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Abstract

A net (z4)aeca in an f-algebra F is called multiplicative order convergent to z € FE if
|2 — 2| -u >0 for all u € E,. This convergence was introduced and studied on f-algebras
with the order convergence. In this paper, we study a variation of this convergence for
normed Riesz algebras with respect to the norm convergence. A net (z4)aec4 in a normed
Riesz algebra E is said to be multiplicative norm convergent to = € E if |||zq — |- ul| = 0
for each uw € E. We study this concept and investigate its relationship with the other
convergences, and also we introduce the mn-topology on normed Riesz algebras.
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1. Introduction and preliminaries

Let us recall some notations and terminologies used in this paper. An ordered vector
space E is said to be vector lattice (or, Riesz space) if, for each pair of vectors z,y € E, the
supremum z Vy = sup{z,y} and the infimum z Ay = inf{z, y} both exist in E. For z € E,
v :=2V0,27 :=(—x) V0, and |z| := 2 V (—x) are called the positive part, the negative
part, and the absolute value of x, respectively. A vector lattice E is called order complete if
every nonempty bounded above subset has a supremum (or, equivalently, whenever every
nonempty bounded below subset has an infimum). A vector lattice is order complete if
and only if 0 < x, T< x implies the existence of the supz,. A partially ordered set A
is called directed if, for each ay,as € A, there is another a € A such that ¢ > a; and
a > ay (or, equivalently, a < a; and a < az). A function from a directed set A into a
set F is called a net in E. A net (x4)aca in a vector lattice F is order convergent (or
o-convergent, for short) to x € E, if there exists another net (yg)gep satisfying yz | 0,
and for any § € B there exists ag € A such that |z, — x| < yg for all & > ag. In this
case, we write zo, — . An operator T : E — F between two vector lattices is called order
continuous whenever o — 0 in F implies Tz, 2,0in F. A vector e > 0 in a vector lattice
F is said to be a weak order unit whenever the band generated by e satisfies B, = E, or
equivalently, whenever for each z € E; we have z A ne T x; see much more information of
vector lattices for example [1,2,16,17]. Recall that a net (z4)aca in a vector lattice E is
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unbounded order convergent (or shortly, uo-convergent) to x € E if |z, — x| Au 2 0 for
every u € E,. In this case, we write o, — z, we refer the reader for an exposition on
uo-convergence to [3,5-11].

A vector lattice F under an associative multiplication is said to be a Riesz algebra
(or, shortly, l-algebra) whenever the multiplication makes E an algebra (with the usual
properties), and besides, it satisfies the following property: -y € Ey for every z,y € E.
A Riesz algebra F is called commutative whenever z -y = y - x for all z,y € E. Also, a
subset A of an [-algebra F is called [-subalgebre of E whenever it is also an [-algebra under
the multiplication operation in

An [-algebra X is called: d-algebra whenever u-(xAy) = (u-z)A(u-y) and (x Ay)-u =
(x-u) A (y-u) holds for all u,z,y € X; almost f-algebra if x Ay = 0 implies z -y = 0 for
all z,y € X; f-algebra if, for all u,z,y € X4, x Ay = 0 implies (u-x) Ay = (z-u) Ay = 0;
semiprime whenever the only nilpotent element in X is zero; unital if X has a multiplicative
unit. Moreover, any f-algebra is both d- and almost f-algebra (cf. [2,12,13,17]). A
vector lattice E is called Archimedean whenever %x J 0 holds in E for each x € E,.
Every Archimedean f-algebra is commutative; see for example [13, p.7]. Assume FE is
an Archimedean f-algebra with a multiplicative unit vector e. Then, by applying [17,
Thm.142.1(v)], in view of e = e-e = €2 > 0, it can be seen that e is a positive vector. On
the other hand, since e A x = 0 implies x = x Ax = (z-e) Az = 0, it follows that e is a
weak order unit (cf.[12, Cor.1.10]). In this article, unless otherwise, all vector lattices are
assumed to be real and Archimedean and all [-algebras are assumed to be commutative.

