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Abstract
For a positive integer N and A, a subset of Q, let A-KS(N) denote the set of α =
α1
α2

∈ A\{0, N}, where α2r − α1 divides α2N − α1 for every prime divisor r of N . The
set A-KS(N) is called the set of N -Korselt bases in A. Let p, q be two distinct prime
numbers. In this paper, we prove that each pq-Korselt base in Z\{q + p − 1} generates
at least one other in Q-KS(pq). More precisely, we prove that if (Q\Z)-KS(pq) = ∅, then
Z-KS(pq) = {q + p − 1}.
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1. Introduction
A Carmichael number [2] N is a positive composite integer that satisfies aN ≡ 1

(mod N) for any a with gcd(a, N) = 1, it follows that a Carmichael number N meets
Korselt’s criterion:

Korselt’s criterion 1.1 ([10]). A squarefree composite integer N > 1 is a Carmichael
number if and only if p − 1 divides N − 1 for all prime factors p of N .

In [1, 3], Bouallègue-Echi-Pinch introduced the notion of an α-Korselt number, where
α ∈ Z\{0}, as a generalized Carmichael number when α = 1 as follows:

Definition 1.2. An α-Korselt number is a number N such that p − α divides N − α for
all prime divisors p of N .

The α-Korselt numbers for α ∈ Z have been thoroughly investigated in recent years,
especially in [1, 3, 4, 8, 9]. In [5], Ghanmi proposed another generalization for α = α1

α2
∈

Q\{0} by setting the following definitions:

Definition 1.3. Let N ∈ N\{0, 1}, α = α1
α2

∈ Q\{0} with gcd(α1, α2) = 1 and A a subset
of Q. Then,

(1) N is said to be an α-Korselt number (Kα-number) if N ̸= α and α2p − α1 divides
α2N − α1 for every prime divisor p of N .
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(2) By the A-Korselt set of a number N (or the Korselt set of N over A), we mean
the set A-KS(N) of all β ∈ A\{0, N} such that N is a Kβ-number.

(3) If A-KS(N) has a finite number of elements, then its cardinality is the A-Korselt
weight of N . Otherwise, if the cardinality is infinite, we say that N has an infinite
weight over A. The A-Korselt weight of N is simply denoted by A-KW(N).

Carmichael numbers are exactly the 1-Korselt squarefree composite numbers. Further-
more, in [6, 7], Ghanmi defined the notion of Korselt bases as follows:

Definition 1.4. Let N ∈ N\{0, 1}, α ∈ Q\{0} and B be a subset of N. Then,
(1) α is called an N -Korselt base (KN -base) if N is a Kα-number.
(2) By the B-Korselt set of base α (or the Korselt set of base α over B), we mean the

set B-KS(B(α)) of all M ∈ B such that α is a KM -base.
(3) If B-KS(B(α)) has a finite number of elements, then its cardinality is called the

B-Korselt weight of base α. Otherwise, if the cardinality is infinite, we say that
α has an infinite weight over B. The B-Korselt weight of base α is denoted by
B-KW(B(α)).

The set Q-KS(N) is simply called the rational Korselt set of N . In this paper, we are
concerned only with a squarefree composite number N .

After extending the notion of a Korselt number to Q, and in order to study the Korselt
numbers and their Korselt sets over Q, it is natural to ask about the existence of connec-
tions between the Korselt bases of a number N over the sets Z and Q\Z. The answer is
affirmative for a squarefree composite number N with two prime factors. Indeed, when we
look deeply at a list of Korselt numbers and their Korselt sets (see Table 1 and Table 2),
we note the absence of any squarefree composite number N with two prime factors such
that Z-KW(N) ≥ 2 and (Q\Z)-KS(N) = ∅. This finding inspired us to claim that such a
relation between Z-KS(N) and (Q\Z)-KS(N) exists. The case when N is squarefree and
has more than two prime factors remains untreated. To explain this (these) connection(s),
we organize our work as follows. In Section 2, we give some numerical data showing con-
nections between the Korselt bases of N over Z and (Q\Z). In Section 3, we prove that
for each squarefree composite number N with two prime factors, some N -Korselt bases
in Z generate others in the same set Z-KS(N). Finally, in Section 4, we show that for
each squarefree composite number N = pq with two prime factors, each N -Korselt base
in Z\{q + p − 1} generates a Korselt base in Q\Z.

