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Abstract
In this paper, we study depth and Stanley depth of the edge ideals and quotient rings of
the edge ideals, associated with classes of graphs obtained by the strong product of two
graphs. We consider the cases when either both graphs are arbitrary paths or one is an
arbitrary path and the other is an arbitrary cycle. We give exact formula for values of
depth and Stanley depth for some subclasses. We also give some sharp upper bounds for
depth and Stanley depth in the general cases.

Mathematics Subject Classification (2020). Primary: 13C15, Secondary: 13F20,
05C38, 05E99

Keywords. depth, Stanley depth, Stanley decomposition, monomial ideal, edge ideal,
strong product of graphs

1. Introduction
Let S := K[x1, . . . , xn] be the polynomial ring over a field K. Let M be a finitely generated
Zn-graded S-module. A Stanley decomposition of M is a presentation of K-vector space
M as a finite direct sum D : M =

⊕r
i=1 wiK[Ai], where wi ∈ M is a homogeneous

element in M , Ai ⊆ {x1, . . . , xn} such that wiK[Ai] denote the K-subspace of M , which is
generated by all elements wiu, where u is a monomial in K[Ai]. The Zn-graded K-subspace
wiK[Ai] ⊂ M is called a Stanley space of dimension |Ai|, if wiK[Ai] is a free K[Ai]-module,
where |Ai| denotes the number of indeterminates of Ai. Define sdepth(D) = min{|Ai| :
i = 1, . . . , r}, and sdepth(M) = max{sdepth(D) : D is a Stanley decomposition of M}.
The number sdepth(D) is called the Stanley depth of decomposition D and sdepth(M) is
called the Stanley depth of M . For an introduction to Stanley depth, we refer the reader
to [7, 10, 23]. Stanley conjectured in [26] that sdepth(M) ≥ depth(M) for any Zn-graded
S-module M . This conjecture was disproved by Duval et al. [6]. However, there still looks
to be a deep and interesting relationship between depth and Stanley depth, which is yet to
be exactly understood. Also it is interesting to find new classes of modules which satisfy
Stanley’s inequality because in this case we have a lower bound for the Stanley depth.
∗Corresponding Author.
Email addresses: 786zahidwarraich@gmail.com (Z. Iqbal), ishaq_maths@yahoo.com (M. Ishaq),

ahsanbanyamin@gmail.com (M.A. Binyamin)
Received: 25.10.2019; Accepted: 02.05.2020

https://orcid.org/0000-0003-1549-3584
https://orcid.org/0000-0002-5479-2192
https://orcid.org/0000-0003-0717-7557


Depth and Stanley depth of the edge ideals... 93

Let I ⊂ J ⊂ S be monomial ideals, Herzog et al. [11] showed that the invariant Stanley
depth of J/I is combinatorial in nature. The strange thing about Stanley depth is that it
shares some properties and bounds with homological invariant depth see ([11, 15, 22, 24]).
Until now mathematicians are not too much familiar with Stanley depth as it is hard to
compute, for computation and some known results we refer the readers to ([1,12,16,17,19]).
Let Pn and Cn represent path and cycle respectively on n vertices and � represents the
strong product of two graphs. The aim of this paper is to study depth and Stanley depth
of the edge ideals and quotient ring of the edge ideals associated with classes of graphs
H := {Pn �Pm : n, m ≥ 1} and K := {Cn �Pm : n ≥ 3, m ≥ 1}. In Section 3 we compute
depth and Stanley depth of quotient ring of edge ideals associated with some subclasses
of H and K. For the monomial ideal I ⊂ S it is clear that depth(I) = depth(S/I)+1,
this means that once you know about depth(S/I) then you also know about depth(I) and
vice versa, whereas for Stanley depth this is not the case. So far all examples show that
sdepth(I) ≥ sdepth(S/I), as Herzog conjectured:

Conjecture 1 ([10, Conjecture 64]). Let I ⊂ S be a monomial ideal then sdepth(I) ≥
sdepth(S/I).

In Section 4 of this paper, we confirm the above conjecture for the edge ideals associated
with some subclasses of H and K. For recent works on the above conjecture, we refer the
reader to [13, 14, 18]. In Section 5, we give sharp upper bounds for depth and Stanley
depth of quotient ring of the edge ideals associated to H and K. In the same section, we
also propose some open questions. We gratefully acknowledge the use of the computer
algebra system CoCoA ([5]) for our experiments.

2. Definitions and notations
In this section, we review some standard terminologies and notations from graph theory

and algebra. For more details, one may consult [9, 28]. Let G := (V (G), E(G)) be a
graph with vertex set V (G) := {x1, x2, . . . , xn} and edge set E(G). The edge ideal I(G)
associated with G is a squarefree monomial ideal of S, that is I(G) = (xixj : {xi, xj} ∈
E(G)). A graph G on n ≥ 2 vertices is called a path on n vertices if E(G) = {{xi, xi+1} :
i = 1, 2 . . . , n − 1}. We denote a path on n vertices by Pn. A graph G on n ≥ 3 vertices is
called a cycle if E(G) = {{xi, xi+1} : i = 1, 2, . . . , n−1}∪{{x1, xn}}. A cycle on n vertices
is denoted by Cn. For vertices xi and xj of a graph G, the length of a shortest path from
xi to xj is called the distance between xi and xj denoted by dG(xi, xj). If no such path
exists between xi and xj , then dG(xi, xj) = ∞. The diameter of a connected graph G is
diam(G) := max{dG(xi, xj) : xi, xj ∈ V (G)}. For a monomial u, supp(u) := {xi : xi | u}.

Definition 2.1 ([9]). The strong product G1 � G2 of graphs G1 and G2 is a graph, with
V (G1 � G2) = V (G1) × V (G2) (the Cartesian product of sets), and for (v1, u1), (v2, u2) ∈
V (G1 � G2), {(v1, u1), (v2, u2)} ∈ E(G1 � G2), whenever

• {v1, v2} ∈ E(G1) and u1 = u2 or
• v1 = v2 and {u1, u2} ∈ E(G2) or
• {v1, v2} ∈ E(G1) and {u1, u2} ∈ E(G2).

Let P1 denote the null graph on one vertex that is V (P1) := {x1} and E(P1) := ∅. Let
Pn,m := Pn � Pm

∼= Pm � Pn, if n = m = 1, then P1,1 ∼= P1, this trivial case is excluded.
For n ≥ 3 and m ≥ 1, let Cn,m := Cn � Pm

∼= Pm � Cn.

Remark 2.2. |V (Pn,m)| = nm, |E(Pn,m)| = 4(n−1)(m−1)+(n−1)+(m−1), |V (Cn,m)| =
nm and |E(Cn,m)| = |E(Pn,m)| + 3(m − 1) + 1.

Since both graphs Pn,m and Cn,m are on nm vertices, for the sake of convenience, we
label the vertices of Pn,m and Cn,m by using m sets of variables {x1j , x2j , . . . , xnj} where
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1 ≤ j ≤ m. We set Sn,m := K[∪m
j=1{x1j , x2j , . . . , xnj}]. For examples of Pn,m and Cn,m

see Fig 1.
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Figure 1. From left to right; P6,4 and C6,4.

Remark 2.3. Let G(I) denote the unique minimal set of monomial generators of the
monomial ideal I.

(1) For positive integers m, n such that m and n are not equal to 1 simultaneously,
the minimal set of monomial generators of the edge ideal of Pn,m is given as:

G(I(Pn,m)) = ∪n−1
i=1

{
∪m−1

j=1 {xijxi(j+1), xijx(i+1)(j+1), xijx(i+1)j , x(i+1)jxi(j+1), xnjxn(j+1)},

ximx(i+1)m

}
.

(2) For n ≥ 3, m ≥ 1, the minimal set of monomial generators for I(Cn,m) is:
G(I(Cn,m)) = G(I(Pn,m)) ∪

{
∪m−1

j=1 {x1jxn(j+1), x1jxnj , x1(j+1)xnj}, x1mxnm

}
.

(3) Pn,1 ∼= Pn and Cn,1 ∼= Cn.
(4) For n, m ≥ 1, Pn,m

∼= Pm,n, so without loss of generality the strong product of two
paths can be represented as Pn,m with m ≤ n. Thus in some proofs by induction
on n, whenever we are reduced to the case where we have Pn′,m with n′ < m, after
a suitable relabeling of vertices we have Pn′,m

∼= Pm,n′ . Therefore, we can simply
replace I(Pn′,m) by I(Pm,n′) and Sn′,m/I(Pn′,m) by Sm,n′/I(Pm,n′).

