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Abstract
Recall that a ring R is said to be a quasi regular ring if its total quotient ring q(R) is
von Neumann regular. It is well known that a ring R is quasi regular if and only if it is
a reduced ring satisfying the property: for each a ∈ R, annR(annR(a)) = annR(b) for
some b ∈ R. Here, in this study, we extend the notion of quasi regular rings and rings
which satisfy the aforementioned property to modules. We give many characterizations
and properties of these two classes of modules. Moreover, we investigate the (weak) quasi
regular property of trivial extension.
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1. Introduction
In this paper, all rings are assumed to be commutative with 1 ̸= 0 and all modules are

nonzero unital. Let R always denote such a ring and M always denote such an R-module.
The concept of von Neumann regular rings has an important place in commutative algebra.
There have been many generalizations and applications of von Neumann regular rings to
other areas such as graph theory. See, for example, [2] and [10]. Previously, recall that
a ring R is said to be a von Neumann regular (for short, vn-regular) ring if for each
x ∈ R, x = x2y for some y ∈ R [14]. Note that a ring R is vn-regular if and only if for
each x ∈ R, (x) = (e) for some idempotent element e ∈ R, where (x) is the principal
ideal generated by x ∈ R if and only if it is a reduced and zero dimensional ring, i.e, every
prime ideal is maximal if and only if the localization RP of R at P is a field for each
prime ideal P of R. Jayaram and Tekir extend the notion of vn-regular rings to modules
in terms of M -regular elements [8]. Let M be an R-module. Then e ∈ R is said to be an
M -regular (resp., a weak idempotent) element if eM = e2M (resp., em = e2m for each
m ∈ M). Note that all idempotent elements are weak idempotent and these concepts
are equal when M is a faithful module. M is called a vn-regular R-module if for each
m ∈M, there is an e ∈ R such that Rm = eM = e2M [8]. It is well known that a finitely
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generated R-module M is a vn-regular module if and only if for each m ∈ M, there is a
weak idempotent element e ∈ R such that Rm = eM [8, Lemma 5].

One of the generalization of vn-regular rings is quasi regular (sometimes called comple-
mented) rings. A ring R is called a quasi regular ring if its total quotient ring q(R) is a
vn-regular ring. In [4, Theorem 2.2], it was shown that a ring R is a quasi regular ring if and
only if R is a reduced ring and satisfies the condition: for each a ∈ R, annR(annR(a)) =
annR(b) for some b ∈ R, where annR(a) = {x ∈ R : xa = 0}. Here, we call a ring R
weak quasi regular (for short, wq-regular) if for each a ∈ R, annR(annR(a)) = annR(b)
for some b ∈ R. Note that all quasi regular rings are wq-regular. But the converse is not
true: just consider a non-reduced principal ideal ring. For instance, Z4 is a wq-regular
ring, but is not a quasi regular ring.

Our aim in this article is to extend the notion of quasi regular rings and wq-regular
rings to modules. For the sake of thoroughness we give some definitions which we will
need throughout this study. For each submodules N and K of M, the residual of N by
K is defined by (N :R K) = {r ∈ R : rK ⊆ N}. In particular, if N = 0, we use
annR(K) to denote (0 :R K). Also for each cyclic submodule Rm, we use annR(m) instead
of annR(Rm). Similarly, for each ideal J of R and each submodule K of N, one can define
residual of N by J as (N :M J) = {m ∈ M : Jm ⊆ N}. In case N = 0, we will use
annM (J) instead of (0 :M J) and also for each a ∈ R, we denote annM (Ra) by annM (a).

Also the set Z(M) of zero divisors on M and the set T (M) of all torsion elements of
M are defined as follows:

Z(M) = {a ∈ R : annM (a) ̸= 0} and
T (M) = {m ∈M : annR(m) ̸= 0}.

Note that T (M) is not always a submodule of M and similarly Z(M) may not be an
ideal of R. M is called a torsion free module if T (M) = 0. Also if T (M) = M, then
M is called a torsion module. Otherwise, we call that M is a non-torsion module. Assume
that S = R − Z(M). It is easily seen that S is a multiplicatively closed subset (briefly
m.c.s) of R. Also the localization MS is an RS-module and it is called the total quotient
module of M. We denote the total quotient module by q(M). We call that M is a quasi
regular R-module if its total quotient module q(M) is a vn-regular RS module, where
S = R − Z(M). Moreover, M is said to be a wq-regular module if for each m ∈ M, there
is an a ∈ R such that

annM (annR(m)) = annM (a).

A submodule N of M is said to be a ∗-submodule if

N = O(S) = {m ∈M : sm = 0 for some s ∈ S}

for some m.c.s S ⊆ R. N is said to be an α-submodule if for each m1, m2 ∈ N with
annR(m1) ∩ annR(m2) = annR(m3), we have m3 ∈ N. Also N is called an annihila-
tor submodule if annM (annR(N)) = N. We study relations between these submodules
and establish many characterizations of wq-regular modules in terms of ∗-submodules,
α-submodules and annihilator submodules (see Theorem 2.9-2.31). Also we prove that
if q(M) is a finitely generated multiplication module (not necessarily M is) and M is
a non-torsion module, then M is a quasi regular module if and only if M is a reduced
wq-regular module (compare the result [4, Theorem 2.2]). We also investigate whether
the notion of wq-regular modules is invariant under homomorphism and direct products.
In Section 3, we determine when the trivial extension R ∝M (idealization) of M is quasi
regular and wq-regular, respectively (see Proposition 3.1 and Theoerem 3.4). In Section
4, we investigate the extension of wq-regular modules. In particular, we show that when
polynomial modules and formal power series modules are wq-regular (see Theorem 4.6).
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2. Characterizations of quasi regular modules
Throughout the section, we will examine ∗-submodules, α-submodules, annihilator sub-

modules and use them to characterize wq-regular modules.
Definition 2.1. Let q(M) be the total quotient module of an R-module M . Then

(i) M is called a quasi regular module if its total quotient module is vn-regular.
(ii) M is called a wq-regular module if for each m ∈ M, there is an a ∈ R such that

annM (annR(m)) = annM (a).
Example 2.2. (i) Every torsion free module is wq-regular. To see this, take a nonzero
element m ∈M. Then annR(m) = 0, and so annM (annR(m)) = M = annM (0).

(ii) Every simple module is a wq-regular module. Assume M is a simple R-module.
Then Rm = M or Rm = 0 for every m ∈ M. If Rm = 0, then annM (annR(m)) = 0 =
annM (1). Otherwise, we would have annM (annR(m)) = M = annM (0).