2. Preliminaries
The following data illustrate some cases of Korselt numbers and their Korselt sets.

Table 1 provides all N = pq and Z-KS(N) with p, q primes and p < q ≤ 53 for which
(Q\Z)-KS(N) = ∅. Table 2 lists, for each integer 1 ≤ i ≤ 7, the smallest squarefree
composite number Ni = pq with p, q primes, p < q < 103 such that Z-KW(Ni) = i and
(Q\Z)-KW(Ni) is the smallest.

N Z-KS(N) N Z-KS(N) N Z-KS(N)
2 × 11 {12} 2 × 31 {32} 5 × 43 {47}
2 × 13 {14} 3 × 31 {33} 2 × 47 {48}
2 × 17 {18} 2 × 37 {38} 3 × 47 {49}
2 × 19 {20} 3 × 37 {39} 5 × 47 {51}
3 × 19 {21} 2 × 41 {42} 13 × 47 {59}
2 × 23 {24} 3 × 41 {43} 2 × 53 {54}
3 × 23 {25} 5 × 41 {45} 3 × 53 {55}
2 × 29 {30} 2 × 43 {44} 5 × 53 {57}
3 × 29 {31} 3 × 43 {45}

Table 2. Z-KS(N) where N = pq; p, q primes , p < q ≤ 53 and (Q\Z)-KS(N) = ∅.
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i Ni Z-KS(Ni) (Q\Z)-KW(Ni)
1 2 × 11 {12} 0
2 2 × 7 {6, 8} 1
3 5 × 19 {15, 20, 23} 2
4 31 × 59 {29, 60, 62, 89} 5
5 67 × 97 {64, 75, 91, 99, 163} 12
6 757 × 881 {755, 773, 797, 845, 867, 1637} 17
7 37 × 61 {25, 43, 49, 52, 57, 67, 97} 22

Table 2. The smallest Ni = pq with p, q primes, p < q < 103 such that Z-KW(Ni) = i and
(Q\Z)-KW(Ni) is the smallest.

Based on Table 1 and Table 2, we remark that there is no squarefree composite number
N with two prime factors such that Z-KW(N) ≥ 2 and (Q\Z)-KS(N) = ∅. This leads to
the following result:

Theorem 2.1 (Main Theorem). Let N = pq. If (Q\Z)-KS(N) = ∅, then Z-KS(N) =
{q + p − 1}.

Moreover, it appears that for numbers N that satisfy Theorem 2.1, the sets Z-KS(N)
and (Q\Z)-KS(N) are somewhat related. To highlight this relation, we show that each
N -Korselt base in Z\{p+q−1} induces at least one other N -Korselt base in (Q\Z)-KS(N).
Hence, the main theorem is deduced immediately.

For the rest of this paper, let p < q be two primes and let N = pq and i, s be the
integers given by the Euclidian division of q by p: q = ip + s with s ∈ {1, . . . , p − 1}.

Our work is based on the following result given by Echi-Ghanmi [4].

Theorem 2.2. [4, Theorem 14] Let N = pq such that p < q. Then, the following properties
hold:

(1) If q > 2p2, then Z-KS(N) = {p + q − 1}.
(2) If p2 − p < q < 2p2 and p ≥ 5, then

Z-KS(N) ⊆ {ip, p + q − 1}.

(3) If 4p < q < p2 − p, then

Z-KS(N) ⊆ {ip, (i + 1)p, p + q − 1}.

(4) Suppose that 3p < q < 4p. Then, the following conditions are satisfied:
(a) If q = 4p − 3, then the following properties hold:

(i) If p ≡ 1 (mod 3), then

Z-KS(N) = {4p, q − p + 1, p + q − 1}.

(ii) If p ̸≡ 1 (mod 3), then

Z-KS(N) = {q − p + 1, p + q − 1}.