A net (z4)aeca in an f-algebra E is called multiplicative order convergent (or shortly,
mo-convergent) to x € E whenever |z, — x| - u>0 for all u € E;. Also, it is called
mo-Cauchy if the net (Tq — Tas)(a,a/)caxa Mo-converges to zero. E is called mo-complete
if every mo-Cauchy net in E is mo-convergent, and it is also called mo-continuous if
To 20 implies o, —2 0; see much more detail information [4]. Recall that a norm ||-||
on a vector lattice is said to be a lattice norm whenever |x| < |y| implies [|z| < |ly]|. A
vector lattice equipped with a lattice norm is known as a mormed Riesz space or normed
vector lattice. Moreover, a normed complete vector lattice is called Banach lattice. A net
(Za)aca in a Banach lattice E' is unbounded norm convergent (or un-convergent) to x € E
if ||za — x| Au|| = 0 for all u € Ef (cf. [8-10,15]). We routinely use the following fact:
y < x implies v -y < u - x for all positive elements u in [-algebras. So, we can give the
following notion.

Definition 1.1. An [-algebra F which is at the same time a normed Riesz space is called
a normed l-algebra whenever ||z - y|| < ||z||.||y|| holds for all z,y € E.

Motivated by the above definitions, we give the following notion.

Definition 1.2. A net (z4)aca in a normed [l-algebra F is said to be multiplicative norm
convergent (or shortly, mn-convergent) to z € E if ||[|xq—x|-u|| — 0 for all u € E. Abbre-
viated as z, — 2. If the condition holds only for sequences then it is called sequentially
mn-convergence.

In this paper, we study only the mn- cases because the sequential cases are analogous
in general.

Remark 1.3. (i) For a net (x4)aca in a normed l-algebra E, x, — = implies z -
y = x-y for all y € FE because of |za -y —z -yl -ul| <||za— 2| |y ul for all
u € E4; see for example [12, p.1]. The converse holds true in normed l-algebras
with the multiplication unit. Indeed, assume 4 - y — x - y for each y € E. Fix
u€ Eq. So, |||za — 2| u| = |||[ra-e—x-e| - ul| =>0.
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(ii) In normed [-algebras, the norm convergence implies the mn-convergence. Indeed,
by considering the inequality |||zo — 2| - ul| < ||z — 2||.||ul| for any net z, — z,
we can get the desired result.

(iii) If a net (x4 )aca is order Cauchy and x, —— 2 in a normed [-algebra then we have
To — z. Indeed, since the order Cauchy norm convergent net is order convergent
to its norm limit, we can get the desired result.

(iv) In order continuous normed [-algebras, it is clear that the mo-convergence implies
the mn-convergence.

(v) In order continuous normed l-algebras, following from the inequality |||z —z|-ul| <
|xa — x||.||u||, the order convergence implies the mn-convergence.

(vi) In atomic and order continuous Banach lattice [-algebras, an order bounded and
mn-convergent to zero sequence is sequentially mo-convergent to zero; see [9,
Lem.5.1.].

(vii) For an mn-convergent to zero sequence (z,) in a Banach lattice l-algebra, there is
a subsequence (x,, ) which sequentially mo-converges to zero; see [11, Lem.3.11.].

Example 1.4. Let F be a Banach lattice. Fix an element x € E. Then the principal
ideal I, = {y € £ : 3\ > 0 with |y| < Az}, generated by x in E under the norm |||
which is defined by [|y||cc = inf{\ > 0: |y| < Az}, is an AM-space; see [2, Thm.4.21.].