(iii) Assume R is a principal ideal ring. Then for any m ∈M, annR(m) = (a) for some
a ∈ R. Then we can conclude that annM (annR(m)) = annM (a). Hence every module over
a principal ideal ring R is wq-regular.
Example 2.3. (i) Every vn-regular module is a quasi-regular module. To see this, take a
vn-regular R-module M. Let m

s ∈ q(M) for some m ∈ M, s ∈ S = R − Z(M). Then note
that RS(m

s ) = (Rm)S . Also we have Rm = xM = x2M for some x ∈ R because M is
vn-regular. Then we can conclude that

RS(m

s
) = (Rm)S = (xM)S = x

1
q(M)

= (x2M)S = (x

1
)2q(M).

Hence, M is quasi regular R-module.
(ii) Every simple module is vn-regular [8, Example 2], hence a quasi regular module by

(i). In particular, the Z-module Zp is a quasi regular module for each prime number p.
(iii) Let n > 1 be a square free integer, i.e, n = p1p2 · · · pr, where pi’s are distinct prime

numbers. Consider the Z-module Zn. Then by [8, Example 5], Zn is vn-regular and thus
a quasi regular module by (i).

(iv) Let n > 1 be a non-square free integer. We may assume that n = pα1
1 pα2

2 . . . pαr
r for

some distinct prime numbers p1, p2, . . . , pr, where α1 ≥ 2 and α2, α3, . . . , αr ≥ 1. Consider
the Z-module Zn. Then note that Z(Zn) = p1Z ∪ p2Z ∪ · · · ∪ prZ is a union of prime
ideals of Z. Now, take S = Z− Z(Zn). Then it is clear that q(Zn) is a finitely generated
multiplication ZS-module. Since Zn is not a reduced ring, by [4, Theorem 2.2] its total
quotient ring is not vn-regular. Now, it can be easily verified that

S = π(S) = {a + nZ : gcd(a, pi) = 1 for each 1 ≤ i ≤ r}
is the set of regular elements of Z/nZ, where π : Z → Z/nZ is the canonical homomor-
phism. Furthermore,

annZS
(q(Zn)) = (annZ(Zn))S = (nZ)S

and also ZS/annZS
(q(Zn)) ∼= (Z/nZ)S . Again by [4, Theorem 2.2], ZS/annZS

(q(Zn)) is
not a vn-regular ring. Then by [8, Theorem 1], q(Zn) is not a vn-regular ZS-module.
Hence, Zn is not a quasi regular Z-module but wq-regular.
Definition 2.4. Let N be a submodule of an R-module M. Then,

(i) N is called a ∗-submodule if N = O(S) = {m ∈M : sm = 0 for some s ∈ S}, where
S ⊆ R is a m.c.s of R.

(ii) (N :R M) is a ∗-ideal if it is a ∗-submodule of the R-module R.

Let N be a submodule of M. Then N is called an m-submodule if N = (N :R M)M. Note
that an R-module M is called a multiplication module if each submodule is an m-submodule
[3].
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Lemma 2.5. (i) Let M be a non-torsion module and N a ∗-submodule of M . Then
(N : M) is a ∗-ideal of R.

(ii) Let N be a prime m-submodule of M in which (N : M) is a ∗-ideal. Then N is a
∗-submodule.

Proof. (i) Assume N is a ∗-submodule of M. Then N = O(S) for some m.c.s S of R. As
M is non-torsion, we get annR(m) = 0 for some m ∈ M. Let r ∈ (N :R M). Then
rm ∈ N , and so s(rm) = 0 for some s ∈ S. As annR(m) = 0, we have sr = 0. Now set
←−−−
O(S) = {x ∈ R : sx = 0 for some s ∈ S}. Note that r ∈

←−−−
O(S), and so (N :R M) ⊆

←−−−
O(S). Let x ∈

←−−−
O(S). Then sx = 0 for some s ∈ S. This implies that s(xM) = 0, and

so xM ⊆ O(S) = N and this yields x ∈ (N :R M). Accordingly, (N :R M) =
←−−−
O(S) is a

∗-ideal of R.
(ii) Since (N : M) is a ∗-ideal, (N :R M) =

←−−−
O(S) = {x ∈ R : sx = 0 for some

s ∈ S}, where S is a m.c.s of R. Now, we will show that N = O(S). Let m ∈ N. Since
N = (N :R M)M, we get m =

n∑
i=1

aimi, ai ∈ (N :R M) and mi ∈ M. As (N :R M) =
←−−−
O(S), there is si ∈ S such that siai = 0 for each i = 1, 2, ..., n. Put s = s1s2...sn. Then
note that sm =

n∑
i=1

(sai)mi = 0, and so m ∈ O(S). Then we conclude that N ⊆ O(S). For

the converse, take m ∈ O(S). Then sm = 0 for some s ∈ S. It is clear that S ∩ (N :R
M) = ∅ since (N :R M) =

←−−−
O(S) and 0 /∈ S. This implies s /∈ (N :R M), and so m ∈ N as

N is a prime submodule. Accordingly, N = O(S). �
A submodule N of an R-module M is said to be a Baer submodule if for each m ∈

N, annM (annR(m)) ⊆ N.

Definition 2.6. A submodule N of an R-module M is said to be an α-submodule if for
each m1, m2 ∈ N with annR(m1) ∩ annR(m2) = annR(m3), we have m3 ∈ N.

Baer ideals and α-ideals are defined as Baer submodules and α-submodules of the R-
module R, respectively. In fact, α-ideals are exactly strong Baer ideals of R [7].

Proposition 2.7. (i) Every ∗-submodule is a Baer submodule.
(ii) Assume M is a module over a reduced ring R satisfying the condition: for each m ∈

M, annR(m) = annR(r) for some r ∈ R. Then every α-submodule is a Baer submodule.
(iii) Every ∗-submodule is an α-submodule.

Proof. (i) Assume that N = O(S) for some m.c.s S of R. Take m ∈ N. Then there is
an s ∈ S so that sm = 0. Let m′ ∈ annM (annR(m)). Then we have annR(m)m′ = 0,
and so sm′ = 0 since s ∈ annR(m). This implies that m′ ∈ O(S) = N. Thus N is a Baer
submodule.

