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Proper irrigation planning by matching reference evapotranspiration (ETo) with active crop 

growth requirement leads to an improved water usage efficiency and thereby improving the crop 

yield. ETo is primarily influenced by the following weather parameters the air temperature, 

relative humidity, wind speed and solar radiation. To make the ETo estimation system fault 

tolerant it is important to validate the real time data from the weather station, since the sensors 

used in these weather stations are prone to error due to influence of various environmental factors. 

A Recurring Neural Network (RNN) based Data Validation and Correction (DVC) algorithm was 

proposed to identify the faulty data and to correct them. Long Short-Term Memory (LSTM) RNN 

model is used to forecast the weather data such as temperature, solar radiation, wind speed and 

relative humidity. It uses statistical significance test to identify faulty data and isolate them. Then 

the DVC approach corrects the faulty data by replacing them by LSTM forecasted data. The 

performance evaluation of this approach showed better forecasting ability when compared with 

Seasonal Autoregressive Integrated Moving Average (SARIMA) based DVC and thereby 

improving overall performance of the DVC approach. 

 

Cite 

Ponraj, A. S., T, Vigneswaran, T., & Jackson, J. C. (2021). Automated Sensor Data Validation and Correction with Long Short-

Term Memory Recurring Neural Network Model. GU J Sci, Part A, 8(1), 43-57. 

Author ID (ORCID Number) Article Process 

A. S. Ponraj, 0000-0002-3044-0985 

T. Vigneswaran, 0000-0002-0478-6739 

J. C. Jackson, 0000-0001-9468-7672 

Submission Date 

Revision Date 

Accepted Date 

Published Date 

05.07.2020 

21.03.2021 

26.03.2021 

29.03.2021 

1. INTRODUCTION 

Global water intake doubles each 20 years, nearly twofold the rate of population increase.  According to a 

Food and Agriculture Organisation (FAO) forecast, irrigation will have to meet 70-80% of the increase in 

food consumption between 2000 and 2030 (OECD, 2008). Though the practice of irrigation in agricultural 

farm is only around 300 million hectares or 20% of the cultivable land, but contributes significantly to over 

40% of world food production (Fischer et al., 2012). Irrigation can mitigate the risk involved with rain-fed 

agriculture in dry regions. This helps protect farming from water shortages that are expected to occur more 

often. Efficient water use can maximize the diversity of agricultural crop, increase the yield, improve the 

economy and provide food at reduced price (Tiwari & Dinar, 2002). In view of the important role played 

by irrigation of agricultural farm in worldwide water usage, which significantly increase water availability 

for other human and environmental uses by better farm management practices that improve irrigation water 

production (Watson & Burnett, 2017). 
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A precise estimate of the amount of water lost to the atmosphere by combined evaporation and transpiration 

cycle called evapotranspiration (ET) is fundamentally mandatory for effective farm water management in 

order to improve agricultural crop water usage (Martin & Gilley, 1993; Tomar & Ranade, 2001). Reference 

evapotranspiration (ETo) plays a vital role in solving the issues like soil water balance, irrigation system 

and water supply in the agro-ecosystem by providing a sustainable water management in these water starved 

regions. Hence proper irrigation planning by matching ETo with active crop growth requirement leads to an 

improved water usage efficiency and thereby improving the crop yield (Allen et al., 1998) ETo can be 

calculated by many empirical and non-empirical equation which depends on large amount of weather data 

(Cobaner, 2011). However, ETo is primarily influenced by the following weather parameters the air 

temperature, relative humidity, wind speed and solar radiation (Allen et al., 1998; Ponraj & Vigneswaran, 

2019). This research work contributes by creating a fault tolerant model for predicting the reference 

evapotranspiration ETo using the daily weather data like the temperature, relative humidity, wind speed and 

solar radiation. There is a greater chance that the weather data used to estimate ETo is incorrect. 