The method of Herzog et al. [11] for determining the Stanley depth of modules of the
type M = J/I (where I ⊂ J ⊂ S are monomial ideals) using posets can be summarized in
the following way. We define a natural partial order on Nn as follows: a ≤ b if and only if
a(l) ≤ b(l) for l = 1, . . . , n. Note that xa | xb if and only if a ≤ b. Here for c ∈ Nn, xc denote
the monomial x

c(1)
1 x

c(2)
2 · · · x

c(n)
n . Let J = (xa1 , xa2 , . . . , xar ) and I = (xb1 , xb2 , . . . , xbt)

where ai, bj ∈ Nn. Let h ∈ Nn such that h(l) = max{ai(l), bj(l)) : 1 ≤ i ≤ r, 1 ≤ j ≤ t}
(the component-wise maximum of the ai and bj). Then the characteristic poset of J/I

with respect to h, denoted P h
J/I , is the induced subposet of Nn with ground set

{c ∈ Nn|c ≤ h, there is i such that c ≥ ai, and for all j, c � bj}.

Let x, y ∈ P h
J/I , α := [x, y] = {z ∈ P h

J/I : x ≤ z ≤ y} be a subset of P h
J/I called interval and

P be a partition of P h
J/I into intervals. Let Zα := {l : y(l) = h(l)}, define the Stanley depth

of a partition P to be sdepth(P) := minα∈P |Zα| and the Stanley depth of the poset P h
J/I

to be sdepth(P h
J/I) := maxP sdepth(P), where the maximum is taken over all partitions

P of P h
J/I . Herzog et al. showed in [11] that sdepth(J/I) = sdepth(P h

J/I). By considering
all partitions of the characteristic poset, this correspondence provides an algorithm (albeit
inefficient) to find the Stanley depth of J/I. Now we recall some known results that are
heavily used in this paper.
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Lemma 2.4. (Depth Lemma) If 0 → U → M → N → 0 is a short exact sequence of
modules over a local ring S, or a Noetherian graded ring with local S0, then

(1) depth(M) ≥ min{depth(N), depth(U)}.
(2) depth(U) ≥ min{depth(M), depth(N) + 1}.
(3) depth(N) ≥ min{depth(U) − 1, depth(M)}.

Lemma 2.5 ([24, Lemma 2.2]). Let 0 → U → V → W → 0 be a short exact sequence of
Zn-graded S-modules. Then sdepth(V ) ≥ min{sdepth(U), sdepth(W )}.

Remark 2.6. Let I ⊂ S be a monomial ideal. Then for 1 ≤ i ≤ n with xi /∈ I, the short
exact sequence

0 −→ S/(I : xi)
·xi−→ S/I −→ S/(I, xi) −→ 0,

implies that
depth(S/I) ≥ min{depth(S/(I : xi)), depth(S/(I, xi))},

sdepth(S/I) ≥ min{sdepth(S/(I : xi)), sdepth(S/(I, xi))}.

This will be used frequently throughout the paper.

Lemma 2.7 ([11, Lemma 3.6]). Let I ⊂ J be monomial ideals of S and S̄ = S[xn+1] be
a polynomial ring in n + 1 variables. Then

depth(JS̄/IS̄) = depth(JS/IS) + 1 and sdepth(JS̄/IS̄) = sdepth(JS/IS) + 1.

Corollary 2.8 ([24, Corollary 1.3]). Let J ⊂ S be a monomial ideal. Then depth(S/J) ≤
depth(S/(J : v)) for all monomials v /∈ J .

Proposition 2.9 ([2, Proposition 2.7]). Let J ⊂ S be a monomial ideal. Then for all
monomials v /∈ J sdepth(S/J) ≤ sdepth(S/(J : v)).

Let q ∈ Q, then ⌈q⌉ denote the smallest integer greater than or equal to q, and ⌊q⌋
denote the greatest integer less than or equal to q.

Theorem 2.10 ([21, Theorem 2.3]). Let I ⊂ S be a monomial ideal of S and m be the
number of minimal monomial generators of I, then sdepth(I) ≥ max

{
1, n − ⌊m

2 ⌋
}
.

Corollary 2.11 ([8, Corollary 3.2]). Let G be a connected graph of diameter d ≥ 1 and
let I = I(G). Then depth(S/I) ≥ ⌈d+1

3 ⌉.

Theorem 2.12 ([8, Theorem 4.18]). Let G be a graph with p connected components,
I = I(G), and let d = d(G) be the diameter of G. Then, for 1 ≤ t ≤ 3 we have

sdepth(S/It) ≥ ⌈d − 4t + 5
3

⌉ + p − 1.

Corollary 2.13. Let G be a connected graph of diameter d ≥ 1 and let I = I(G). Then
sdepth(S/I) ≥ ⌈d+1

3 ⌉.

3. Depth and Stanley depth of cyclic modules associated to Pn,m and Cn,m

when 1 ≤ m ≤ 3
Let n ≥ 2 and 1 ≤ i ≤ n, for convenience we take xi := xi1, yi := xi2 and zi := xi3, see

Figures 2 and 3. We set Sn,1 := K[x1, x2, . . . , xn], Sn,2 := K[x1, x2, . . . xn, y1, y2, . . . , yn]
and Sn,3 := K[x1, x2, . . . xn, y1, y2, . . . , yn, z1, z2, . . . , zn]. Clearly Pn,1 ∼= Pn and Cn,1 ∼= Cn,
the minimal sets of monomial generators of the edge ideals of Pn,2, Pn,3, Cn,2 and Cn,3 are
given as:

G(I(Pn,2)) = ∪n−1
i=1 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1} ∪ {xnyn},

G(I(Pn,3)) = ∪n−1
i=1 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1} ∪ {xnyn, ynzn},

G(I(Cn,2)) = G(I(Pn,2)) ∪
{
x1yn, x1xn, y1xn, y1yn

}
and



96 Z. Iqbal, M. Ishaq, M.A. Binyamin

G(I(Cn,3)) = G(I(Pn,3)) ∪
{
x1yn, x1xn, y1xn, y1yn, y1zn, z1yn, z1zn}.

In this section, we compute depth and Stanley depth of the cyclic modules Sn,m/I(Pn,m)
and Sn,m/I(Cn,m), when m = 1, 2, 3.

x1 x2 x3 x4 x5

y1 y4y2 y3 y5

x1 x2 x3 x4 x5

z1 z2 z3
z4 z5

y1 y4y2 y3 y5

x1 x2 x3 x4 x5

Figure 2. From left to right; P5,1, P5,2 and P5,3.
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Figure 3. From left to right; C6,1, C6,2 and C6,3.

Remark 3.1. Note that for n ≥ 2, Sn,1/I(Pn,1) ∼= S/I(Pn), thus by [20, Lemma 2.8]
and [27, Lemma 4] depth(Sn,1/I(Pn,1)) = sdepth(Sn,1/I(Pn,1)) = ⌈n

3 ⌉. Let n ≥ 3, then
Sn,1/I(Cn,1) ∼= S/I(Cn), and by [4, Propositions 1.3,1.8] depth(Sn,1/I(Cn,1)) = ⌈n−1

3 ⌉ ≤
sdepth(Sn,1/I(Cn,1)) ≤ ⌈n

3 ⌉.

Lemma 3.2. For n ≥ 1 and m = 2, 3, depth(Sn,m/I(Pn,m)) = sdepth(Sn,m/I(Pn,m)) =
⌈n

3 ⌉.