(ii) Let m′ ∈ annM (annR(m)) with m ∈ N. Then annR(m)m′ = 0, and so annR(m) ⊆
annR(m′). By assumption, we have annR(m) = annR(x) and annR(m′) = annR(y) for
some x, y ∈ R. Then annR(x) ⊆ annR(y). Since R is a reduced ring, we have annR(m′) =
annR(y) = annR(xy) = annR(ym). Since N is an α-submodule and ym ∈ N, we get
m′ ∈ N , and so annM (annR(m)) ⊆ N. Accordingly, N is a Baer submodule.

(iii) Let N be a ∗-submodule, i.e, N = O(S) for some m.c.s S of R. Assume that
annR(m) ∩ annR(m′) = annR(m′′) with m, m′ ∈ N and m′′ ∈ M. Then there are s, s′ ∈
S such that sm = s′m′ = 0. Now put t = ss′. Then t ∈ S and t ∈ annR(m)∩annR(m′) and
this yields that tm′′ = 0. Thus we have m′′ ∈ O(S) = N. Accordingly, N is an α-submodule
of M. �

Remember that M is said to be a reduced R-module if for r ∈ R, m ∈ M and rm = 0,
we have rM ∩Rm = 0, or equivalently, r2m = 0 implies rm = 0 [9].
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Proposition 2.8. (i) Let N be a prime m-submodule of a non-torsion module M . Then
N is a ∗-submodule if and only if (N :R M) is a ∗-ideal of R.

(ii) Let M be a non-torsion reduced module over a quasi-regular ring R. Then any prime
m-submodule N of M is a Baer submodule if and only if (N :R M) is a Baer ideal.

Proof. (i) It can be obtained from Lemma 2.5 (i) and (ii).
(ii) Assume (N :R M) is a Baer ideal and N is a prime m-submodule of M. First note

that R is a reduced ring. By [7, Corollary 3], (N :R M) is a ∗-ideal of R. By Lemma 2.5
(ii), N is a ∗-submodule. Then by Proposition 2.7 (i), N is a Baer submodule of M. For the
converse, assume N is a Baer submodule. Let r ∈ (N :R M). As M is non-torsion, we get
annR(m) = 0 for some m ∈M. Then note that rm ∈ N and annR(rm) = annR(r). As N is
a Baer submodule, we can conclude that annM (annR(rm)) = annM (annR(r)) ⊆ N. Now
we will show that, for each ideal I of R, (annM (I) : M) = annR(I). The containment
annR(I) ⊆ (annM (I) : M) always holds. Let x ∈ (annM (I) : M). Then xM ⊆ annM (I),
and so I(xM) = 0. This implies that I(xm) = 0, and so Ix ⊆ annR(m) = 0. Then we
have x ∈ annR(I), which yields (annM (I) : M) = annR(I). Since annM (annR(r)) ⊆ N,
we have (annM (annR(r)) :R M) = annR(annR(r)) ⊆ (N :R M). Thus (N :R M) is a Baer
ideal. �

We now characterize wq-regular modules in terms of ∗-submodules.

Theorem 2.9. Let M be a reduced faithful module. Then M is a wq-regular module if
and only if annM (annR(m)) is a ∗-submodule for each m ∈ T (M).

Proof. Assume that M is a wq-regular module. Take an element m ∈ T (M). Then
annR(m) ̸= 0. As M is a wq-regular module, annM (annR(m)) = annM (r) for some
r ∈ R. Since M is faithful, r ̸= 0. Otherwise, we would have annR(m) = annR(M) = 0, a
contradiction. As M is a reduced module, R is a reduced ring, and so S = {rn : n ∈
N} is an m.c.s of R. Also note that annM (annR(m)) = annM (r) = O(S), and so
annM (annR(m)) is a ∗-submodule. For the converse, assume annM (annR(m)) is a ∗-
submodule for each m ∈ T (M). Let m ∈ M. If annR(m) = 0, then annM (annR(m)) =
M = annM (0). Assume that m ∈ T (M). By assumption, annM (annR(m)) = O(S) for
some m.c.s S of R. This yields rm = 0 for some r ∈ S, which yields annM (annR(m)) ⊆
annM (r). Let m′ ∈ annM (r). Then we have rm′ = 0, and so m′ ∈ O(S) = annM (annR(m)).
Thus annM (annR(m)) = annM (r). �
Proposition 2.10. Let M be a non-torsion wq-regular module. Then R is a wq-regular
ring and for each m ∈M, there is an r ∈ R such that annR(m) = annR(r).

Proof. Let r ∈ R. Since M ̸= T (M), we get annR(m) = 0 for some m ∈ M and
also note that annR(r) = annR(rm). As M is wq-regular, there is an s ∈ R such that
annM (s) = annM (annR(rm)), and so annM (s) = annM (annR(r)). Then we conclude
that

annR(annR(r)) = (annM (annR(r)) :R M)
= (annM (s) :R M)
= annR(s).

Therefore, R is a wq-regular ring. Take an element m∗ ∈ M. As M is wq-regular,
annM (annR(m∗)) = annM (a) for some a ∈ R. This yields annR(annR(m∗)) = annR(a),
and so annR(m∗) = annR(annR(a)) = annR(b) for some b ∈ R because R is a wq-regular
ring. �
Proposition 2.11. Assume M is a non-torsion module and annM (I) is an m-submodule
of M for each ideal I of R. If R is a wq-regular ring and for each m ∈ M, annR(m) =
annR(r) for some r ∈ R, then M is a wq-regular module.
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Proof. Assume R is a wq-regular ring and for each m ∈M, annR(m) = annR(r) for some
r ∈ R. Let m ∈M. Then by assumption, annR(m) = annR(r) for some r ∈ R. As R is wq-
regular, there is an s ∈ R so that annR(annR(r)) = annR(s), and so (annM (annR(r)) :R
M) = annR(s). This yields that (annM (annR(r)) :R M) = (annM (s) :R M). Since
annM (I) is an m-submodule for each ideal I of R, we get

annM (annR(r)) = (annM (annR(r)) :R M)M
= (annM (s) :R M)M
= annM (s).

Accordingly, M is a wq-regular module. �
The following example shows that an R-module satisfying all conditions in Proposition

2.11 may not be a multiplication module.

Example 2.12. Consider a torsion free module but not a multiplication module, e.g, a
vector space V over a field F with dimF (V ) > 1. Note that V is a non-torsion module and
for each 0 ̸= m ∈ V, annF (m) = 0 = annF (1). Also it is easily seen that annV (0) = V and
annV (F ) = 0 are m-submodules of V. But V can not be a multiplication module.

The next Theorem 2.13 characterizes wq-regular modules in terms of wq-regular rings.