With weather data easily available these days and with data driven technologies used to estimate or predict 

ETo makes is it even more vulnerable. The data used to develop these models and further for real time 

prediction with local sensor weather data or weather data from different source can be wrong or may contain 

spurious values. Mostly, sensors are subject to extreme environment condition and inherent sensor faults 

are the main drivers to these spurious data. This work aims at developing autonomous data validation and 

correction mechanism with weather data, which can be further used in creating a fault tolerant ETo 

prediction system. This is accomplished by identifying anomalies with statistical methods for each data 

value. Anomalies can be effectively identified in the input data variable by using long short-term memory 

recurring neural network (LSTM) model. The incorrect data value is removed when the data error has been 

identified. The faulty data is corrected by replacing it with the reliable forecasted value. This paper is 

organized as follows: section 2 describes the related work, section 3 outlines the methodology followed, 

section 4 discusses the results and section 5 concludes the work. 

2. REVIEW OF RELATED WORK 

Exhaustive data causes serious issues for a security mechanism in data analytics to identify all irregularities 

in real-time. The detection of anomalies and outliers from sensor data and other sources can no longer be 

considered human work. Hence, a need to simplify and automated the anomaly detection process. 

Automatic anomaly detection based on machine learning, statistics, etc. has been investigated in various 

areas, including network intrusion detection, authentication, medical data validation, sensor fault detection 

and more (Chandola et al., 2009). Given the number of such analyses in recent years, many anomaly 

detection methods still have not been able to minimize abnormalities in certain conditions (Sharma et al., 

2010; O'Reilly et al., 2014). It is not the only threat, but as several sensors produces different type of data 

which may or may not be time dependent, in a single system. For IoT devices with multiple sensors, it is 

ineffective to use independent faulty data detection algorithms for each sensor. 

Presently time series approach has gained popularity among other data-driven approaches to analyses data 

with periodical trend. For instance, one can find this approach used in various applications like electricity 

load forecast, market analysis to predict air ticket demand, battery health, etc (Venugopal & Vigneswaran, 

2019). All these application exhibits periodical trend and may include seasonality as well, which are the 

temporal correlation of time series model (Box et al., 1994). A time- approach is capable to interpret the 

weather data or the observed sensor data as a structure of time-invariant parameters and this is their 

advantage. Further, this invariance is the key to any prediction model and thereby providing vital 

information to enhance the model. Furthermore, their efficacy for both linear and nonlinear models 

contributes to their competency for data fault analysis. Such facts reflect their need for improving the 

effectiveness of fault diagnostic application (Chatfield, 2000). 

There have been several studies on various time series forecasting methods. The variable data is known to 

choose independent random step series in the random walk RW model (Simmons, 1986). This approach 

suggests that previous knowledge of data is not relevant and only new observations are valuable. The simple 

exponential smoothing method (SES model) has been widely applied in seasonal data for forecasting 
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applications (Gardner, 2006). The autoregressive integrated moving average (ARIMA) model is a most 

commonly used approach for forecasting in the last two decades amongst the other time series forecasting 

approaches (Mondal et al., 2014). The Sensor Fault Detection and Faulty Data Accommodation (SFDFDA) 

method were used in sewage monitoring system. It combines seasonal autoregressive moving average 

(SARIMA) system with a statistical significance test to allow correction of faulty temperature sensor data 

with forecasted temperature sensor data (Thiyagarajan et al., 2018). ADSaS (Anomaly Detection system 

using SARIMA and STL) combines SARIMA and Seasonal and Trend decomposition using Loess (STL) 

for improved performance in anomaly detection (Lee & Kim, 2018). It can be used for both periodic and 

non-periodic data. 

SARIMA based model for forecasting has shown lesser accuracy and is capable of generating inconsistent 

forecast, though it is largely a flexible model. A recurring neural network (RNN) models is used to predict 

weather parameters, like the wind speed, air temperature and pressure and wind speed. Its flexibility enables 

the designer to update the network work design with ease (Roesch & Günther, 2019). An approach based 

RNN self-learning optimization for rain forecasting using weather dataset was successfully developed 

(Salman et al., 2015). ConvLSTM is a LSTM version, which comprises a convolution function within the 

LSTM cell. A model with the help of weather radar data is used for predicting rainfall by convLSTM data. 