(b) If q ̸= 4p − 3, then

Z-KS(N) ⊆ {3p, 4p, p + q − 1}.

(5) If 2p < q < 3p, then

Z-KS(N) ⊆ {2p, 3p, 3q − 5p + 3,
2p + q − 1

2
, q − p + 1, p + q − 1}.

(6) If p < q < 2p, then

Z-KS(N) ⊆ {q + p − 1} ∪ [2, 2p] \ {p}.

Next, we establish the following two results to serve us for the rest of the paper:
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Lemma 2.3. For each N = pq with p < q and both being prime, the set Z-KS(N) is
characterized by Theorem 2.2, except for (p, q) ∈ {(3, 13), (3, 17)}, where Z-KS(3 × 13) =
{12, 15} and Z-KS(3 × 17) = {15, 19}.

Proof. Let N = pq with p < q both being prime.
- If p ≥ 5, then Z-KS(N) is simply given by one of the six cases of Theorem 2.2.
- Suppose that p = 2. If q < 8 = 4p (resp. q > 8 = 2p2), then Z-KS(N) is completely

determined by one of states 4, 5, and 6 (resp. state 1) of Theorem 2.2.
- Similarly, for the case p = 3, if q < 4p = 12 (resp. q > 2p2 = 18), then Z-KS(N)

is determined by one of cases 4, 5, and 6 (resp. case 1) of Theorem 2.2. Therefore, the
remaining values for the prime number q are 13 and 17, where Z-KS(3 × 13) = {12, 15}
and Z-KS(3 × 17) = {15, 19} (see [4, Proposition 15]). �

Proposition 2.4. [9, Corollary 3.6] Let p and q be two prime numbers such that p < q
and N = pq. If α ∈ Z-KS(N), then the following statements hold:

(1) gcd(α, q) = 1.
(2) 2 ≤ q − p + 1 ≤ α ≤ p + q − 1.
(3) If p divides α, then α ∈ {ip, (i + 1)p}.

3. Connections in Z-KS(N)
In the following result, we prove that certain N -Korselt bases in Z induce others in the

same set Z-KS(N).

Proposition 3.1. Suppose that 2p < q < 3p. Then, the following statements hold:

(1) 2p + q − 1
2

∈ Z-KS(N) if and only if q − p + 1 ∈ Z-KS(N).
(2) If 3q − 5p + 3 ∈ Z-KS(N), then q − p + 1 ∈ Z-KS(N).

Proof. First, since q = 2p + s, the integer s must be odd, and therefore, s < p − 1.
(1) We have α = 2p + q − 1

2
∈ Z-KS(N) if and only if

p − α = −q + 1
2

| p(q − 1)

q − α = s + 1
2

| q(p − 1)

which is equivalent to s + 1 divides 2q(p − 1).
However, we have gcd(q, s + 1) = 1 (as s < p − 1 < q − 1) and 2(p − 1) = q − 1 − (s + 1).

Therefore, we conclude that

2p + q − 1
2

∈ Z-KS(N) if and only if s + 1 | q − 1. (3.1)

Similarly, β = q − p + 1 ∈ Z-KS(N) is equivalent to{
p − β = −s − 1 | p(q − 1)

q − β = p − 1 | q(p − 1)
which is equivalent to s + 1 divides p(q − 1).
However, we know that gcd(p, s + 1) = 1 since s < p − 1, which shows that

q − p + 1 ∈ Z-KS(N) if and only if s + 1 | q − 1. (3.2)

Therefore, by (3.1) and (3.2), we conclude that
2p + q − 1

2
∈ Z-KS(N) if and only if q − p + 1 ∈ Z-KS(N).
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(2) Suppose that γ = 3q − 5p + 3 ∈ Z-KS(N). Then,

p − γ = 6p − 3q − 3 = −3(s + 1) | p(q − 1). (3.3)

We consider two cases:
• If p ̸= 3, then since s < p − 1, we have gcd(p, 3(s + 1)) = 1. Hence, by (3.3), 3(s + 1)

divides q − 1. Thus, by (3.2), q − p + 1 ∈ Z-KS(N).
• Now, assume that p = 3. First, because 1 ≤ s ≤ p − 2 = 1, we know that s = 1,

q = 2p + s = 7 and q − p + 1 = 5. Therefore, we can easily check that N = 3 × 7 = 21 is
a 5-Korselt number. �

Corollary 3.2. If q > 2p and q − p + 1 /∈ Z-KS(N), then

Z-KS(N) ⊆ {ip, (i + 1)p, p + q − 1}.