Theorem 2.13. Let M be a non-torsion module and annM (I) is an m-submodule for
each ideal I of R. Then the followings are equivalent:

(i) M is wq-regular module.
(ii) R is wq-regular ring and for each m ∈M, there is an r ∈ R such that annR(m) =

annR(r).

Proof. It can be obtained from Proposition 2.10 and Proposition 2.11. �
Definition 2.14. Let M be a finitely generated R-module. Then,

(i) M is said to satisfy the condition (#) if K is a minimal prime submodule, then
K = (K :R M)M.

(ii) M is said to satisfy the condition (P) if
∩

(PM) = (
∩

P )M for all prime ideals
P minimal over annR(M).

(iii) M is said to satisfy the condition (##) if it satisfies the condition (#) and (P).

Remark that a finitely generated multiplication module satisfies the conditions (#) and
(##). But the converse is not true.

Example 2.15. Every finite dimensional vector space satisfies (#) and (##). In partic-
ular, consider the Euclidean Plane R-module R2. Since 0 is a prime submodule, it is a
minimal prime submodule. It is straightforward that the R-module R2 satisfies (#) and
(##). But it is not a multiplication module.

Proposition 2.16. Let M be a finitely generated module and K be a submodule of M .
Assume that M satisfies the condition (#). Then

(i) If P is a prime minimal over annR(M), then PM is a minimal prime submodule.
(ii) If K is a minimal prime submodule, then (K :R M) is a prime ideal minimal over

annR(M).

Proof. (i) Assume P is a prime ideal minimal over annR(M). By [11, Proposition 8],
(PM :R M) = P . By [12, Theorem 3.3], PM is contained in some prime submodule N
with (N :R M) = P . Again by Zorn’s Lemma, PM is contained in N1 where N1 is a prime
submodule minimal over PM such that (N1 :R M) = P . The reader can easily verify that
N1 is a minimal prime submodule.

(ii) Assume K is a minimal prime submodule. Thus (K :R M) is a prime ideal. Since
annR(M) is contained in (K :R M), there is a prime P minimal over annR(M) such that
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P is contained in (K :R M). So PM is contained in K. By (i), PM is a minimal prime
submodule, thereby PM = K. Again (K :R M) = (PM :R M) = P by [11, Proposition
8]. �
Proposition 2.17. Let M be a finitely generated module and I be an ideal containing
annR(M). Assume that every prime submodule minimal over IM is an m-submodule.
Then

(i) If P is minimal over I, then PM is a prime minimal over IM .
(ii) If K is minimal over IM , then (K :R M) is minimal over I.

Proof. The proof is similar to the proof of Proposition 2.16. �
We shall now prove several lemmas that we need.

Lemma 2.18. Let M be a non-torsion wq-regular module over a reduced ring R. Then
M satisfies annihilator condition, i.e, for any m1, m2 ∈M, there is an m3 ∈M such that

annR(m1) ∩ annR(m2) = annR(m3).
Proof. By Proposition 2.10, annR(m1) = annR(r1) and annR(m2) = annR(r2) for some
r1, r2 ∈ R. Since R is a reduced wq-regular ring, it is quasi regular, and so satisfies
annihilator condition, i.e, annR(r1) ∩ annR(r2) = annR(r3) for some r3 ∈ R. Choose
m ∈ M − T (M). Then annR(r3) = annR(r3m). Put m3 = r3m. So we have annR(m1) ∩
annR(m2) = annR(m3). Thus M satisfies annihilator condition. �
Lemma 2.19. Let N be a Baer submodule of an R-module M . If annR(m) = annR(r) with
m ∈ N, then r ∈ (N :R M).
Proof. Since N is a Baer submodule, we have annM (annR(m)) = annM (annR(r)) ⊆ N ,
and so (annM (annR(r)) :R M) ⊆ (N :R M). This yields r ∈ (N :R M). �
Lemma 2.20. Assume that M is a finitely generated module satisfying the condition (P)
and I is an ideal containing annR(M). Assume that every prime submodule minimal over
IM is an m-submodule. Then rad(IM) = rad(I)M.

Proof. rad(IM) =
∩

Nα∈Min(IM)
Nα = [

∩
(Nα :R M)M ] = [

∩
(Nα :R M)]M =

√
IM . �

Definition 2.21. An m-submodule N is said to be a strong m-submodule if all prime
submodules minimal over N are m-submodules.

Note that M is a multiplication module if and only if every submodule is a strong
m-submodule.
Lemma 2.22. Assume that M is a finitely generated reduced module and N is a strong
m-submodule which is also a Baer submodule. Then every prime submodule minimal over
N is a Baer submodule.
Proof. Let N ′ be a minimal over N. Assume annR(m) ⊆ annR(m′) with m ∈ N ′. By
Proposition 2.17, (N ′ :R M) is a minimal over (N :R M). As m ∈ N ′ = (N ′ :R M)M, m =
n∑

i=1
aimi for some ai ∈ (N ′ :R M) and mi ∈M. Then there exist bi /∈ (N ′ :R M) and ni ∈ N

so that ani
i bi ∈ (N :R M). Since N is a Baer submodule, (N :R M) =

√
(N :R M), and

so aibi ∈ (N :R M). Put b = b1b2....bn. Then b /∈ (N ′ :R M) and aib ∈ (N :R M), and so
aibmi ∈ (N :R M)M = N, and we have bm ∈ N. Since annR(bm) ⊆ annR(bm′) and N is
a Baer submodule, bm′ ∈ N ⊆ N ′. As b /∈ (N ′ :R M), we deduce m′ ∈ N ′, and so N ′ is a
Baer submodule. �
Lemma 2.23. Let M be a finitely generated reduced module satisfying the condition (P)
and N a strong m-submodule which is also a Baer submodule. Then N is the intersection
of prime Baer submodules.
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Proof. It can be obtained from Lemma 2.20 and Lemma 2.22. �

Lemma 2.24. Assume M is a non-torsion reduced module and N is a Baer submodule
which is also a prime submodule. Then (N :R M) is a prime and Baer ideal.