Proof. If n = 1, then proof follows from Remark 3.1. Let n ≥ 2. First we prove the
result for depth. If (n, m) ∈ {(2, 2), (3, 2), (3, 3)} then the result is trivial. Let n ≥ 4.
Since diam(Pn,m) = n − 1, thus by Corollary 2.11 depth(Sn,m/I(Pn,m)) ≥ ⌈n

3 ⌉. Now we
prove that depth(Sn,m/I(Pn,m)) ≤ ⌈n

3 ⌉, we prove this inequality by induction on n. Since
yn−1 ̸∈ I(Pn,m), then by Corollary 2.8

depth(Sn,m/I(Pn,m)) ≤ depth(Sn,m/(I(Pn,m) : yn−1)).
As we can see that Sn,m/(I(Pn,m) : yn−1) ∼= Sn−3,m/I(Pn−3,m)[yn−1], therefore by induc-
tion and Lemma 2.7 depth(Sn,m/(I(Pn,m) : yn−1)) = ⌈n−3

3 ⌉ + 1 = ⌈n
3 ⌉. This completes

the proof for depth.
Now we prove the result for Stanley depth. If n = m = 2, then I(P2,2) is a squarefree

Veronese ideal of degree 2. Thus by [3, Theorem 1.1] we have sdepth(Sn,2/I(Pn,2)) = 1,
as required. If n = 3 and m = 2 or 3, then diam(P3,m) = 2, thus by Corollary 2.13,
we have sdepth(S3,m/I(P3,m)) ≥ 1. By Proposition 2.9 we have sdepth(S3,m/I(P3,m)) ≤
sdepth(S3,m/(I(P3,m) : y2)) it is easy to see that S3,m/(I(P3,m) : y2) ∼= K[y2], therefore
sdepth(S3,m/I(P3,m)) ≤ 1, thus sdepth(S3,m/I(P3,m)) = 1. Let n ≥ 4, using Corollary
2.13 instead of Corollary 2.11 and Proposition 2.9 instead of Corollary 2.8, the proof for
depth also works for Stanley depth. �
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Theorem 3.3. For n ≥ 3, sdepth(Sn,2/I(Cn,2)) ≥ depth(Sn,2/I(Cn,2)) = ⌈n−1
3 ⌉.

Proof. We first prove that depth(Sn,2/I(Cn,2)) = ⌈n−1
3 ⌉. For n = 3, 4 the result is trivial.

For n ≥ 5 using Remark 2.6 one has
depth(Sn,2/I(Cn,2)) ≥ min{depth(Sn,2/(I(Cn,2) : xn)), depth(Sn,2/(I(Cn,2), xn))}.

(I(Cn,2) : xn) =
(
∪n−3

i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−2yn−2, x1, y1, xn−1, yn−1, yn
)
.

After renumbering the variables, we have Sn,2/(I(Cn,2) : xn) ∼= Sn−3,2/I(Pn−3,2)[xn]. Thus
by Lemmas 3.2 and 2.7 depth(Sn,2/(I(Cn,2) : xn)) = ⌈n−3

3 ⌉+1 = ⌈n
3 ⌉. Let J be a monomial

ideal such that;

J = (I(Cn,2), xn) =
(

∪n−2
i=1 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−1yn−1, xn, xn−1yn,

yn−1yn, y1yn, x1yn
)

= (I(Pn−1,2), xn, xn−1yn, yn−1yn, y1yn, x1yn).
By Remark 2.6 we have depth(Sn,2/J) ≥ min{depth(Sn,2/(J : yn)), depth(Sn,2/(J, yn))}.
As (J, yn) = (I(Pn−1,2), xn, yn) and Sn,2/(J, yn) ∼= Sn−1,2/I(Pn−1,2). Therefore by Lemma
3.2 depth(Sn,2/(J, yn)) = ⌈n−1

3 ⌉. Also

(J : yn) =
(

∪n−3
i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−2yn−2, x1, y1, xn−1, yn−1, xn

)
.

After renumbering the variables, we get Sn,2/(J : yn) ∼= Sn−3,2/I(Pn−3,2)[yn]. Therefore
by Lemmas 3.2 and 2.7 depth(Sn,2/(J : yn)) = ⌈n−3

3 ⌉ + 1 = ⌈n
3 ⌉. If n ≡ 0(mod 3) or n ≡

2(mod 3), then depth(Sn,2/(I(Cn,2) : xn)) = ⌈n
3 ⌉ = ⌈n−1

3 ⌉ ≤ depth(Sn,2/(I(Cn,2), xn)),
thus Depth Lemma implies depth(Sn,2/I(Cn,2)) = ⌈n−1

3 ⌉, as required. Now for n ≡
1(mod 3), assume that n ≥ 7, then we have the following Sn,2-module isomorphism:

(I(Cn,2) : xn)/I(Cn,2) ∼= x1
K[x3, . . . , xn−1, y3, . . . , yn−1]

(
⋃n−2

i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−1yn−1
) [x1]

⊕ y1
K[x3, . . . , xn−1, y3, . . . , yn−1]

(
⋃n−2

i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−1yn−1
) [y1]

⊕ yn
K[x2, . . . , xn−2, y2, . . . , yn−2]

(
⋃n−3

i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−2yn−2
) [yn]

⊕ xn−1
K[x2, . . . , xn−3, y2, . . . , yn−3]

(
⋃n−4

i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−3yn−3
) [xn−1]

⊕ yn−1
K[x2, . . . , xn−3, y2, . . . , yn−3]

(
⋃n−4

i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−3yn−3
) [yn−1].

Indeed, if u ∈ (I(Cn,2) : xn) is a monomial such that u /∈ I(Cn,2). Then u is divisible by
at most one variable from the set {x1, y1, yn, xn−1, yn−1}, if u is divisible by two or more
variables from {x1, y1, yn, xn−1, yn−1} then u ∈ I(Cn,2), a contradiction. If x1 | u then u =
xa

1w with a ≥ 1, since u /∈ I(Cn,2) it follows that w ∈ S′ := K[x3, . . . , xn−1, y3, . . . , yn−1]
and w /∈ J := (

⋃n−2
i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−1yn−1

)
, thus u ∈ x1(S′/J)[x1]

which is the first summand in the direct sum. Let S′′ := S′[x1] then x1(S′/J)[x1] ∼=
x1(S′′/JS′′), it is easy to see that x1 is regular on S′′/JS′′, therefore we have the S′′-
module isomorphism x1(S′′/JS′′) = (S′′/JS′′). After a suitable renumbering of variables
we have (S′′/JS′′) ∼= Sn−3,2/I(Pn−3,2)[xn]. If y1 | u, then we get the second summand
and if yn | u then we get the third summand. Proceeding in the same way one can easily
show that these two summands are also isomorphic to Sn−3,2/I(Pn−3,2)[xn]. If xn−1 | u
then we get the forth summand and if yn−1|u then we get the last summand. Similarly
one can show that the last two summands are isomorphic to Sn−4,2/I(Pn−4,2)[xn]. Thus
by Lemmas 3.2 and 2.7, we have

depth(I(Cn,2) : xn)/I(Cn,2)) = min{⌈n − 3
3

⌉ + 1, ⌈n − 4
3

⌉ + 1} = ⌈n − 1
3

⌉.
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Now by using Depth Lemma on the following short exact sequence we get the required
result.

0 −→ (I(Cn,2) : xn)/I(Cn,2) ·xn−−→ Sn,2/I(Cn,2) −→ Sn,2/(I(Cn,2) : xn) −→ 0.

Now we prove the result for Stanley depth. If n = 3, then I(C3,2) is a squarefree Veronese
ideal of degree 2. Thus by [3, Theorem 1.1] sdepth(S3,2/I(C3,2)) = 1, as required. If n = 4,
then by using [11] we have the following Stanley decomposition

S4,2/I(C4,2) = K[x1, x3] ⊕ y1K[x3, y1] ⊕ x2K[x2, x4] ⊕ y2K[y2, y4]⊕
y3K[x1, y3] ⊕ x4K[x4, y2] ⊕ y4K[x2, y4] ⊕ y1y3K[y1, y3].

Thus sdepth(S4,2/I(C4,2)) ≥ 2. For upper bound by Proposition 2.9 we have
sdepth(S4,2/I(C4,2)) ≤ sdepth(S4,2/(I(C4,2) : x1x3)),

since S4,2/(I(C4,2) : x1x3) ∼= K[x1, x3], therefore sdepth(S4,2/I(C4,2)) ≤ 2, thus we get
sdepth(S4,2/I(C4,2)) = 2. Let n ≥ 5, using Remark 2.6 we have

sdepth(Sn,2/I(Cn,2)) ≥

min{sdepth(Sn,2/(I(Cn,2) : xn)), sdepth(Sn,2/(J : yn)), sdepth(Sn,2/(J, yn))} ≥ ⌈n − 1
3

⌉.

�
Corollary 3.4. For n ≥ 3, ⌈n−1

3 ⌉ ≤ sdepth(Sn,2/I(Cn,2)) ≤ ⌈n
3 ⌉.