It further reveals that its version of ConvLSTM decreased the RMSE by 23.0% when compared to linear 

regression models (Kim et al., 2017). LSTM based RNN has proven particularly effective for time series 

based faulty data identification (Malhotra et al., 2015). A new anomaly detection system was successfully 

developed to identify cyber-attacks using the Recurrent Neural Network (Goh et al., 2017). RNN and LSTM 

find its application in medical data and have been investigated in identifying anomalies in them (Chauhan 

& Vig, 2015). 

3. METHODOLOGY 

Forecasting is a method to predict future data trends with the help of mathematical model, based on past 

and historical data trends collected. The weather data measured by the sensor from the local automatic 

weather station are interpreted as time series data. The future results of the respective weather parameters 

may be estimated by a correct mathematical model using the historical dynamics of the various weather 

parameters. These data serve as a substitute sensor data to the actual sensor data and used to detect 

abnormalities and possible system failures by comparing both the data. Fault data detection: Data anomalies 

are abnormalities in data that do not align with typical behavioural patterns, which indicated fault in the 

data. So if the weather data unexpectedly deviates from or has any unusual occurrence in the usual 

behaviour pattern is labeled as anomalies. Identifying and correcting these anomalies are very vital. Finally, 

once the data is forecasted and anomaly detection is completed, it’s essential to correct the weather data 

which seems to be incorrect. If not corrected, the entire system will be deemed a failure. Therefore, the 

forecasted data of that instant replaces the faulty data. Many more simultaneous instants of abnormalities 

can be termed as sensor failure in the system. The proposed approach is neatly described in Figure 1. 

 

Figure 1. Data Correction and Validation Methodology 
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Step 1: Data forecast 

The first step is to forecast weather data with the help of historical weather data. This step is vital as it sets 

the tone for the data validation and correction (DVC) model. This model makes use of the LSTM or 

SARIMA model to forecast the new weather data. The new forecasted data is used to replace the faulty data 

if an abnormality is detected in the data. 

Step 2: Fault Detection 

This step helps in identifying the faulty data. In this model, statistical method, like the hypothetical 

significance test, is used to validate the correctness of the data.  The abnormalities detected by this test are 

classified as faulty data, and the faulty data are isolated. This is a simple but very effective approach. 

Step 3: Fault Correction 

The third and the final step is faulty data correction. When dealing with real time data, it is inevitable to 

have a faulty data because of various well known reasons as the harsh environmental condition or system 

failures. This step is an essential approach, as it contributes to making the system fault-tolerant. Once the 

faulty data is detected they are replaced by the forecasted weather data from step 1. A prolonged exhibition 

of faulty data ends in classifying it as a system failure.  

3.1. Data Description  

Localized weather data from the Tamil Nadu Agriculture University (TNAU), Coimbatore automated 

weather station were used for the study. It is located at 11.01°N latitude and 79.93°E longitude with an 

elevation of 431m above sea level. TNAU is in the city of Coimbatore located in Tamil Nadu. Coimbatore 

has a tropical wet and dry climate with an average maximum temperature of 31.5°C and minimum 

temperature of 22.13°C. The test data for the model was considered from the 1st of January 2017 to the 

31st of December 2018. Similar weather parameters such as minimum air temperature ATmin in °c, 

maximum air temperature ATmax in °c, wind speed U2 in km/hr, relative humidity RH in % and solar 

radiation in cal/cm2/day are used. Table 1 provides the statistical data parameters of the TNAU 

weather data. 