Proof. We claim that R is a reduced ring. Assume that a2 = 0 for some a ∈ R. As M
is a non-torsion module, we have annR(m) = 0 for some m ∈ M. Then a2m = 0 and
thereby am = 0 since M is reduced. This yields a = 0, and thus R is a reduced ring. Let
annR(x) = annR(y) for some x ∈ (N :R M) and y ∈ R. Then annR(xm) = annR(x) =
annR(ym). Since xm ∈ N and N is a Baer submodule, we conclude that ym ∈ N. Also
note that m /∈ N. As N is a prime submodule, y ∈ (N :R M). Then by [7, Lemma 1],
(N :R M) is a Baer ideal. Since N is a prime submodule, it follows that (N :R M) is a
Baer and prime ideal. �

Lemma 2.25. Let M be a finitely generated reduced non-torsion wq-regular module. Fur-
ther, assume M satisfies the condition (P). Let N be a strong m-submodule which is also
a Baer submodule. Then N is an α-submodule.

Proof. Assume annR(m1) ∩ annR(m2) = annR(m3) with m1, m2 ∈ N but m3 /∈ N. By
Lemma 2.23, there is a prime Baer submodule N ′ with m3 /∈ N ′. By Proposition 2.10,
annR(mi) = annR(ri) for some ri ∈ R, i = 1, 2, 3. By Lemma 2.19, r1, r2 ∈ (N ′ :R
M). Since R is quasi-regular, there are r′

1, r′
2 ∈ R so that r1r′

1 = 0 = r2r′
2 with annR(r1 +

r′
1) = annR(r2 + r′

2) = 0. Since r′
1r′

2m3 = 0 ∈ N ′ and m3 /∈ N ′, we have either r′
1 ∈ (N ′ :R

M) or r′
2 ∈ (N ′ :R M). By Lemma 2.24, (N ′ :R M) is a Baer ideal and either r1 + r′

1 ∈
(N ′ :R M) or r2 + r′

2 ∈ (N ′ :R M), a contradiction. Thus N is an α-submodule. �

Lemma 2.26. Let M be a non-torsion wq-regular module over a reduced ring R. Then
every α-submodule is a ∗-submodule.

Proof. Let N be an α-submodule. Put S = {r ∈ R : annR(m) = annR(annR(r)) for
some m ∈ N}. Note that by Proposition 2.10, for each m ∈ M, annR(m) = annR(r) for
some r ∈ R. Also by Proposition 2.7, N is a Baer submodule. It can be easily seen
that S is a m.c.s. Let m ∈ N . Then annR(m) = annR(a) for some a ∈ R. As R is a
wq-regular, annR(a) = annR(annR(r)) for some r ∈ R. So annR(m) = annR(annR(r))
and this implies that rm = 0 and r ∈ S. Then we have m ∈ O(S), i.e, N ⊆ O(S). Let
m′ ∈ O(S). Then we have r′m′ = 0 for some r′ ∈ S. Also annR(m) = annR(annR(r′)) for
some m ∈ N. As R is wq-regular, annR(m′) = annR(a′) for some a′ ∈ R. Then r′ ∈
annR(a′), and so annR(annR(a′)) = annR(annR(m′)) ⊆ annR(r′) = annR(annR(m)).
Since m ∈ N and N is a Baer submodule, we have m′ ∈ N and thus N = O(S). Hence
N is a ∗-submodule. �

Lemma 2.27. Let M be an R-module. Assume that every α-submodule is also a ∗-
submodule. Then M is a wq-regular.

Proof. First we prove that, N = annM (annR(m)) is an α-submodule for each m ∈
T (M). Let annR(m′)∩annR(m′′) = annR(m′′′) with m′, m′′ ∈ N. Then we have annR(m) ⊆
annR(m′) and annR(m) ⊆ annR(m′′). This implies that annR(m) ⊆ annR(m′)∩annR(m′′) =
annR(m′′′) and this yields that m′′′ ∈ annM (annR(m′′′)) ⊆ annM (annR(m)) = N. Thus
N is an α-submodule. The rest is similar to Theorem 2.9. �

The following Theorem 2.28 characterizes wq-regular modules in terms of ∗-submodules
and α-submodules.

Theorem 2.28. Let M be a non-torsion reduced module. Then M is a wq-regular module
if and only if every Baer submodule is a ∗-submodule if and only if every α-submodule is
a ∗-submodule.
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Proof. It can be obtained from Lemma 2.26, Lemma 2.27, Proposition 2.7 and Theorem
2.9. �
Definition 2.29. Let N be a submodule of M. Then N is called an annihilator submodule
if annM (annR(N)) = N. In particular, an annihilator ideal is an ideal I of R which is an
annihilator submodule of the R-module R.

Note that a cyclic submodule Rm is an annihilator submodule if and only if it is a Baer
submodule.

Lemma 2.30. Let M be an R-module. Then,
(i) Every annihilator submodule is an α-submodule.
(ii) Let M be a non-torsion module and N an annihilator submodule. Then (N :R M) is

an annihilator ideal.

Proof. (i) Assume N is an annihilator submodule, i.e, N = annM (annR(N)). Suppose
annR(m) ∩ annR(m′) = annR(m′′) for some m, m′ ∈ N. This yields annR(N)m =
0 = annR(N)m′, and so annR(N) ⊆ annR(m) ∩ annR(m′). Then we can conclude that
annR(N) ⊆ annR(m′′), and so m′′ ∈ annM (annR(m′′)) ⊆ annM (annR(N)) = N. So that
N is an α-submodule.

(ii) Let N = annM (annR(N)). Since M is non-torsion, (N :R M) = annR(annR(N)).
Let r ∈ annR(N). Then rN = 0, and so r(N :R M)M = 0. Choose m ∈M − T (M). This
implies r(N :R M)m = 0, and so r(N :R M) = 0 and hence r ∈ annR(N :R M). Then
we can conclude annR(annR(N :R M)) ⊆ annR(annR(N)), and so annR(annR(N :R
M)) ⊆ (N :R M). This implies that (N :R M) = annR(annR(N :R M)). Consequently,
(N :R M) is an annihilator ideal. �

The following Theorem 2.31 characterizes wq-regular modules in terms of annihilator
submodules.

Theorem 2.31. Let M be a non-torsion module over a reduced ring R. Then M is a
wq-regular module if and only if every annihilator submodule is a ∗-submodule.

Proof. Assume M is a wq-regular module. By Lemma 2.30, every annihilator submodule
is an α-submodule, and so by Lemma 2.26, every annihilator submodule is a ∗-submodule.
For the converse, assume every annihilator submodule is a ∗-submodule. Let m ∈ N. Put
N = annM (annR(m)). Then it is easily seen that N is an annihilator submodule and thus
a ∗-submodule. Then there is a m.c.s S of R so that annM (annR(m)) = O(S). The rest
is similar to Theorem 2.9. �

We now study quasi regular modules.