Proof. Since I(C3,2) is a squarefree Veronese ideal, by using [3, Theorem 1.1], it follows
that sdepth(S3,2/I(C3,2)) = 1. For n ≥ 4, by Proposition 2.9 sdepth(Sn,2/I(Cn,2)) ≤
sdepth(Sn,2/(I(Cn,2) : xn)). Since Sn,2/(I(Cn,2) : xn) ∼= Sn−3,2/I(Pn−3,2)[xn], using Lem-
mas 3.2 and 2.7, we have sdepth(Sn,2/(I(Cn,2) : xn)) = ⌈n−3

3 ⌉ + 1 = ⌈n
3 ⌉. �

For n ≥ 2 we define a supergraph of Pn,3 denoted by P⋆
n,3 with the set of vertices

V (P⋆
n,3) := V (Pn,3) ∪ {zn+1} and edge set E(P⋆

n,3) := E(Pn,3) ∪ {znzn+1, ynzn+1}. Also we
define a supergraph of P⋆

n,3 denoted by P⋆⋆
n,3 with the set of vertices V (P⋆⋆

n,3) := V (P⋆
n,3) ∪

{zn+2} and edge set E(P⋆⋆
n,3) := E(P⋆

n,3)∪{z1zn+2, y1zn+2}. For examples of P⋆
n,3 and P⋆⋆

n,3
see Fig. 4. Let S⋆

n,3 := Sn,3[zn+1] and S⋆⋆
n,3 := Sn,3[zn+1, zn+2] then we have the following

lemma:

x1 x2 x3 x4 x5

z1 z2 z3 z4 z5

y1 y4y2 y3 y5

z6

x1 x2 x3 x4 x5

z1 z2 z3
z4 z5

y1 y4y2 y3 y5

z6
z7

Figure 4. From left to right; P⋆
5,3 and P⋆⋆

5,3.

Lemma 3.5. For n ≥ 2,
(a) depth(S⋆

n,3/I(P⋆
n,3)) = sdepth(S⋆

n,3/I(P⋆
n,3)) = ⌈n+1

3 ⌉.
(b) depth(S⋆⋆

n,3/I(P⋆⋆
n,3)) = sdepth(S⋆⋆

n,3/I(P⋆⋆
n,3)) = ⌈n+2

3 ⌉.

Proof. (a). First we prove the result for depth. Since diam(P⋆
n,3) = n, then by Corol-

lary 2.11 we have depth(S⋆
n,3/I(P⋆

n,3)) ≥ ⌈n+1
3 ⌉. Now we prove the reverse inequal-

ity, if n = 2 then the result is trivial. For n ≥ 3, as yn /∈ I(P⋆
n,3) so by Corollary

2.8 depth(S⋆
n,3/I(P⋆

n,3)) ≤ depth(S⋆
n,3/(I(P⋆

n,3) : yn)). We have S⋆
n,3/(I(P⋆

n,3) : yn) ∼=
(Sn−2,3/I(Pn−2,3))[yn]. By Lemmas 3.2 and 2.7 depth(S⋆

n,3/(I(P⋆
n,3) : yn)) = ⌈n−2

3 ⌉ + 1 =
⌈n+1

3 ⌉. Thus depth(S⋆
n,3/I(P⋆

n,3)) ≤ ⌈n+1
3 ⌉. Proof for Stanley depth is similar by using
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Proposition 2.9 and Corollary 2.13.
(b). Clearly diam(P⋆⋆

n,3) = n + 1, by Corollary 2.11 we have depth(S⋆⋆
n,3/I(P⋆⋆

n,3)) ≥ ⌈n+2
3 ⌉.

Now we prove the reverse inequality, it is true when n = 2, 3. For n ≥ 4, as
yn /∈ I(P⋆⋆

n,3) so by Corollary 2.8 depth(S⋆⋆
n,3/I(P⋆⋆

n,3)) ≤ depth(S⋆⋆
n,3/(I(P⋆⋆

n,3) : yn)).
Since S⋆⋆

n,3/(I(P⋆⋆
n,3) : yn) ∼= (S⋆

n−2,3/I(P⋆
n−2,3))[yn]. By (a) and Lemma 2.7 we obtain

depth(S⋆
n,3/I(P⋆

n,3) : yn) = ⌈n−2+1
3 ⌉+1 = ⌈n+2

3 ⌉. Thus depth(S⋆⋆
n,3/I(P⋆⋆

n,3)) ≤ ⌈n+2
3 ⌉. Sim-

ilarly one can prove the result for Stanley depth by using Proposition 2.9 and Corollary
2.13. �
Theorem 3.6. For n ≥ 3, and n ≡ 0, 2 (mod 3), sdepth(Sn,3/I(Cn,3)) = ⌈n−1

3 ⌉ =
depth(Sn,3/I(Cn,3)), and otherwise, ⌈n−1

3 ⌉ ≤ depth(Sn,3/I(Cn,3)), sdepth(Sn,3/I(Cn,3)) ≤
⌈n

3 ⌉.

Proof. We first prove the result for depth. For n = 3, 4 the result is clear. Let n ≥ 5,

A := (I(Cn,3) : xn) =
(
∪n−3

i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2, x1, y1, xn−1, yn−1, yn, znzn−1, zn−1zn−2, yn−2zn−1, znz1, z1z2, y2z1
)
,

and

A := (I(Cn,3), xn) =
(

∪n−2
i=1 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1}, xn,

xn−1yn−1, yn−1zn−1, xn−1yn, yn−1yn, ynzn−1, yn−1zn, zn−1zn, ynzn, y1yn, x1yn, y1zn, ynz1, z1zn

)
= (I(Pn−1,3), xn, xn−1yn, yn−1yn, ynzn−1, yn−1zn, zn−1zn, ynzn, y1yn, x1yn, y1zn, ynz1, z1zn),

then by Remark 2.6 we have
depth(Sn,3/I(Cn,3)) ≥ min{depth(Sn,3/A), depth(Sn,3/A)}. (3.1)

Since (A, zn) =
(

∪n−3
i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2, x1, y1, xn−1, yn−1, yn, zn, zn−1zn−2, yn−2zn−1, z1z2, y2z1
)
,

after renumbering the variables we have Sn,3/(A, zn) ∼= (S⋆⋆
n−3,3/I(P⋆⋆

n−3,3))[xn]. Thus by
Lemmas 3.5 and 2.7 depth(Sn,3/(A, zn)) = ⌈n−3+2

3 ⌉ + 1 = ⌈n−1
3 ⌉ + 1. Also

(A : zn) =
(
∪n−3

i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1}, xn−2yn−2,

yn−2zn−2, x1, y1, xn−1, yn−1, yn, zn−1, z1
)
,

after renumbering the variables we get Sn,3/(A : zn) ∼= (Sn−3,3/I(Pn−3,3))[xn, zn]. Thus
by Lemmas 3.2 and 2.7 depth(Sn,3/(A : zn)) = ⌈n−3

3 ⌉ + 2 = ⌈n
3 ⌉ + 1. Using Remark 2.6

depth(Sn,3/(A)) ≥

min{depth(Sn,3/(A : zn)), depth(Sn,3/(A, zn))} = min{⌈n

3
⌉ + 1, ⌈n − 1

3
⌉ + 1}. (3.2)

As (A : yn) =
(

∪n−3
i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2, xn, x1, y1, z1, xn−1, yn−1, zn−1, zn
)
,

after renumbering the variables we get Sn,3/(A : yn) ∼= Sn−3,3/I(Pn−3,3)[yn]. Therefore by
Lemmas 3.2 and 2.7 depth(Sn,3/(A : yn)) = ⌈n−3

3 ⌉ + 1 = ⌈n
3 ⌉. Now let

Â := (A, yn) = (I(Pn−1,3), xn, yn, yn−1zn, zn−1zn, y1zn, z1zn),

depth(Sn,3/A) ≥ min{depth(Sn,3/(A : yn)), depth(Sn,3/Â)}

= min{⌈n

3
⌉, depth(Sn,3/Â)}. (3.3)
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Since (Â : zn) =
(

∪n−3
i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2, z1, y1, zn−1, yn−1, yn, xn, xn−1xn−2, xn−1yn−2, x1x2, x1y2
)
,

after renumbering the variables, we have Sn,3/(Â : zn) ∼= (S⋆⋆
n−3,3/I(P⋆⋆

n−3,3))[zn]. Thus by
Lemmas 3.5 and 2.7 depth(Sn,3/(Â : zn)) = ⌈n−3+2

3 ⌉ + 1 = ⌈n−1
3 ⌉ + 1. Also Sn,3/(Â, zn) ∼=

Sn−1,3/I(Pn−1,3). Therefore by Lemma 3.2 depth(Sn,3/(Â, zn)) = ⌈n−1
3 ⌉. By Remark 2.6

depth(Sn,3/Â) ≥

min{depth(Sn,3/(Â : zn)) depth(Sn,3/(Â, zn))} = min{⌈n − 1
3

⌉ + 1, ⌈n − 1
3

⌉} (3.4)

Hence combining Eq. 3.1, Eq. 3.2, Eq. 3.3 and Eq. 3.4 we get depth(Sn,3/I(Cn,3)) ≥
⌈n−1

3 ⌉. By Corollary 2.8 we have depth(Sn,3/I(Cn,3)) ≤ depth(Sn,3/(I(Cn,3) : yn)).
Since (Sn,3/(I(Cn,3) : yn)) ∼= (Sn−3,3/(I(Pn−3,3))[yn], by Lemmas 3.2 and 2.7, we have
depth(Sn,3/I(Cn,3)) ≤ ⌈n

3 ⌉, if n ≡ 0(mod 3) or n ≡ 2(mod 3) then ⌈n−1
3 ⌉ = ⌈n

3 ⌉. If
n ≡ 1(mod 3) then ⌈n−1

3 ⌉ ≤ depth(Sn,3/I(Cn,3)) ≤ ⌈n
3 ⌉.