Recall that a vector e > 0 is called order unit whenever for each z there exists some
A > 0 with |z| < Ae (cf. [1, p.20]). Thus, we have (I, ||-||o) is AM-space with the unit |x|.
Since every AM-space with the unit, besides being a Banach lattice, has also an [-algebra
structure (cf. [2, p.259]). So, we can say that (I, ||||) is a Banach lattice l-algebra.
Therefore, for a net (z4)aca in I, and y € I, by applying [2, Cor.4.4.], we get T4 >y
in the original norm of E on I, if and only if z, 2=y in the norm ||-|ls. In particular,
take x as the unit element e of E. Then we have E. = E. Thus, for a net (z4)aca in E,
we have x, —— y in the (F, ||-|«) if and only if x4 —— y in the (E, ||||).

2. The mn-convergence on normed [-algebras

We begin the section with the next list of properties of mn-convergence which follows
directly from the inequalities |z — y| < |z — zo| + |za — y| and ||zq| — |2|| < |24 — 2| for
arbitrary net in (z4)ac4 in vector lattice.

Lemma 2.1. Let (za)aca and (yg)sep be two nets in a normed l-algebra E. Then the
followings hold:
() To 22 <= (o — ) =20 <= |24 — 7| = 0;
(i) if za —> x then ys — x for each subnet (yg) of (Ta);
(iil) suppose T4 —>x and ys —>y, then az, + bys —— ax + by for any a,b € R;
(iv) if 1o 25z then |zo| |z

The lattice operations in normed [-algebras are mn-continuous in the following sense.

Proposition 2.2. Let (x4)aca and (yp)sep be two nets in a normed l-algebra E. If
mn mn mn
To —x and yg — y then (vo V yp)(a,)eaxB — TV Y.

Proof. Assume z, — x and Ys 2%, y. Then, for a given € > 0, there exist indexes ag € A
and By € B such that |||zo — 2| - u|| < ie and ||lys — y| - ul| < 3¢ for every u € E and
for all @ > o and B > fy. It follows from the inequality |a Vb —aV ¢| < |b— ¢| in vector
lattices (cf. [2, Thm.1.9(2)]) that

llza Vys —azVy|-ul| <|[lzaVys —za Vy|l-u+|za Vy—2Vy|-ul

1 1
< llys =yl - ull + lllza — 2] - u] < je+5e =
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for all @ > ap and 8 > By and for every u € Ey. That is, (¥o VYg)(a,8)caxB vy O

The following proposition is similar to [4, Prop.2.7.], and so we omit its proof.

Proposition 2.3. Let B be a projection band in a normed l-algebra E and Pp be the
corresponding band projection. Then xo ——x in E implies Pg(zq) —— Pg(x) in both E
and B.

A positive vector e in a normed vector lattice E is called quasi-interior point if and only
if |x —x Ane|| — 0 for each = € E. If (z,) is a net in a vector lattice with a weak unit e
then z,, ~> 0 if and only if |z4| A e = 0; see [10, Lem. 3.5]. Also, there exist some results
for the quasi-interior point case in [9, Lem. 2.11] and for p-unit case in [5, Thm. 3.2]. We
give an expansion to normed [-algebras with the mn-convergence for quasi-interior points
in the next result.

Proposition 2.4. Let (x4)aca be a positive and decreasing net in a normed l-algebra E
with a quasi-interior point e. Then x4 — 0 if and only if (T4 - €)aca norm converges to
Z€T0.

Proof. The forward implication is immediate because of e € E. For the converse im-
plication, fix a positive vector v € E, and ¢ > 0. Thus, for a fixed index 1, we have
T < T, for all @ > ag because of (z4)aca |- Then we have

To U< To-(U—uAne)+zq- (uANE) < Toy - (W—uAne)+n(zq-e)
for all @ > a7 and each n € N. Hence, we get
[@a - ull < [|za, | -[u —uAne| +nllzq - €

for every a > ay and each n € N. So, we can find n such that |[u — u A ne|| < Mool
]

because e is a quasi-interior point. On the other hand, it follows from z,, - e M)O that

there exists an index ag such that ||z - e]| < 5 whenever o > ag. Since index set A is

directed, there exists another index «y € A such that o9 > a7 and oy > as. Therefore,
we get
€

€
T tho— =¢,
el 2n

and so ||xq - ul] — 0. O

[2a - ul| < [|za |

Remark 2.5. A positive and decreasing net (z4)aca in an order continuous Banach -

algebra E with weak unit e is mn-convergent to zero if and only if z,,-e ”.”> 0. Indeed, it is
known that e is a weak unit if and only if e is a quasi-interior point in an order continuous
Banach lattice; see for example [1, p.135]. Thus, following from Proposition 2.4, one can
get the desired result.

