integral in Lemma 4.13) for interval-valued functions
defined on [0, t)T is considered in the Riemann sense (the detailed definition can be seen
in [7]).

Proof. For every Tκ, we set

F (t) =
∫ t

0
T (t − s)g(s)∆s.

Since T is a l-nondecreasing C0-semigroup on K, by Lemma 4.13, it is easy to know that
F (t) is l-nondecreasing on Tκ. Now, we distinguish two cases.
(i) If t ∈ Tκ is right-scattered, then we get

F (σ(t)) = F (t + h) =
∫ t+h

0
T (t − s + h)g(s)∆s

= T (h)
( ∫ t+h

0
T (t − s)g(s)∆s

)
= T (h)

(
F (t) +

∫ t+h

t
T (t − s)g(s)∆s

)
= T (h)(F (t)) + T (h)

( ∫ t+h

t
T (t − s)g(s)∆s

)
= T (h)(F (t)) + T (h)(hT (0)(g(t)))
= T (h)(F (t)) + hT (h)((g(t)))

(4.3)

By Lemma 2.2, it follows from (4.3), Theorems 2.6 and 4.11 that

F ∆
gH(t) = F (t + h) 	g F (t)

h
= Ã[F (t)] + T (h)g(t), (4.4)

since F is l-nondecreasing. By Theorem 4.11, we know that x(t) is ∆gH -differentiable.
Furthermore, we can infer from (4.1), (4.4) and Theorem 4 in [7] that

x∆(t) =
(
T (t)(x0) +

∫ t

0
T (t − s)g(s)∆s

)∆

gH

=
(
T (t)(x0)

)∆

gH
+

( ∫ t

0
T (t − s)g(s)∆s

)∆

gH

= Ã[T (t)(x0)] + Ã[F (t)] + T (h)g(t)

= Ã[T (t)(x0) + F (t)] + T (h)g(t)

= Ã[x(t)] + T (µ(t))g(t),
which means that x(t) satisfies (4.2).
(ii) If t ∈ Tκ is right-dense, the proof is similar to Theorem 3.9 in [4] and so is omitted. �
Remark 4.15. From Lemma 4.13, we know that F is l-nondecreasing on T if T is l-
nondecreasing C0-semigroup on K. Apparently, a question that deserves further consid-
eration is whether F is l-monotonic on T if T is l-nonincreasing C0-semigroup on K.
Furthermore, if F is l-monotonic on T, then we can consider another question from The-
orem 4.14. In detail, what is the solution to the initial value problem (4.2) when T is
l-nonincreasing C0-semigroup on K?
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