Now we prove the result for Stanley depth. If n = 3, then by using [11] we have the
following Stanley decomposition

S3,3/I(C3,3) = K[x1] ⊕ y1K[y1] ⊕ z1K[z1] ⊕ x2K[x2] ⊕ y2K[y2] ⊕ z2K[z2]⊕
⊕ x3K[x3] ⊕ z3K[z3],

Thus sdepth(S3,3/I(C3,3)) ≥ 1. For upper bound by Proposition 2.9 we have
sdepth(S3,3/I(C3,3)) ≤ sdepth(S3,3/(I(C3,3) : y2)),

since S3,3/(I(C3,3) : y2) ∼= K[y2], therefore sdepth(S3,3/I(C3,3)) ≤ 1, as desired. For n = 4,

let T := K[x1, z1] ⊕ y1K[x3, y1] ⊕ x2K[x2, z1] ⊕ y2K[y2, x4] ⊕ y3K[x1, y3] ⊕ x4K[x4, z1]
⊕ y4K[x2, y4] ⊕ z4K[x1, z4] ⊕ z2K[x1, z2] ⊕ x3K[x1, x3] ⊕ z3K[x1, z3],

if u ∈ S4,3/I(C4,3) such that u /∈ T , then deg(ui) ≥ 2. It is easy to see that S4,3/I(C4,3) =
T ⊕u uK[ supp(u)], Thus sdepth(S4,3/I(C4,3)) ≥ 2. For upper bound by Proposition 2.9
we have sdepth(S4,3/I(C4,3)) ≤ sdepth(S4,3/(I(C4,3) : y2y4)), since S4,3/(I(C4,3) : y2y4) ∼=
K[y2, y4], therefore sdepth(S4,3/I(C4,3)) ≤ 2. Hence sdepth(S4,3/I(C4,3)) = 2. Let n ≥ 5,
using Proposition 2.9 instead of Corollary 2.8 the proof for depth also works for Stanley
depth. �
Example 3.7. One can expect that depth(Sn,3/I(Cn,3)) = ⌈n−1

3 ⌉ as we have in [4,
Proposition 1.3] and Theorem 3.3. But examples show that in the essential case when
n ≡ 1(mod 3) the upper bound in Theorem 3.6 is reached. For instance, when n = 4, then
depth(S4,3/I(C4,3)) = sdepth(S4,3/I(C4,3)) = 2 = ⌈4

3⌉.

Remark 3.8. If 3 ≤ n ≤ 10, then using SdepthLib:coc [25] we have
sdepth(Sn,3/I(Cn,3)) = ⌈n

3 ⌉. Also for 3 ≤ n ≤ 6, we have depth(Sn,3/I(Cn,3)) = ⌈n
3 ⌉

that is the upper bound in Theorem 3.6 is reached for both depth and Stanley depth in all
known cases. In order to show that sdepth(Sn,3/I(Cn,3)) ≥ depth(Sn,3/I(Cn,3)) (Stanley’s
inequality) one needs to show that sdepth(Sn,3/I(Cn,3)) = ⌈n

3 ⌉, for all n. For this one
needs to find a suitable Stanley decomposition which we don’t know at the moment and
could be hard to find.

4. Lower bounds for Stanley depth of I(Pn,m) and I(Cn,m) when 1 ≤ m ≤ 3
In this section, we give some lower bounds for Stanley depth of I(Pn,m) and I(Cn,m),

when m ≤ 3. These bounds together with the results of the previous section allow us to
give a positive answer to Conjecture 1 in some special cases. We begin this section with
the following useful lemma:
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Lemma 4.1. Let A and B be two disjoint sets of variables, I1 ⊂ K[A] and I2 ⊂ K[B] be
square free monomial ideals such that sdepthK[A](I1) > sdepth(K[A]/I1). Then

sdepthK[A∪B](I1 + I2) ≥ sdepth(K[A]/I1) + sdepthK[B](I2).

Proof. By [2, Theorem 1.3(1)] we have

sdepthK[A∪B](I1 + I2) ≥ min{sdepthK[A∪B](I1), sdepth(K[A]/I1) + sdepthK[B](I2)}.

Now by Lemma 2.7 we have

sdepthK[A∪B](I1 + I2) ≥ min{sdepthK[A](I1) + |B|, sdepth(K[A]/I1) + sdepthK[B](I2)}.

Since |B| ≥ sdepthK[B](I2), therefore

sdepthK[A](I1) + |B| > sdepth(K[A]/I1) + sdepthK[B](I2),

this proves the desired inequality. �

Now we introduce some notations for the case m = 3. For 3 ≤ l ≤ n − 2, let

Jl := (xn−l, zn−l, xn−l+1, yn−l−1, zn−l+1, xn−l−1, zn−l−1),

I(P ′
l−1) := (xn−l+2xn−l+3, . . . , xn−1xn),

I(P ′′
l−1) := (zn−l+2zn−l+3, . . . , zn−1zn),

be the monomial ideals of Sn,3. Consider the subsets of variables

Dl := {xn−l+2, xn−l+3, . . . , xn−1, xn},

D′
l := {zn−l+2, zn−l+3, . . . , zn−1, zn},

D′′
l := {xn−l, zn−l, xn−l+1, yn−l−1, zn−l+1, xn−l−1, zn−l−1}.

Let Ll be a monomial ideal of Sn,3 such that Ll = I(P ′
l−1) + I(P ′′

l−1) + Jl. With these
notations we have the following lemma:

Lemma 4.2. For 3 ≤ l ≤ n − 2, sdepthK[Dl∪D′
l
∪D′′

l
](Ll) ≥ ⌈ l+2

3 ⌉ + 1.

Proof. Since Ll = I(P ′
l−1) + I(P ′′

l−1) + Jl, by [2, Theorem 1.3], we have

sdepthK[Dl∪D′
l
∪D′′

l
](Ll) ≥ min

{
sdepthK[Dl∪D′

l
∪D′′

l
](Jl), min{sdepthK[Dl∪D′

l
](I(P ′

l−1)),

sdepthK[Dl](K[Dl]/I(P ′
l−1)) + sdepthK[D′

l
](I(P ′′

l−1))}
}
. (4.1)

By using [21, Theorem 2.3] and [22, Proposition 2.1], Eq. 4.1 implies that

sdepthK[Dl∪D′
l
∪D′′

l
](Ll) ≥ min{4 + 2(l − 2), min{2l − 2 − ⌊ l − 2

2
⌋, ⌈ l − 1

3
⌉ + l − 1 − ⌊ l − 2

2
⌋}}

≥ ⌈ l + 2
3

⌉ + 1.

�

Theorem 4.3. For n ≥ 1 and 1 ≤ m ≤ 3,

sdepth(I(Pn,m)) > sdepth(Sn,m/I(Pn,m)) = ⌈n

3
⌉.