Table 1. Statistical Parameter of the TNAU Coimbatore Weather Dataset 

Dataset Statistics 
ATmax 

in °C 

ATmin 

in °C 

U2 in 

km/h 

SR in 

cal/cm2/day 

RHmax 

in % 

RHmin 

in % 

Training Minimum 23.5 13.5 1.6 60.2 59 15 

 Maximum 37.5 26.8 22.8 492 98 91 

 Mean 31.88 22.39 6.53 344.72 85.70 54.05 

 Std Deviation 2.51 2.20 3.47 78.34 5.03 12.27 

 Skewness -0.07 -1.09 1.62 -0.97 -1.58 0.10 

        

Testing Minimum 23.5 16 1.6 60.2 68 32 

 Maximum 35 26 19.7 442.5 96 88 

 Mean 30.47 22.43 7.17 317.52 86.59 60.59 

 Std Deviation 2.00 1.58 4.21 82.33 4.69 11.04 

 Skewness -0.59 -1.23 1.17 -1.08 -1.57 0.08 
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3.2. Weather Data Forecast  

For forecasting the weather data SARIMA and LSTM models were used in this study. To make the ARIMA 

even more effective, the seasonality parameter was included to model a wide range of seasonal data. It is 

termed as the SARIMA model with the order (p,d,q)(P,D,Q)m  where the new P,Q and D are the parameter 

for seasonality and the m is periods per season as shown in Equation (3) (Box et al., 2015). For example, if 

monthly data are modeled then the value of m will be 12. The predicted value for an instant t can be obtained 

just by taking the product of the seasonal and non-seasonal parameters. 

 (1 − ∅1𝐵)(1 − Ф1𝐵12)(1 − 𝐵)(1 − 𝐵12)𝑧𝑡 = (1 + 𝜃1𝐵)(1 + Ѳ1𝐵12)𝑒𝑡 (1) 

RNN’s problem of the vanishing gradient was tackled with the introduction of LSTM, which stands for 

Long Short Term Memory, introduced by Hochreiter and Schmidhuber in the year 1997 (Hochreiter & 

Schmidhuber, 1997). LSTMs retain information for a longer time and allow for RNNs to learn more 

efficiently from the past data. A LSTM consists of recurrently connected memory block each consisting of 

an input cell, a forget gate and an output gate. At first the input xt is processed with the previous state ht-1 

in the input gate and passed over to the forget gate. Then, the output st of the forget gate is passed 

through a tanh activation function. Finally, again an element-wise multiplied is done by output 𝑜 of an 

output gate, which is similar to the input gate and the final output ℎ𝑡 is produced (Husein & Chung, 2019). 

The final output ℎ𝑡 is described in Equation (2). 

 ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑠𝑡) ∙ 𝑜 (2) 

3.3. Statistical Hypothesis Testing  

The statistical hypothesis test is used to determine the fault in the observed data and the predicted sensor in 

this study. The probability value (p-value) is nothing but the probability of getting the actual value of a test, 

when the null-hypothesis is true. Here, it is determined with the help of the chi-square test. It is clearly 

described in Equation (3). 

 𝑋2 = ∑
[(𝐴𝑡)𝑖 − (𝑃𝑡+𝑓)𝑖]

2

(𝑃𝑡+𝑓)𝑖

𝑖=𝑊𝐿

𝑖=1
 (3) 

Where, X2 is the chi-square, i is the instantaneous time, WL is the width of the window, At is the actual 

observed or actual weather value, and 𝑃𝑡+𝑓 is the predicted output from LSTM model. 

The goodness of fit for the LSTM model depends in the chi-square distribution of 𝑋𝑑𝑓
2 of the X2. Degree of 

freedom df, it is the total number of the data points at a given window WL minus one (df = WL-1) and it 

influence the distribution 𝑋𝑑𝑓
2 . The width of the window remains constant for the analysis but it keeps 

moving with the time t. The significance value often denoted by α is a value which is chosen beforehand. 