The mn-convergence passes obviously to any normed [-subalgebra Y of a normed [-
algebra E, i.e., for any net (yo)aca in Y with y, —=0 in E implies y, —=0 in Y. For
the converse, we give the following theorem whose proof is similar to [4, Thm. 2.10], and
so we omit it.

Theorem 2.6. Let Y be a normed l-subalgebra of a normed l-algebra E and (Yo )aca be
anetinY. If yo —=0 in'Y then it mn-converges to zero in E for both of the following
cases hold;

(i) Y is majorizing in E;

(ii) Y is a projection band in E.
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It is known that every Archimedean vector lattice has a unique order completion; see
[2, Thm. 2.24]. Moreover, Archimedean commutative [-algebra admits the unique exten-
sion multiplication to the order completion of it.

Theorem 2.7. Let E and E° be order continuous normed l-algebras with E° being order
completion of E. Then, for a sequence (x,,) in E, the followings hold true:

(i) If z, =0 in E then there is a subsequence (zy,) of (z,) such that x,, —0 in

E(S;
(ii) If zn =0 in E? then there is a subsequence (xn,) of (xn) such that x,, —=0 in
E.

Proof. Let z, =0 in E, i.e., |z, "U,M>O in E for all u € E. Now, let’s fix v € Ei.

Then there exists u, € E such that v < u, because F majorizes EJ. Since | T | - Uy M) 0,

by the standard fact in [1, Exer.13., p.25], there exists a subsequence (zy,, ) of (x;,) such that
(|n, | -uy) order converges to zero in E. Thus, we get |x,, |-u, — 0 in E?; see [10, Cor.2.9.].
Then it follows from the inequality |z, |- v < |2, | - uy that we have |z, |- v->0 in E°.
That is, zp, =20 in the order completion E° because v € Ei is arbitrary. It follows from

the order continuous norm that x,, 20 in the order completion E°.

For the converse, put z, — 0 in E°. Then, for all v € E, we have || ‘UM>O in

E%. In particular, for all w € Ey, |||z,] - w|| — 0 in E°. Fix w € E4. Then, again by the
standard fact in [1, Exer.13., p.25], we have a subsequence (x,, ) of (x,) such that (z,,)
is order convergent to zero in E?. Thus, we get |z, |- w >0 in E. As a result, since w
is arbitrary, x,, %0 in E. Therefore, one can get the result by using order continuous
norm. O

Recall that a subset A in a normed lattice (E,|-||) is said to almost order bounded if,
for any € > 0, there is u. € Ey such that |(|z] — ue)™|| = [[|z] — ue A |2]|| < € for any
x € A. For a given normed [-algebra F, one can give the following definition: a subset
A of E is called an l-almost order bounded if, for any € > 0, there is u. € E, such that
||| — ue - |z||| < € for any = € A. Similar to [11, Prop.3.7.], we give the following work.

Proposition 2.8. Let E be a normed l-algebra. If (x4)aca is l-almost order bounded and
mn-converges to x, then (Tq)aca converges to x in norm.

Proof. Assume (4)aca is an l-almost order bounded net. Then the net (|zq — x|)aca is
also [-almost order bounded. For any fixed € > 0, there exists u. > 0 such that

H’xa — 2] = Ue - [T _$|H S €.

Since x4 — x, we have |||zq — 2| - uc|| — 0. Therefore, following from Proposition 2.2, we
get ||xo — z|| < e, ie., o — x in the norm. O

Proposition 2.9. In an order continuous Banach l-algebra, every [-almost order bounded
mo-Cauchy net converges mn and in norm to the same limit.