Theorem 2.32. (i) Let M be a non-torsion reduced wq-regular module. Assume that
q(M) is a multiplication module. Then q(M) is a vn-regular module.

(ii) Assume that q(M) is a finitely generated vn-regular module. Then M is a reduced
wq-regular module.

Proof. (i) Let m
t ∈ q(M) and S = R−Z(M). Put N = RS(m

t ). As q(M) is a multiplication
module and N is a finitely generated submodule of q(M), then N = Jq(M) for some finitely
generated ideal J of RS . Then there are a1

s1
, . . . , an

sn
∈ RS such that J = RS(a1

s1
) + . . . +

RS(an
sn

). Now, we will show that RS(a1
s1

) = RS(a1
s1

)2, and so RS(a1
s1

) = RS( e1
t1

) for some
idempotent e1

t1
∈ RS . As M is non-torsion, we have ann(m∗) = 0 for some m∗ ∈M. Since

M is wq-regular, annM (annR(a1m∗)) = annM (b1) and thereby annR(annR(a1m∗)) =
annR(b1). Note that annR(a1m∗) = annR(a1), and so annR(annR(a1)) = annR(b1). As
M is a reduced non-torsion module and M is a wq-regular module, by Proposition 2.10
and [4, Theorem 2.1], R is quasi-regular and thus a1 + b1 is a regular element and a1x =
a2

1, where x = a1 + b1. Now we will show that x ∈ S. Let m′ ∈M such that xm′ = 0. Since
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M is wq-regular, M satisfies the condition annR(m′) = annR(r) for some r ∈ R, and
so x ∈ annR(m′) = annR(r) and this yields that xr = 0. Since x is regular, r = 0,
and so annR(r) = R = annR(m′) and thus m′ = 0 and this yields x ∈ S. This implies
that RS(a1

s1
)2 = RS(a2

1
s2

1
) = RS(a1x

s2
1

) = RS(a1
s1

x
s1

) = RS(a1
s1

) since x
s1

is a unit element of
RS . Thus we have RS(a1

s1
) = RS( e1

t1
) for some idempotent e1

t1
∈ RS . Similarly, we get

RS(ai
si

) = RS( ei
ti

) for some idempotent ei
ti
∈ RS , and so J = RS( e

s) for some idempotent
e
s ∈ RS . Note that e

s is weak idempotent RS-module q(M). Also RS(m
t ) = Jq(M) =

e
sq(M). Thus q(M) is a vn-regular module.

(ii) By [8, Lemma 10], q(M) is a reduced RS-module, where S = R − Z(M). Then
it is easily seen that M is reduced. Take an element m ∈ M. As q(M) is a finitely
generated vn-regular RS-module, we deduce RS(m

1 ) = e
sq(M) for some weak idempotent

e
s ∈ RS . Note that (1 − e

s) e
sq(M) = (1 − e

s)RS(m
1 ) = 0, and so (1 − e

s)m
1 = 0 and this

yields (1 − e
s) ∈ annRS

(m
1 ) and thus we have annMS

(annRS
(m

1 )) ⊆ annMS
(1 − e

s). Let
m∗

s∗ ∈ annMS
(1 − e

s). Then we have m∗

s∗ = e
s

m∗

s∗ . Take an element r′

s′ ∈ annRS
(m

1 ). Then
we conclude that r′

s′
e
sq(M) = 0. Note that m∗

s∗ = e
s

m∗

s∗ ∈ e
sq(M), and so r′

s′
m∗

s∗ = 0 and this
yields m∗

s∗ ∈ annMS
(annRS

(m
1 )). Then we conclude that

annMS
(annRS

(m

1
)) = (annM (annR(m)))S

= annMS
(1− e

s
)

= (annM (s− e))S .

Then one can easily show that annM (annR(m)) = annM (s − e). Accordingly, M is a
wq-regular module. �

Compare the following result with [4, Theorem 2.1 ].
Corollary 2.33. Let M be a non-torsion module in which q(M) is a finitely generated
multiplication module. The followings are equivalent:

(i) M is a quasi regular module.
(ii) M is a reduced wq-regular module.

Proposition 2.34. Assume f : M → M ′ is a monomorphism, where M ′ is a wq-regular
module. Then M is wq-regular.
Proof. Take m ∈M. As M ′ is wq-regular, annM ′(annR(f(m)) = annM ′(r) for some r ∈
R. Thus we have rf(m) = f(rm) = 0, and so rm = 0. This yields that annM (annR(m)) ⊆
annM (r). Let n ∈ annM (r). Then we have rn = 0, and so rf(n) = f(rn) = 0, i.e,
f(n) ∈ annM ′(r) = annM ′(annR(f(m)). Thus we conclude that annR(f(m))f(n) = 0,
and so annR(m) ⊆ annR(n). This yields that n ∈ annM (annR(n)) ⊆ annM (annR(m)).
Accordingly, we have annM (annR(m)) = annM (r). �
Corollary 2.35. Every submodule of a wq-regular module is wq-regular.
Proposition 2.36. Assume Mi is an Ri-module for each i ∈ ∆. Then M =

∏
i∈∆

Mi is a

wq-regular R =
∏

i∈∆
Ri-module if and only if Mi is a wq-regular Ri-module for each i ∈ ∆.

Proof. Assume that Mi is a wq-regular Ri-module for each i ∈ ∆. Let (mj)j∈∆ ∈M and
(rj)j∈∆ ∈ R. For every j ∈ ∆, annMj (annRj (mj)) = annMj (rj) for some rj ∈ Rj . Also
note that

annM (annR((mj)j∈∆) =
∏

j∈∆
annMj (annRj (mj)).

Thus we conclude that
annM (annR((mj)j∈∆) =

∏
j∈∆

annMj (rj) = annM ((rj)j∈∆).
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Accordingly, M is wq-regular. For the converse, assume M is wq-regular. Let mi ∈
Mi. Put the sequence

(nj)j∈∆ =
{

mi ; j = i

0 ; j ̸= i

Since M is wq-regular, we have
annM (annR((nj)j∈∆)) =

∏
j∈∆

annMj (annRj (nj))

= annM ((rj)j∈∆)
=

∏
j∈∆

annMj (rj)

for some (rj)j∈∆ ∈ R. This implies that annMi(annRi(mi)) = annMi(ri) for some ri ∈
Ri which shows that Mi is a wq-regular Ri-module. �

3. Trivial extension of weakly quasi regular modules
This section deals with trivial extension (idealization) of wq-regular modules. The triv-

ial extension R ∝M = R⊕M of an R-module M is a commutative ring with componen-
twise addition and multiplication (a, m)(b, m′) = (ab, am′ + bm) for any a, b ∈ R; m, m′ ∈
M [13]. Also the nilradical of R ∝M is characterized as

√
0R∝M =

√
0 ∝M

in [1] and [6]. So one can easily see that R ∝M is reduced if and only if R is reduced and
M = 0 and hence R ∝M ∼= R.