Proof. By Theorem 2.2 and Lemma 2.3, the solution is straightforward when q > 3p.
Now, suppose that 2p < q < 3p (i.e., i = 2). Let β ∈ Z-KS(N). Then, again by

Theorem 2.2, we obtain

β ∈ {2p, 3p, 3q − 5p + 3,
2p + q − 1

2
, q − p + 1, p + q − 1}.

However, since q − p + 1 /∈ Z-KS(N), using Proposition 3.1, we obtain β ̸= 3q − 5p +
3,

2p + q − 1
2

. Thus, β ∈ {2p, 3p, p + q − 1}, as desired. �

4. Connections between Z-KS(N) and (Q\Z)-KS(N)
The following result concerns the case when q < 2p.

Proposition 4.1. Suppose that q < 2p and β ∈ Z\{0} with β ̸= p + q − 1 and gcd(p, β) =
gcd(pq, p + q − β) = 1. Then, β ∈ Z-KS(N) if and only if qp

p + q − β
∈ (Q\Z)-KS(N).

Proof. Since gcd(p, β) = gcd(pq, p + q − β) = 1, we have

β ∈ Z-KS(N) ⇔
{

p − β | q − 1
q − β | p − 1

⇔
{

(p + q − β)p − pq = (p − β)p | p(q − 1)
(p + q − β)q − pq = (q − β)q | q(p − 1)

⇔ qp

p + q − β
∈ Q-KS(N).

Because β /∈ {p, q}, p+q−β /∈ {p, q}. Moreover, if β ∈ Z-KS(N), then since p < q < 2p,
we have 2 ≤ β < 2p by Theorem 2.2; hence, p+q−β ≥ 2p−β+1 ≥ 2, that is, p+q−β ̸= 1.
Therefore, qp

p + q − β
/∈ Z, and we conclude that qp

p + q − β
∈ (Q\Z)-KS(N). �

The next two results concern the case when p divides β.

Proposition 4.2. If ip ∈ Z-KS(N), then there exists k1 ∈ N\{0, 1} such that (k1 + 1)q
ik1 + 1

∈
(Q\Z)-KS(N) .

Proof. Let ip ∈ Z-KS(N). Then,{
p − ip | pq − ip = p(q − 1) + p − ip
q − ip | pq − ip = q(p − 1) + q − ip.
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As gcd(s, q) = 1, this is equivalent to{
i − 1 | q − 1

s | p − 1
and hence, there exist k1 and k2 in Z such that{

q − 1 = k2(i − 1)
p − 1 = k1s.

As q = ip + s, k1q = ik1p + k1s = ik1p + p − 1, and therefore,
(k1 + 1)q − (ik1 + 1)p = q − 1. (4.1)

Let k = gcd(k1 + 1, ik1 + 1), α
′
1 = k1 + 1

k
and α2 = ik1 + 1

k
. Therefore, using (4.1), we

obtain
α

′
1q − α2p = q − 1

k
. (4.2)

Now, let us prove that α2 − α
′
1 divides p − 1. First, note that

α2 − α
′
1 = k1

k
(i − 1). (4.3)

Since q−1 = (i−1)p+(k1+1)s and i−1 | q−1, we deduce that i−1 | (k1+1)s. Furthermore,

because gcd(k1 + 1, i − 1) = gcd(k1 + 1, ik1 + 1) = k, it follows that m = i − 1
k

| k1 + 1
k

s.