It is used to estimate the p-value at a given instant in a particular window. The significance value is 

determined by the confident interval value (Sedgwick, 2014). If the confident interval is 95% then the 

significance value α will be 5% or 0.05.With the df and α value available the p-value can be determined by 

the following relationship shown in Equation (3). 
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 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃(𝑋𝑑𝑓,𝛼
2 ≥ 𝑋2) (4) 

From Equation (4) it can be said that a p-value less than the chosen significance value rejects the null 

hypothesis. The value is considered to be significant only if the above case is met, that is 𝑋𝑑𝑓
2 should be 

greater than the 𝑋2. 

3.4. Data Validation and Correction  

The data validation and correction approach heavily depends on the LSTM forecast model and the statistical 

significance test, to detect or identify and correct any sensor faults or abnormalities. The first and foremost 

in this approach is to forecast the weather parameter with the help of the time series model LSTM. The 

parameters like the epochs, activation, optimiser, hidden layers and learning rate should be chosen 

appropriately. 

The next step is to validate the sensor data or any given data to detect any possible abnormalities. The 

significance test is used in the approach to detect the abnormalities. The first step here is to determine the 

chi-square value 𝑋2, it in turn help in determining the p-value. The pre-chosen critical significance value 

α is 0.05. Hence in the DVC algorithm the p-value is compared against the value 0.95. Such that, p-value 

greater than 0.95 indicates a significant value and a value less than 0.95 indicates a fault. The significant 

values can be used further to train and develop the forecasting model. 

The final step is to replace the value. The actual value or the observed sensor value is compared with the 

forecasted value to check it lies with the predictive limit. If it lies within the predictive limit then there is 

no need to disturb the value. But when the value lies outside the predictive limit then there arises a concern 

to correct the value at that particular instant. The forecasted value from the LSTM model is inserted in the 

place of the actual or observed value at that particular instant. A warning is signaled by the system if there 

are three or more consecutive faulty data. Algorithm 1 neatly describes the DVC approach to fault detection 

and replacement. In algorithm 1 both SARIMA based and LSTM based weather prediction is given, 

however the DVC approach with LSTM is preferred since it has better accuracy. 

4. RESULTS AND DISCUSSION 

The TNAU, Coimbatore weather data collected from January 2017 to December 2018 were used to develop 

the forecasting model using LSTM. Mean absolute error (MAE), root mean square error (RMSE) and mean 

absolute percentage error (MAPE) are used to evaluate the performance of the algorithm. They are given 

Equation (5), (6) and (7) respectively. 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑃𝑖 − 𝐴𝑖|

𝑁

𝑖=1
 (5) 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑃𝑖 − 𝐴𝑖)

2
𝑁

𝑖=1
 (6) 

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑃𝑖 − 𝐴𝑖|

𝐴𝑖

× 100
𝑁

𝑖=1
 (7) 

Where, 𝑃𝑖is the predicted value at instant i, 𝐴𝑖is the actual observed value and N is the maximum number 

of data points. 
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Algorithm 1 Data Validation and Correction (DVC) 

1. LSTM_RNN for weather prediction 

  for all i ϵ1 : length[A(t)i] do 

      predicting [ Pt+f ]i 

      estimate predictive limit [ Pt+f (-)]i and [ Pt+f (+)]i 

      i = i + 365 

end 

(or) SARIMA for weather prediction 

 for all i ϵ1 : length[A(t)i] do 

      determine  (p, d and q) and (P, D and Q) 

      predicting [ Pt+f ]i 

      estimate predictive limit [ Pt+f (-)]i and [ Pt+f (+)]i 

      i = i + 365 

end 

 

2. Calculate CHI square 

  
𝑋2 = ∑

[(𝐴𝑡)𝑖−(𝑃𝑡+𝑓)𝑖]
2

(𝑃𝑡+𝑓)𝑖

𝑖=𝑊𝐿
𝑖=1   

 Calculate p-value  

 p-value = 𝑃(𝑋𝑑𝑓,𝛼
2 ≥ 𝑋2) 