Proposition 3.1. R ∝ M is a quasi regular ring if and only if M = 0 and R is a quasi
regular ring.
Proof. Follows from the fact that all quasi regular rings are reduced rings. �
Proposition 3.2. (i) Let R ∝M be a wq-regular ring. Then M is a wq-regular module.

(ii) Let M be a non-torsion module in which annM (I) is an m-submodule for all ideals
I of R. If R ∝M is a wq-regular ring, then R is a wq-regular ring.
Proof. (i) Take an element m ∈ M. Since R ∝ M is wq-regular, we can conclude
ann(ann(0, m)) = ann(r, m′) for some r ∈ R, m′ ∈ M. This yields (0, m)(r, m′) =
(0, rm) = (0, 0), and so r ∈ annR(m). This yields that annM (annR(m)) ⊆ annM (r).
Let n ∈ annM (r). Then we have rn = 0 and thereby (r, m′)(0, n) = (0, 0), that is, (0, n) ∈
ann(r, m′) = ann(ann(0, m)). Also note that ann(0, m) = annR(m) ∝ M. Then we have
(0, n) ∈ ann(annR(m) ∝ M), and so annR(m)n = 0. This gives n ∈ annM (annR(m)).
Hence we have annM (annR(m)) = annM (r), i.e, M is a wq-regular module.

(ii) Let a ∈ R. Then ann(a, 0) = {(r, m′) : (a, 0)(r, m′) = (ar, am′) = (0, 0)} =
annR(a) ∝ annM (a). Then (s, m′) ∈ ann(ann(a, 0)) if and only if (s, m′) ∈ ann(annR(a) ∝
annM (a))) if and only if sannR(a) = 0 and sannM (a) + annR(a)m′ = 0. As M is non-
torsion, we can conclude (annM (a) : M) = annR(a), and so sannR(a) = 0 implies that
s(annM (a) : M) = 0. Thus by assumption, we also get sannM (a) = 0. Then we get
annR(a)m′ = 0 and note that

ann(ann(a, 0)) = annR(annR(a)) ∝ annM (annR(a)).
Since R ∝ M is wq-regular, we have ann(ann(a, 0)) = ann(s, m) for some s ∈ R, m ∈
M. Thus we get (a, 0)(s, m) = (sa, am) = (0, 0). This yields that s ∈ ann(a), and so
annR(annR(a)) ⊆ annR(s). Now take t ∈ annR(s). Then st = 0. Now choose m∗ ∈
M − T (M). Then note that (s, m)(0, tm∗) = (0, 0), and so (0, tm∗) ∈ ann(s, m). This
yields that tm∗ ∈ annM (annR(a)), and so annR(a)tm∗ = 0. Therefore we conclude that
annR(a)t = 0, and so t ∈ annR(annR(a)). Hence we get annR(annR(a)) = annR(s), that
is, R is a wq-regular ring. �
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Proposition 3.3. Let R be a wq-regular ring and let M be a non-torsion reduced module
satisfying the condition annR(m) = annR(r). Further assume that annM (I) is an m-
submodule of M for each ideal I of R. Then R ∝M is a wq-regular ring.

Proof. Let (r, m) ∈ R ∝ M. Then note that (s, m′) ∈ ann(r, m) implies that sr = 0 and
sm + rm′ = 0. So we conclude that s(sm + rm′) = s2m = 0. Since M is reduced, we can
conclude sm = 0, and hence rm′ = 0. Thus we deduce

ann(r, m) = (annR(r) ∩ annR(m)) ∝ annM (r).

Since R is quasi-regular, by assumption we have annR(m) = annR(a) and so annR(r) ∩
annR(a) = annR(b) for some b ∈ R by [5, Theorem 3.4]. So ann(r, m) = annR(b) ∝
annM (r). Then (s, m′) ∈ ann(ann(r, m)) implies that sannR(b) = 0 and sannM (r) +
annR(b)m′ = 0. Thus we conclude that s(sannM (r)+annR(b)m′) = 0, and so s2annM (r) =
0. Since M is a reduced module, sannM (r) = 0, and thus annR(b)m′ = 0. So it follows
that

ann(ann(r, m)) = (annR(annR(b)) ∩ annR(annM (r))) ∝ annM (annR(b)).

By assumption, t ∈ annR(annM (r)) if and only if t(annM (r)) = t(annM (r) : M)M =
t(annR(r))M = 0 if and only if t ∈ annR(annR(r)). Since R is quasi-regular, annR(annR(b)) =
annR(x) and also annR(annR(r)) = annR(y) for some x, y ∈ R. Also note that
annM (annR(b)) = annM (x). Now choose m∗ ∈ M − T (M). Then we have annR(y) =
annR(ym∗), and so

ann(ann(r, m)) = (annR(x) ∩ annR(ym∗)) ∝ annM (x)
= ann(x, ym∗).

Accordingly, R ∝M is a wq-regular ring. �

Theorem 3.4. Let M be a non-torsion reduced module in which annM (I) is an m-
submodule of M for all ideals I of R. Then R ∝ M is a wq-regular ring if and only
if M is a wq-regular module.

Proof. It can be obtained from Proposition 3.3 and Proposition 3.2. �

4. Extension of weakly quasi regular modules
In this section, we study polynomial modules and power series modules. Let M be

an R-module and let M [X] denote the set of all polynomials in indeterminate X with
coefficients in R. Then M [X] becomes an R[X]-module. Note that if M is a reduced
module, then for any m(X) = m0 + m1X + ... + mnXn ∈M [X], where mi ∈M,

annR[X](m(x)) = [
n∩

i=0
annR(mi)][X].

Proposition 4.1. Assume M is a reduced non-torsion wq-regular module. Then M [X] is
a wq-regular R[X] module.