Proof. By Lemma 3.2 and Remark 3.1 we have sdepth(Sn,m/I(Pn,m)) = ⌈n
3 ⌉, we use this

fact frequently in the proof without referring it again and again.
(a) If m = 1, clearly I(Pn,1) ∼= I(Pn), thus by [21, Theorem 2.3] and [22, Proposition

2.1] we have sdepth(I(Pn,1)) > sdepth(Sn,1/I(Pn,1)) = ⌈n
3 ⌉.
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(b) If m = 2, we prove the result by induction on n. If n = 1 then by (a) the required
result follows. If n = 2, 3, then by [19, Lemma 2.1], sdepth(I(Pn,2)) > ⌈n

3 ⌉. Now
assume that n ≥ 4. Since xn−1 ̸∈ I(Pn,2), thus we have

I(Pn,2) = I(Pn,2) ∩ S′ ⊕ xn−1
(
I(Pn,2) : xn−1

)
Sn,2,

where S′ = K[x1, x2, . . . , xn−2, xn, y1, y2, . . . , yn]. Now
I(Pn,2) ∩ S′ =

(
G(I(Pn−2,2)), xn−2yn−1, yn−2yn−1, xnyn, yn−1xn, yn−1yn

)
and(

I(Pn,2) : xn−1
)
Sn,2 =

(
G(I(Pn−3,2)), xn−2, yn−2, yn−1, xn, yn

)
Sn,2.

As yn−1 ̸∈ I(Pn,2) ∩ S′, so we get

I(Pn,2) ∩ S′ = (I(Pn,2) ∩ S′) ∩ S′′ ⊕ yn−1
(
I(Pn,2) ∩ S′ : yn−1

)
S′,

where S′′ = K[x1, . . . , xn−2, xn, y1, . . . , yn−2, yn]. Thus
I(Pn,2) = (I(Pn,2) ∩ S′) ∩ S′′ ⊕ yn−1

(
I(Pn,2) ∩ S′ : yn−1

)
S′ ⊕ xn−1

(
I(Pn,2) : xn−1

)
Sn,2,

where
(I(Pn,2) ∩ S′) ∩ S′′ = (G(I(Pn−2,2)), xnyn)S′′

and
(I(Pn,2) ∩ S′ : yn−1

)
S′ =

(
G(I(Pn−3,2)), xn−2, yn−2, xn, yn

)
S′.

By induction on n and Lemma 4.1 we have
sdepth((I(Pn,2) ∩ S′) ∩ S′′) ≥ sdepth(Sn−2,2/I(Pn−2,2)) + sdepthK[xn,yn](xnyn).

Again by induction on n, Lemma 4.1 and Lemma 2.7 we have

sdepth((I(Pn,2)∩S′ : yn−1
)
S′) ≥ sdepth(Sn−3,2/I(Pn−3,2))+sdepthT (xn−2, yn−2, xn, yn)+1

and

sdepth
((

I(Pn,2) : xn−1
)
Sn,2

)
≥

sdepth(Sn−3,2/I(Pn−3,2)) + sdepthR(xn−2, yn−2, yn−1, xn, yn
)

+ 1,

where T = [xn−2, yn−2, xn, yn] and R = K[xn−2, yn−2, yn−1, xn, yn]. Thus

sdepth((I(Pn,2) ∩ S′) ∩ S′′) > ⌈n

3
⌉

as sdepthK[xn,yn](xnyn) = 2. By [1, Theorem 2.2] we have sdepth((I(Pn,2) ∩ S′ :
yn−1

)
S′) > ⌈n

3 ⌉ and sdepth(
(
I(Pn,2) : xn−1

)
Sn,2) > ⌈n

3 ⌉. This completes the proof
for m = 2.

(c) If m = 3, we proceed again by induction on n. If n = 1, then by (a) the required
result follows. If n = 2, the result follows by (b). If n = 3 then by [19, Lemma 2.1]
sdepth(I(P3,3)) > ⌈3

3⌉. If n ≥ 4, then we consider the following decomposition of
I(Pn,3) as a vector space:

I(Pn,3) = I(Pn,3) ∩ R1 ⊕ yn(I(Pn,3) : yn)Sn,3.

Similarly, we can decompose I(Pn,3) ∩ R1 by the following:
I(Pn,3) ∩ R1 = I(Pn,3) ∩ R2 ⊕ yn−1(I(Pn,3) ∩ R1 : yn−1)R1.

Continuing in the same way for 1 ≤ l ≤ n − 1 we have
I(Pn,3) ∩ Rl = I(Pn,3) ∩ Rl+1 ⊕ yn−l(I(Pn,3) ∩ Rl : yn−l)Rl,

where Rl := K[x1, x2, . . . xn, y1, y2, . . . , yn−l, z1, z2, . . . , zn]. Finally, we get the
following decomposition of I(Pn,3):

I(Pn,3) = I(Pn,3) ∩ Rn ⊕ ⊕n−1
l=1 yn−l(I(Pn,3) ∩ Rl : yn−l)Rl ⊕ yn(I(Pn,3) : yn)Sn,3.
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Therefore

sdepth(I(Pn,3)) ≥ min
{

sdepth(I(Pn,3) ∩ Rn), sdepth((I(Pn,3) : yn)Sn,3),
n−1
min
l=1

{sdepth((I(Pn,3) ∩ Rl : yn−l)Rl)}
}
. (4.2)

Since
I(Pn,3)∩Rn =

(
(x1x2, x2x3, . . . , xn−1xn)+(z1z2, z2z3, . . . , zn−1zn)

)
K[x1, . . . , xn, z1, . . . , zn],

thus by [2, Theorem 1.3] and [22, Proposition 2.1] we have sdepth(I(Pn,3) ∩ Rn) >
⌈n

3 ⌉. As we can see that
(I(Pn,3) : yn)Sn,3 = (G(I(Pn−2,3)) + (xn, zn, xn−1, zn−1, yn−1))[yn].

Let B := K[xn, zn, xn−1, zn−1, yn−1] thus by induction on n, Lemmas 4.1 and 2.7
sdepth((I(Pn,3) : yn)Sn,3) > sdepth(Sn−2,3/I(Pn−2,3))+sdepthB(xn, zn, xn−1, zn−1, yn−1)+1.

By [1, Theorem 2.2] we have sdepth((I(Pn,3) : yn)Sn,3) > ⌈n
3 ⌉.

(1): If l = 1, then (I(Pn,3) ∩ R1 : yn−1)R1 =
(
G(I(Pn−3,3)) + J1

)
[yn−1], where

J1 := (xn−1, zn−1, xn, yn−2, zn, xn−2, zn−2), then by induction on n, Lemmas
4.1 and 2.7, we have

sdepth((I(Pn,3) ∩ R1 : yn−1)R1) > sdepth(Sn−3,3/I(Pn−3,3)) + sdepthK[supp(J1)](J1) + 1,

by [1, Theorem 2.2] we have sdepth((I(Pn,3) ∩ R1 : yn−1)R1) > ⌈n
3 ⌉.

(2): If l = 2 and n ̸= 4, then

(I(Pn,3) ∩ R2 : yn−2)R2 =
(
G(I(Pn−4,3)) + J2

)
[yn−2, xn, zn],

where J2 := (xn−2, zn−2, xn−1, zn−1, xn−3, yn−3, zn−3), using the same argu-
ments as in case(1) we have sdepth((I(Pn,3) ∩ R2 : yn−2)R2) > ⌈n

3 ⌉.

(3): If 3 ≤ l ≤ n − 3, then (I(Pn,3) ∩ Rl : yn−l)Rl =
(
G(I(Pn−(l+2),3)) +

G(Ll)
)
[yn−l], by induction on n, Lemmas 4.1 and 2.7, we have

sdepth((I(Pn,3) ∩ Rl : yn−l)Rl) > sdepth(Sn−(l+2),3/(I(Pn−(l+2),3)))
+ sdepthK[Dl∪D′

l
∪D′′

l
](Ll) + 1, (4.3)

By Eq. 4.3 and Lemma 4.2 we have

sdepth((I(Pn,3) ∩ Rl : yn−l)Rl) > ⌈n − (l + 2)
3

⌉ + ⌈ l + 2
3

⌉ + 1 + 1 > ⌈n

3
⌉.

(4): If l = n − 2, then (I(Pn,3) ∩ Rn−2 : y2)Rn−2 = (G(Ln−2))[y2], by Lemmas
4.2 and 2.7 we have sdepth((I(Pn,3) ∩ Rn−2 : y2)Rn−2) > ⌈n

3 ⌉.
(5): If l = n − 1, then

(I(Pn,3) ∩ Rn−1 : y1)Rn−1 =
(
I(P ′

n−2) + I(P ′′
n−2) + Jn−1

)
K[Dn−1 ∪ D′

n−1 ∪ D′′
n−1 ∪ {y1}],

where G(Jn−1) = {x1, z1, x2, z2}, Dn−1 = {x3, x4, . . . , xn}, D′
n−1 =

{z3, z4, . . . , zn} and D′′
n−1 = {x1, z1, x2, z2}. Using the proof of Lemma 4.2

and by Lemma 2.7

sdepthK[Dn−1∪D′
n−1∪D′′

n−1∪{y1}]
(
I(P ′

n−2) + I(P ′′
n−2) + Jn−1

)
> ⌈n

3
⌉,

that is sdepth((I(Pn,3) ∩ Rn−1 : y1)Rn−1) > ⌈n
3 ⌉.