 Faulty Data Detection  

  

  

if p-value > 0.95,  

   Actual data is error free and can be used for training the model further 

End 

if p-value < 0.95,  

   Possibility of abnormalities in the actual data and has to be investigated  

End 

  
3. Faulty Data Correction 

  

  

  

if [(𝑃𝑡+𝑓(−))𝑖 <  (𝐴𝑡)𝑖 <  (𝑃𝑡+𝑓(+))𝑖] then  

    no correction 

end 

if (𝐴𝑡)𝑖  lie outside (𝑃𝑡+𝑓(−))𝑖 and (𝑃𝑡+𝑓(+))𝑖 tShen  

    value is replaced with forecasted value of that instant 

end 

if more than 3 (𝐴𝑡)𝑖 lie outside (𝑃𝑡+𝑓(−))𝑖 and (𝑃𝑡+𝑓(+))𝑖 then  

   WARNING is indicated by the system and  

   value is replaced with forecasted value of that instant 

end 
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The weather parameters used in this study were the air temperature AT, relative humidity RH, wind speed 

U2 and solar radiation SR. Further, one month of data was selected to validate the DVC algorithm. Random 

errors were introduced in the selected one month data and using statistical hypothesis test the errors were 

identified. Once they were identified they were subsequently replaced by the forecasted data of that 

particular time instant. Table 2 shows the performance evaluation of the model for all the four weather 

parameter. 

 

Table 2. The Performance Values Obtained from the Data Validation Correction Model 

 DVC with LSTM DVC with SARIMA 

Weather Parameter MAE RMSE MAPE MAE RMSE MAPE 

Temperature 0.15 0.16 0.51 0.26 0.26 0.91 

Relative Humidity 1.45 1.66 2.11 3.1 3.43 4.46 

Wind Speed 0.45 0.72 7.18 0.66 0.92 10.89 

Solar Radiation 21.99 25.68 6.56 42.25 46.75 12.33 

 

For the air temperature, the first step was to forecast the new temperature at instant i with the LSTM model. 

From the Table 2, MAE for temperature prediction is 0.15, RMSE is 0.16 and the MAPE obtained a value 

of 0.51. It is also clear that LSTM based approach shows better performance when compared to SARIMA 

based approach. The next step was to determine the predictive limit (𝑃𝑡+𝑓(−))𝑖 and (𝑃𝑡+𝑓(+))𝑖. After 

which random temperature values as error were introduced and then the p-value was determined for each 

instant. Then the p-values were compared with the critical value, which is set as 0.95 in this approach. 

Figure 2 (a) shows the plot of actual and the predicted temprature value, Figure 2 (b) is the predicted 

temprature values with predictive limit of the LSTM approach. In Figure 2 (c) introduced random 

temprature error values can be seen and in Figure 2 (d) p-value for the temperature value with induced error 

were plotted with the critical value for the LSTM based DVC. So anyting below the critcal value is 

considered a faulty data. Similarly the Figure 3 (a) shows the plot of actual and predicted temprature values 

using the SARIMA based DVC model. Figure 3 (b) is plot of the predicted temprature with predictive limit. 

Figure 3 (c) and (d), shows the temprature with induced temprature and plot which shows the p-value and 

critical limit respectively. Figure 2 (a) and Figure 3 (a) indicated the performance of the forecast of the 

LSTM and SARIMA model but it is the LSTM that performace better. Hence, the LSTM based DVC 

outshines the SARIMA based DVC in finding the faulty data and replacing them. 
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(a) Predicted temperature by LSTM model (b) Predicted temperature with predictive limit 

  
(c) Induced error value in temperature data (d) p-value of the error induced 

Figure 2. LSTM Based DVC Model for Temperature Data 

  
(a) Predicted temperature by SARIMA model (b) Predicted temperature with predictive limit 

  
(c) Induced error value in temperature data (d) p-value of the error induced DVC SARIMA 