Proof. Let m(X) = m0 + m1X + ... + mnXn ∈M [X]. Since M is reduced, we have
annR[X](m(x)) = [

n∩
i=0

annR(mi)][X]. As M is a non-torsion reduced module, R is a reduced

ring. To see this, take an element a2 = 0. As M is a non torsion module, there is an
m∗ ∈ M with annR(m∗) = 0. Then note that a2m∗ = 0. As M is a reduced module, we
get am∗ = 0, and thus a = 0. As M is a non-torsion wq-regular module over a reduced ring
R, by Lemma 2.18, M satisfies annihilator condition, so that

n∩
i=0

annR(mi) = annR(m′) for
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some m′ ∈M. Thus annR[X](m(X)) = (annR(m′))[X]. Also it can be easily verified that
annM [X](I[X]) = (annM (I))[X] for any ideal I of R. Then we conclude that

annM [X](annR[X](m(X)) = annM [X]((annR(m′))[X])
= [annM (annR(m′))][X].

Since M is a quasi regular module, there is an a ∈ R so that annM (annR(m′)) = annM (a),
and so

annM [X](annR[X](m(X)) = (annM (a))[X].
Put r(X) = a ∈ R[X]. Then we have

annM [X](annR[X](m(X)) = annM [X](r(X)).

Hence M [X] is a wq-regular R[X] module. �

Proposition 4.2. Assume M is a reduced non-torsion R-module in which annM (I) is an
m-submodule for each ideal I of R. Further assume that M satisfies annihilator condition
and for each m ∈M, annR(m) = annR(r) for some r ∈ R. If M [X] is a wq-regular R[X]
module, then M is a wq-regular R-module.

Proof. Let m ∈M. Put m(X) = m ∈M [X]. As M [X] is a wq-regular R[X] module, we
can conclude

annM [X](annR[X](m(X)) = [annM (annR(m))][X] = annM [X](r(X)),

where r(X) = r0 + r1X + ... + rkXk, ri ∈ R. Note that

annM [X](r(X)) = [
k∩

i=0
annM (ri)][X].

Now we will show that for any a, b ∈ R there is c ∈ R such that

annM (a) ∩ annM (b) = annM (c).

Since M is non-torsion, we have ann(m∗) = 0 for some m∗ ∈ M , and so annR(a) =
annR(am∗), annR(b) = annR(bm∗). By annihilator condition, annR(am∗)∩ annR(bm∗) =
annR(m′) for some m′ ∈ M. By assumption, there is an c ∈ R so that annR(m′) =
annR(c). Since M is non-torsion,

(annM (Ra + Rb) :R M) = annR(Ra + Rb)
= annR(a) ∩ annR(b)
= annR(am∗) ∩ annR(bm∗)
= annR(c) = (annM (c) :R M).

This implies that

(annM (Ra + Rb) :R M)M = annM (Ra + Rb)
= annM (a) ∩ annM (b)
= (annM (c) :R M)M
= annM (c).

Then for r0, r1, ..., rk ∈ R,
k∩

i=0
annM (ri) = annM (y) for some y ∈ R. This yields

annM [X](annR[X](m(X)) = [annM (annR(m))][X]
= (annM (y))[X].

Thus we have annM (annR(m)) = annM (y). Accordingly, M is a wq-regular R-module. �
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Let M be an R-module and let M [[X]] denote the formal power series module over
R[[X]].

Definition 4.3. An R-module M is said to satisfy the countably annihilator condition if
for each family of {mn}n∈N, then

∞∩
i=1

annR(mi) = annR(m) for some m ∈M.

Proposition 4.4. Assume M is a reduced wq-regular module satisfying the countably
annihilator condition. Then M [[X]] is a wq-regular R[[X]]-module.

Proof. Let f(X) =
∞∑

i=0
miX

i ∈ M [[X]]. As M is a reduced module, annR[[X]](f(X)) =

(
∞∩

i=0
annR(mi))[[X]]. As M satisfies the countably annihilator condition, annR[[X]](f(X)) =

(annR(m))[[X]] for some m ∈M . This yields
annM [[X]](annR[[X]](f(X))) = annM [[X]]((annR(m))[[X]]).

It is obvious that annM [[X]]((annR(m))[[X]]) = (annM (annR(m))[[X]]. As M is wq-
regular, annM (annR(m)) = annM (a) for some a ∈ R. Thus

annM [[X]](annR[[X]](f(X))) = (annM (a))[[X]].

Now put g(X) = a ∈ R[[X]] and note that (annM (a))[[X]] = annM [[X]](g(X)). Accordingly,
M [[X]] is a wq-regular R[[X]]-module. �

Proposition 4.5. Assume M is a reduced non-torsion R-module in which annM (I) is an
m-submodule for each ideal I of R. Further, suppose M satisfies the countably annihilator
condition and for each m ∈ M, annR(m) = annR(r) for some r ∈ R. If M [[X]] is a
wq-regular R[[X]]-module, then M is a wq-regular R-module.

Proof. Let m ∈ M . Put f(X) = m ∈ M [[X]]. Then annM [[X]](annR[[X]](f(X))) =

annM [[X]](g(X)) for some g(X) =
∞∑

i=0
aiX

i, where ai ∈ R. This implies that

(annM (annR(m)))[[X]] = (
∞∩

i=0
annM (ai))[[X]]

. As M is non-torsion, we get m∗ ∈ M − T (M). Then
∞∩

i=0
annR(aim

∗) = annR(m′) for

some m′ ∈ M by the countably annihilator condition. By assumption, there is b ∈ R so
that annR(m′) = annR(b), and so

(annM (
∞∑

i=0
Rai) :R M) = annR(

∞∑
i=0

Rai)

= annR(
∞∑

i=0
Raim

∗) = annR(m′)

= annR(b) = (annM (b) :R M).
Then

(annM (
∞∑

i=0
Rai) :R M)M =

∞∩
i=0

annM (ai)

= (annM (b) :R M)M = annM (b).
This implies that

annM [[X]](annR[[X]](f(X))) = (annM (annR(m)))[[X]]
= (annM (b))[[X]],

and so annM (annR(m)) = annM (b). This gives that M is a wq-regular R-module. �
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Theorem 4.6. Let M be a reduced non-torsion module in which annM (I) is an m-
submodule for each ideal I of R. Assume M satisfies the countably annihilator condition
and for each m ∈ M, annR(m) = annR(r) for some r ∈ R. Then the following are
equivalent:

(i) M is a wq-regular R-module.
(ii) M [X] is a wq-regular R[X]-module.
(iii) M [[X]] is a wq-regular R[[X]]-module.

Proof. (i)⇔ (ii) It can be obtained from Proposition 4.1 and Proposition 4.2.
(i)⇔ (iii) It can be obtained from Proposition 4.4 and Proposition 4.5. �
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