However, gcd
(

k1 + 1
k

,
i − 1

k

)
= 1; hence, m | s. Therefore, we conclude by (4.3) that

α2 − α
′
1 = k1m | k1s = p − 1. (4.4)

Now, by (4.2) and (4.4), we obtain{
α2p − α

′
1q | q − 1

α2 − α
′
1 | p − 1.

Thus,

α = α
′
1q

α2
= (k1 + 1)q

ik1 + 1
∈ Q-KS(N).

As gcd(α′
1, α2) = 1, gcd(q, α2) = 1 by (4.2) and α2 ̸= 1, we conclude that (k1 + 1)q

ik1 + 1
∈

(Q\Z)-KS(N). �
In the following result, we need (i + 1)p ̸= q + p − 1 (i.e., s > 1) to show that (i + 1)p

generates an element in Q\Z)-KS(N).

Proposition 4.3. If (i + 1)p ∈ Z-KS(N) and s > 1, then there exists k1 ∈ N\{0, 1} such

that (k1 − 1)q
(i + 1)k1 − 1

∈ (Q\Z)-KS(N).

Proof. If (i + 1)p ∈ Z-KS(N), then{
p − (i + 1)p | pq − (i + 1)p = p(q − 1) + p − (i + 1)p
q − (i + 1)p | pq − (i + 1)p = q(p − 1) + q − (i + 1)p.

This is equivalent to {
i | q − 1

p − s | p − 1
and hence, there exist k1 and k2 in N\{0} such that{

q − 1 = k2i
p − 1 = k1(p − s).
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First, as s > 1, it follows that k1 > 1. Since q = (i+1)p+s−p, k1q = (i+1)k1p−p+1.
Therefore, we can write

((i + 1)k1 − 1)p − (k1 − 1)q = q − 1. (4.5)

Let k = gcd(k1 − 1, (i + 1)k1 − 1), α
′
1 = k1 − 1

k
and α2 = (i + 1)k1 − 1

k
.

Then, we use (4.5) to obtain

α2p − α
′
1q = q − 1

k
. (4.6)

Next, let us prove that α2 − α
′
1 | p − 1. First, we have

α2 − α
′
1 = ik1

k
. (4.7)

Since i | q − 1 = ip + s − 1, we know that i | s − 1 = (k1 − 1)(p − s). Moreover, as

gcd(k1 −1, i) = gcd(k1 −1, (i+1)k1 −1) = k, it follows that m = i

k
| k1 − 1

k
(p−s). Hence,

m | p − s since gcd
(

k1 − 1
k

,
i

k

)
= 1. Therefore, we deduce by (4.7) that

α2 − α
′
1 = k1m | k1(p − s) = p − 1. (4.8)

Now, by (4.6) and (4.8), we obtain{
α2p − α

′
1q | q − 1

α2 − α
′
1 | p − 1.

Therefore,

α = α
′
1q

α2
= (k1 − 1)q

(i + 1)k1 − 1
∈ Q-KS(N).

As gcd(α′
1, α2) = 1, gcd(q, α2) = 1 by (4.6) and α2 ̸= 1, we deduce that (k1 − 1)q

(i + 1)k1 − 1
∈

(Q\Z)-KS(N). �
Now, it remains to prove that each N -Korselt base β ∈ Z generates an N -Korselt base

in (Q\Z), where gcd(β, p) = 1, 2p < q < 4p and β ̸= q +p−1. This is equivalent to discuss
only the cases when β ∈ {3q − 5p + 3,

2p + q − 1
2

, q − p + 1}. It follows by Corollary 3.2
that we can restrain our work only for β = q − p + 1 with gcd(q + 1, p) = gcd(β, p) = 1.

Proposition 4.4. Suppose that 2p < q < 4p with gcd(q+1, p) = 1. If q−p+1 ∈ Z-KS(N),
then pq

2p − 1
∈ (Q\Z)-KS(N).

Proof. First, if i = 3, then by Theorem 2.2, we must have q = 4p − 3, and it is easy
to verify that pq

2p − 1
is an N -Korselt base. Furthermore, since gcd(pq, 2p − 1) = 1 and

2p−1 ̸= 1, we know that pq

2p − 1
/∈ Z. Therefore, we conclude that pq

2p − 1
∈ (Q\Z)-KS(N).