Figure 3. SARIMA Based DVC Model for Temperature Data 
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(a) Predicted RH by LSTM model (b) Predicted RH with predictive limit 

  
(c) Induced error value in RH data (d) p-value of the error induced 

Figure 4. LSTM Based DVC Model for Relative Humidity (RH) Data 

  
(a) Predicted RH by SARIMA model (b) Predicted RH with predictive limit 

  
(c) Induced error value in RH data (d) p-value of the error induced DVC SARIMA 

Figure 5. SARIMA Based DVC Model for Relative Humidity (RH) Data 
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(a) Predicted WS by LSTM model (b) Predicted WS with predictive limit 

  
(c) Induced error value in WS data (d) p-value of the error induced 

Figure 6. LSTM Based DVC Model for Wind Speed (WS) Data 

  
(a) Predicted WS by SARIMA model (b) Predicted WS with predictive limit 

  
(c) Induced error value in WS data (d) p-value of the error induced DVC SARIMA 

Figure 7. SARIMA Based DVC Model for Wind Speed (WS) Data 
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(a) Predicted SR by LSTM model (b) Predicted SR with predictive limit 

  
(c) Induced error value in SR data (d) p-value of the error induced 

Figure 8. LSTM Based DVC Model for Solar Radiation (SR) Data 

  
(a) Predicted SR by SARIMA model (b) Predicted SR with predictive limit 

  
(c) Induced error value in SR data (d) p-value of the error induced DVC SARIMA 

Figure 9. SARIMA Based DVC Model for Solar Radiation (SR) Data 
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Similar steps were followed for the other three parameters. From Table 2 the MAE, RMSE and MAPE for 

relative humidity, wind speed and solar radiation for DVC with LSTM shows better performace than DVC 

with SARIMA. Figure 4, 5, 6, 7, 8, and 9 shows performance of LSTM based DVC and SARIMA based 

DVC. It is clear that in all the four parameter LSTM based DVC performs better.  

The Data Validation Correction (DVC) algorithm not only identifies the faulty data, it corrects the faulty 

ones with the predicted input data. It also can warn the user of system failure. With the help of the p-value 

and critical significance values this faulty data are identified. Once they are identified they are replaced by 

the predicted data or the substitute weather data. Continuous or prolonged detection of abnormalities that 

is, a consecutive occurrence of three values beyond the predictive limit will be classified as warning to the 

system.  After identifing the error values with the help of p-value and critical value, error values are 

corrected by replacing them with forecasted values of that instant Figure 10 illustrates the replacement of 

error values with corrected values using the LSTM based DVC approach. 

 

Figure 10. Corrected Values with LSTM Based DVC Approach 

5. CONCLUSION 

The contribution of ETo in water balance calculation, irrigation planning and estimating yield prediction is 

immense it very important to accurately predict it. Therefore, accurate prediction is possible if the input 

weather data is fault free and of high quality. This lead to the development of data validation and correction 

algorithm to find faulty weather inputs from the sensor or any other source. To predict the input data or the 

weather data in the DVC approach, first SARIMA based prediction was used. SARIMA based approach 

though it boast of flexibility and less memory usage, low accuracy in predicting weather output data and 

difficulty in developing a single model to predicted multiple weather data stands against. Secondly the 

LSTM time series prediction model was used to improve the DVC algorithm. When using LSTM-RNN in 

DVC approach accuracy of the predicted weather data improved though at cost of increasing memory usage 

and longer computation time. The data fault detection was effectively done using statistical approach and 

then the faulty data was replaced by the predicted data. The prediction value of weather inputs like the 

temperature, relative humidity, solar radiation and wind speed yielded root mean square error (RMSE) 

value of 0.16, 1.66, 0.72 and 25.68 respectively. The proposed DVC approach works only with time series 

data and it’s basically a forecast based approach to detect and replace abnormalities in data. An approach 

for both time dependent and time independent data would increase the effectiveness of fault detection and 

correction. 
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