Thus by Eq. 4.2 we get sdepth(I(Pn,3)) > ⌈n
3 ⌉.
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�
Proposition 4.4. For n ≥ 3, sdepth(I(Cn,2)/I(Pn,2)) ≥ ⌈n+2

3 ⌉.

Proof. For 3 ≤ n ≤ 5, we use [11] to show that there exist Stanley decompositions of
desired Stanley depth. When n = 3 or 4, then

I(Cn,2)/I(Pn,2) = x1xnK[x1, xn] ⊕ x1ynK[x1, yn] ⊕ y1xnK[y1, xn] ⊕ y1ynK[y1, yn].
If n = 5, then
I(C5,2)/I(P5,2) = x1x5K[x1, x3, x5] ⊕ x1y5K[x1, x3, y5] ⊕ y1x5K[y1, x3, x5] ⊕ y1y5K[y1, x3, y5]

⊕x1y3x5K[x1, y3, x5] ⊕ x1y3y5K[x1, y3, y5] ⊕ y1y3y5K[y1, y3, y5] ⊕ y1y3x5K[y1, y3, x5].
Let n ≥ 6 and T := (

⋃n−3
i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−2yn−2

)
⊂ S̃, where

S̃ := K[x3, x4, . . . , xn−2, y3, y4 . . . , yn−2]. Then we have the following K-vector space iso-
morphism:

I(Cn,2)/I(Pn,2) ∼= x1xn
S̃

T
[x1, xn] ⊕ y1yn

S̃

T
[y1, yn] ⊕ x1yn

S̃

T
[x1, yn] ⊕ y1xn

S̃

T
[y1, xn].

Thus by Lemmas 3.2 and 2.7, we have sdepth(I(Cn,2)/I(Pn,2)) ≥ ⌈n+2
3 ⌉. �

For n ≥ 6, let Q = {x1, y1, x2, y2, xn, yn, xn−1, yn−1}. Consider a subgraph C⋄
n,3 of Cn,3

with vertex set V (C⋄
n,3) = V (Cn,3) \ Q and edge set

E(C⋄
n,3) = E(Cn,3) \ {e ∈ E(Cn,3) : where e has at least one end vertex in Q}.

For example of C⋄
n,3 see Fig. 5.

z6
y6

z7

z8

z1

z2

z3

z4

z5

y5
x5

x6

y4

x4 y3
x3

Figure 5. C⋄
8,3.

Lemma 4.5. Let n ≥ 6, if n ≡ 0 (mod 3), then sdepth(S⋄
n,3/I(C⋄

n,3)) = ⌈n−2
3 ⌉. Otherwise,

⌈n−2
3 ⌉ ≤ sdepth(S⋄

n,3/I(C⋄
n,3)) ≤ ⌈n

3 ⌉.

Proof. By Remark 2.6
sdepth(S⋄

n,3/I(C⋄
n,3)) ≥ min{sdepth(S⋄

n,3/(I(C⋄
n,3) : z1)), sdepth(S⋄

n,3/(I(C⋄
n,3), z1))}.

(4.4)

Since (I(C⋄
n,3) : z1) = ((∪n−3

i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2), yn−2zn−1, zn−2zn−1, z2, zn
)
,

so after renumbering the variables we have S⋄
n,3/(I(C⋄

n,3) : z1) ∼= S⋆
n−4,3/I(P⋆

n−4,3)[z1].
Therefore, by Lemmas 2.7 and 3.5,

sdepth(S⋄
n,3/(I(C⋄

n,3) : z1)) = ⌈n − 4 + 1
3

⌉ + 1 = ⌈n

3
⌉.
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Now let

B := (I(C⋄
n,3), z1) = ((∪n−3

i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2), yn−2zn−1, zn−2zn−1, zn−1zn, y3z2, z2z3, z1
)
,

so by Remark 2.6

sdepth(S⋄
n,3/B) ≥ min{sdepth(S⋄

n,3/(B : zn)), sdepth(S⋄
n,3/(B, zn))}. (4.5)

Since

(B : zn) = ((∪n−3
i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2), y3z2, z2z3, z1, zn−1
)
,

after renumbering the variables we have S⋄
n,3/(B : zn) ∼= S⋆

n−4,3/I(P⋆
n−4,3)[zn]. Therefore

by Lemmas 2.7 and 3.5, sdepth(S⋄
n,3/(B : zn)) = ⌈n−4+1

3 ⌉ + 1 = ⌈n
3 ⌉. Now

(B, zn) = ((
⋃n−3

i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2), yn−2zn−1, zn−2zn−1, y3z2, z2z3, z1, zn
)
,

after renumbering the variables we have S⋄
n,3/(B, zn) ∼= S⋆⋆

n−4,3/I(P⋆⋆
n−4,3). Therefore by

Lemma 3.5, we have

sdepth(S⋄
n,3/(B, zn)) = ⌈n − 4 + 2

3
⌉ = ⌈n − 2

3
⌉.

Combining Eq. 4.4 and Eq. 4.5 we get ⌈n−2
3 ⌉ ≤ sdepth(S⋄

n,3/I(C⋄
n,3)). For upper bound,

as z1 /∈ I(C⋄
n,3) so by Proposition 2.9

sdepth(S⋄
n,3/I(C⋄

n,3)) ≤ sdepth(S⋄
n,3/(I(C⋄

n,3) : z1)).

Since (S⋄
n,3/(I(C⋄

n,3) : z1)) ∼= (S⋆
n−4,3/I(P⋆

n−4,3))[z1]. Thus by Lemmas 2.7 and 3.5,

sdepth(S⋄
n,3/I(C⋄

n,3)) ≤ ⌈n

3
⌉,

if n ≡ 0(mod 3) then ⌈n−2
3 ⌉ = ⌈n

3 ⌉. If n ≡ 1(mod 3) or n ≡ 2(mod 3) then

⌈n − 2
3

⌉ ≤ sdepth(S⋄
n,3/I(C⋄

n,3)) ≤ ⌈n

3
⌉.

�

Proposition 4.6. For n ≥ 3, sdepth(I(Cn,3)/I(Pn,3)) ≥ ⌈n+2
3 ⌉.

Proof. For 3 ≤ n ≤ 4, as the minimal generators of I(Cn,3)/I(Pn,3) have degree 2, so by
[19, Lemma 2.1] sdepth(I(Cn,3)/I(Pn,3)) ≥ 2 = ⌈n+2

3 ⌉. If n = 5 then we use [11] to show
that there exist Stanley decompositions of desired Stanley depth. Let

H := x1x5K[x1, x3, x5] ⊕ x1y5K[x1, x3, y5] ⊕ y1x5K[x3, x5, y1] ⊕ y1y5K[x3, y1, y5]
⊕z1y5K[x3, y5, z1] ⊕ z1z5K[z1, z3, z5] ⊕ y1z5K[y1, y3, z5]

Clearly, H ⊂ I(C5,3)/I(P5,3). Let v ∈ I(C5,3)/I(P5,3) be a sqaurefree monomial such that
v /∈ H then deg(v) ≥ 3. Since

I(C5,3)/I(P5,3) = H ⊕v vK[supp(v)],

thus we have sdepth(I(C5,3)/I(P5,3)) ≥ 3 = ⌈5+2
3 ⌉. Now for n ≥ 6, let

U := (∪n−3
i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1}, xn−2yn−2, yn−2zn−2)
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be a squarefree monomial ideal of R := K[x3, . . . , xn−2, y3, . . . , yn−2, z3, . . . , zn−2]. Then
we have the following K-vector space isomorphism:

I(Cn,3)/I(Pn,3) ∼=

y1yn
R

U
[y1, yn] ⊕ x1yn

R[z2](
G(U), y3z2, z2z3

) [x1, yn] ⊕ z1yn
R[x2](

G(U), y3x2, x2x3
) [z1, yn]

⊕ y1xn
R[zn−1](

G(U), yn−2zn−1, zn−2zn−1
) [y1, xn] ⊕ y1zn

R[xn−1](
G(U), yn−2xn−1, xn−2xn−1

) [y1, zn]

⊕ x1xn
R[z1, z2, zn−1, zn](

G(U), yn−2zn−1, zn−2zn−1, zn−1zn, znz1, z1z2, y3z2, z2z3
) [x1, xn]

⊕ z1zn
R[x1, x2, xn−1, xn](

G(U), yn−2xn−1, xn−2xn−1, xn−1xn, xnx1, x1x2, y3x2, x2x3
) [z1, zn].