Next, assume that q = 2p + s. Then, s is odd, so s ̸= p − 1. If q − p + 1 ∈ Z-KS(N),
then s + 1 | p(q − 1). However, we know that gcd(p, s + 1) = 1 because s < p − 1, which
implies that s + 1 | q − 1. Hence, by taking α

′′
1 = 1 and α2 = 2p − 1, we show that

α2p − α
′′
1pq = −p(s + 1) | p(q − 1). Thus, as α2q − α

′′
1pq = q(p − 1), we can write{

α2p − α
′′
1pq | p(q − 1)

α2q − α
′′
1pq | q(p − 1).

This implies that pq

2p − 1
is an N -Korselt base.
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Now, as gcd(pq, 2p−1) = gcd(q, q −1−s) = gcd(q, s+1) = 1 and 2p−1 ̸= 1, we deduce
that pq

2p − 1
/∈ Z. Thus, pq

2p − 1
∈ (Q\Z)-KS(N). �

Example 4.5. Let N = 2 × 7. Then, Z-KS(N) = {6, 8} and (Q\Z)-KS(N) =
{7

2

}
is

exactly the set generated by Z-KS(N). However, for N = 3 × 7, we have Z-KS(N) =
{5, 6, 9} and (Q\Z)-KS(N) =

{7
2

,
7
3

,
21
5

,
21
4

,
15
2

,
33
5

}
, which is composed of more than the

N -Korselt bases in (Q\Z) generated by Z-KS(N).

Proof of the Main Theorem. Let N = pq, where p < q are two prime numbers
such that (Q\Z)-KS(N) = ∅. Assume by contradiction that there exists β ̸= q + p − 1 in
Z-KS(N). By Propositions 4.2 and 4.3, we know that β ̸= ip and β ̸= (i+1)p, respectively.
It follows that gcd(p, β) = gcd(q, β) = 1 by Proposition 2.4 and q < 4p by Theorem 2.2.

Suppose that q > 2p. Then, by Corollary 3.2, we should have β = q − p + 1, and by
Proposition 4.4, gcd(q + 1, p) ̸= 1. However, since in our case, 2p < q = ip + s < 4p and
q is prime, this forces q = 4p − 1, and therefore, β = q − p + 1 = 3p, which contradicts
gcd(p, β) = 1.

Next, assume that q < 2p. Then, by Proposition 4.1, gcd(pq, p + q − β) ̸= 1; otherwise,
β generates an element in (Q\Z)-KS(N) = ∅, which is impossible. This result implies that
either p or q divides p + q − β, and one of the following holds:

• If p divides p + q − β, then since 1 ≤ p + q − β ≤ 2p − 1 by Proposition 2.4, we obtain
p = p + q − β. Therefore, β = q, which is impossible.

• If q divides p + q − β, then as 1 ≤ p + q − β ≤ 2p − 1 < 2q by Proposition 2.4, we
obtain q = p + q − β. Hence, β = p, which is also impossible.

Thus, all cases lead to absurdity. Therefore, we conclude that β = q + p − 1 and
Z-KS(N) = {q + p − 1}. �
Remark 4.6. The converse of the main theorem is not true. For instance, if N = 6 = 2×3,
then

Q-KS(N) =
{

4,
3
2

,
10
3

,
14
5

,
8
3

,
5
2

,
18
7

,
12
5

,
9
4

}
.

This study motivates us to begin a deeper investigation of the rational Korselt set of
a number N with more than two prime factors. We believe that the study of a possible
relation or relations between (Q\Z)-KS(N) and Z-KS(N) can simplify this task, but not
enough. The simple case when N = pq is still full of unsolved problems. For instance,
after examining the Korselt sets over Q of some values of N = pq, since Q-KW(N) is finite
(see [5, Theorem 2.3]), we state the following conjecture:

Conjecture 4.7. For all N = pq, Q-KW(N) is odd.

Acknowledgment. I am grateful to the referee for his comments which have led to
improvements in the paper.
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