Clearly we can see that R/U ∼= Sn−4,3/I(Pn−4,3),

R[z2](
G(U), y3z2, z2z3

) ∼=
R[x2](

G(U), y3x2, x2x3
) ∼=

R[zn−1](
G(U), yn−2zn−1, zn−2zn−1

)
∼=

R[xn−1](
G(U), yn−2xn−1, xn−2xn−1

) ∼= S⋆
n−4,3/I(P⋆

n−4,3),

and
R[z1, z2, zn−1, zn](

G(U), yn−2zn−1, zn−2zn−1, zn−1zn, znz1, z1z2, y3z2, z2z3
)

∼=
R[x1, x2, xn−1, xn](

G(U), yn−2xn−1, xn−2xn−1, xn−1xn, xnx1, x1x2, y3x2, x2x3
) ∼= S⋄

n,3/I(C⋄
n,3).

Thus by Lemmas 3.2, 3.5, 4.5 and 2.7 we have

sdepth(I(Cn,3)/I(Pn,3)) ≥ min
{

⌈n − 4
3

⌉ + 2, ⌈n − 4 + 1
3

⌉ + 2, ⌈n − 2
3

⌉ + 2
}

= ⌈n + 2
3

⌉.

�

Theorem 4.7. For 1 ≤ m ≤ 3, n ≥ 3, sdepth(I(Cn,m)) ≥ sdepth(Sn,m/I(Cn,m)).

Proof. For m = 1, I(Cn,1) = Cn. Then the result follows by [4, Theorem 1.9] and
[21, Theorem 2.3]. If m = 2 or 3, consider the short exact sequence

0 −→ I(Pn,m) −→ I(Cn,m) −→ I(Cn,m)/I(Pn,m) −→ 0,

then by Lemma 2.5, sdepth(I(Cn,m)) ≥ min{sdepth(I(Pn,m)), sdepth(I(Cn,m)/I(Pn,m))}.
By Theorem 4.3 and we have sdepth(I(Pn,m)) ≥ ⌈n

3 ⌉+1, and by Propositions 4.4 and 4.6,
we have sdepth(I(Cn,m)/I(Pn,m)) ≥ ⌈n+2

3 ⌉ = ⌈n−1
3 ⌉ + 1, this completes the proof. �

5. Upper bounds for depth and Stanley depth of cyclic modules associ-
ated to Pn,m and Cn,m

Let m ≤ n, in general, we don’t know the values of depth and Stanley depth of
Sn,m/I(Pn,m). However, in the light of our observations, we propose the following question.

Question 1. Is depth(Sn,m/I(Pn,m)) = sdepth(Sn,m/I(Pn,m)) = ⌈n
3 ⌉⌈m

3 ⌉?

Let n ≥ 2, we have confirmed this question for the cases when 1 ≤ m ≤ 3 see Remark
3.1, and Lemma 3.2. If m = 4, we make some calculations for depth and Stanley depth
by using CoCoA, (for sdepth we use SdepthLib:coc [25]). Calculations give an affirmative
answer to Question 1 in the case (n, m) ∈ {(4, 4), (5, 4), (6, 4)}.
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Theorem 5.1. For n ≥ 2, depth(Sn,m/I(Pn,m)), sdepth(Sn,m/I(Pn,m)) ≤ ⌈n
3 ⌉⌈m

3 ⌉.

Proof. Without loss of generality, we assume that m ≤ n. We first prove the result for
depth. When m = 1, then I(Pn,1) = I(Pn), we have the required result by Remark 3.1.
For m = 2, 3 the result follows from Lemma 3.2. Let m ≥ 4, we will prove this result by
induction on m. Let v be a monomial such that

v :=


x2(m−1)x5(m−1) . . . x(n−4)(m−1)x(n−1)(m−1), if n ≡ 0(mod 3);
x1(m−1)x4(m−1) . . . x(n−3)(m−1)xn(m−1), if n ≡ 1(mod 3);
x2(m−1)x5(m−1) . . . x(n−3)(m−1)xn(m−1), if n ≡ 2(mod 3).

clearly v /∈ I(Pn,m) so by Corollary 2.8
depth(Sn,m/I(Pn,m)) ≤ depth(Sn,m/(I(Pn,m) : v)).

In all three cases | supp(v)| = ⌈n
3 ⌉ and Sn,m/(I(Pn,m) : v) ∼= (Sn,m−3/I(Pn,m−3))[supp(v)],

so by induction and Lemma 2.7

depth(Sn,m/I(Pn,m)) ≤ depth(Sn,m/(I(Pn,m) : v)) ≤ ⌈n

3
⌉⌈m − 3

3
⌉ + ⌈n

3
⌉ = ⌈m

3
⌉⌈n

3
⌉.

Similarly, we can prove the result for Stanley depth by using Proposition 2.9. �
Remark 5.2. For a positive answer to Question 1, one needs to prove that ⌈n

3 ⌉⌈m
3 ⌉ is a

lower bound for depth and Stanley depth of Sn,m/I(Pn,m). The lower bound ⌈diam(Pn,m)+1
3 ⌉

from Corollaries 2.11 and 2.13 which was helpful for the cases when 1 ≤ m ≤ 3 is
no more useful if m ≥ 4. For instance, depth(S4,4/I(P4,4)) = sdepth(S4,4/I(P4,4)) =
4, but this lower bound shows that depth(S4,4/I(P4,4)) ≥ 2 = ⌈diam(P4,4)+1

3 ⌉ and
sdepth(S4,4/I(P4,4)) ≥ 2 = ⌈diam(P4,4)+1

3 ⌉.
Theorem 5.3. For n ≥ 3 and m ≥ 1,

depth(Sn,m/I(Cn,m)) ≤
{

⌈n−1
3 ⌉ + (⌈m

3 ⌉ − 1)⌈n
3 ⌉, if m ≡ 1, 2(mod 3);

⌈n
3 ⌉⌈m

3 ⌉, if m ≡ 0(mod 3).
Proof. We prove this result by induction on m. If m = 1, then I(Cn,1) = I(Cn), by
[4, Proposition 1.3], we have the required result. For m = 2, 3 the result follows by
Theorems 3.3 and 3.6, respectively. Let m ≥ 4,

u :=


x3(m−1)x6(m−1) . . . x(n−3)(m−1)xn(m−1), if n ≡ 0(mod 3);
x1(m−1)x4(m−1) . . . x(n−6)(m−1)x(n−3)(m−1)x(n−1)(m−1), if n ≡ 1(mod 3);
x2(m−1)x5(m−1) . . . x(n−3)(m−1)xn(m−1), if n ≡ 2(mod 3).

Clearly u /∈ I(Cn,m) and Sn,m/(I(Cn,m) : u) ∼= (Sn,m−3/I(Cn,m−3))[supp(u)], since in all
the cases | supp(u)| = ⌈n

3 ⌉, if m ≡ 1, 2(mod 3) so by induction and Lemma 2.7

depth(Sn,m/(I(Cn,m) : u)) ≤ ⌈n − 1
3

⌉+(⌈m − 3
3

⌉−1)⌈n

3
⌉+⌈n

3
⌉ = ⌈n − 1

3
⌉+(⌈m

3
⌉−1)⌈n

3
⌉.

Otherwise, by induction and Lemma 2.7 we have

depth(Sn,m/(I(Cn,m) : u)) ≤ ⌈n

3
⌉⌈m − 3

3
⌉ + ⌈n

3
⌉ = ⌈n

3
⌉⌈m

3
⌉.

�
Theorem 5.4. For n ≥ 3 and m ≥ 1, sdepth(Sn,m/I(Cn,m)) ≤ ⌈n

3 ⌉⌈m
3 ⌉.

Proof. The proof is similar to the proof of Theorem 5.3 by using Corollary 3.4 instead of
Theorems 3.3. �
Remark 5.5. The upper bounds for Stanley depth of Sn,m/I(Pn,m) and Sn,m/I(Cn,m)
as proved in Theorems 5.1 and 5.4 are too sharp. On the bases of our observations, we
formulate the following question. A positive answer to this question will prove Conjecture
1.
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Question 2. Is sdepth(I(Pn,m)), sdepth(I(Cn,m)) ≥ ⌈n
3 ⌉⌈m

3 ⌉?
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