Proof. Assume a net (24)aca is I-almost order bounded and mo-Cauchy in an order con-
tinuous Banach [-algebra E. Then the net (2o — Ta/)(a,a/)caxa is [-almost order bounded
and is mo-convergent to zero. Thus, it mn-converges to zero by the order continuity of
the norm. Hence, by applying Proposition 2.8, we get that the net (o — Ta/)(a,0/)cAxA
converges to zero in the norm. It follows that the net (z,) is norm Cauchy, and so it is
norm convergent because E is Banach lattice. As a result, we have that (z,) mn-converges
to its norm limit by Remark 1.3(i7). O

The multiplication in normed I-algebra is mn-continuous in the following sense.
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Theorem 2.10. Let E be a normed l-algebra, and (xq)aca and (yg)gep be two nets in E.
If o = 2 and ys 25y for some x,y € E and each positive element of E can be written
as a multiplication of two positive elements then we have xo - yg N
Proof. Assume z, —> z and yg —y. Then |z, — z| - w0 and lys — g for
every u € Ey. Let’s fix u € F;, and € > 0. So, there exist indexes ag and §y such that
H]a:a — | uH < e and |Hy5 -y uH <egforall @ > agand 8> f.

Next, we show the mn-convergence of (z4 - yg) to z - y. By considering the equality
|z - y| < x| - |y| (cf. [12, p.1]), we have

[lza-ys —x-ylu| = [[|Ta-ys —Ta-y+2a-y—z-y| ul
< lzal - lys =yl - ul| + |[lza — | - Jy] - u|
< Nlwa — |- lys —yl-ul +[[lys — vl - 2] - w| + |[lza — 2| - Jy] - u].

The second and the third terms in the last inequality both order converge to zero as
B — oo and @ — oo respectively because of |z| - u, |y| - u € Ey and 2, — x and yg —> y.
Now, let’s show the mn-convergence of the first term of last inequality. For fixed u, we can
find two positive elements u1,us € E; such that u = u; - us because the positive element
of E' can be written as a multiplication of two positive elements. So, we can get

llza = o lys — o1 - ull = (e = 2] -w1) - (lgs = 91 - u2)| < [z — ] -t s — 91 - |-

Therefore, we see |zq — 2| - |yg — y| - u M>0. Hence, we get T4 - ys — T - . O

In Theorem 2.10, the case of each positive element of E can be written as a multiplication
of two positive elements is called the factorization property for f-algebras in [13, Def.12.10].
But, instead of that property, we can give another easy condition in the following result.

Corollary 2.11. Let E be a normed l-algebra, and (xq4)aca and (yg)sep be two nets in
E. If v = x and Ys 289 for some x,y € E and at least one of two nets is eventually
norm bounded then we have x. - yg =y,

Proof. Modify Theorem 2.10. U

We give some basic notions motivated by their analogies from vector lattice theory.

Definition 2.12. Let (z4)aca be a net in a normed l-algebra E. Then
(1) (zqa) is said to be mn-Cauchy if the net (ro — Tor)(a,a/)caxa mn-converges to 0,
(2) E is called mn-complete if every mn-Cauchy net in E is mn-convergent,
(3) E is called mn-continuous if 0 implies that 2, —— 0,

Proposition 2.13. A normed l-algebra is mn-continuous if and only if x4 | 0 implies
mn
Ty — 0.

Proof. Suppose any decreasing to zero net is mn-convergent to zero. We show mn-
continuity. Let (z4)aca be an order convergent to zero net in a normed [-algebra E. Then
there exists another net z3 | 0 in £ such that, for any § there exists ag so that |z.| < 23,
and so ||| < ||2g] for all @ > ag. Since z5 | 0, by assumption, we have z3 — 0, i.e.,
for fixed € > 0 and u € E, there is fy such that ||zg - u|| < € for all § > fy. Thus, there
exists an index ag, so that |||z u| < e for all @ > ag,. Hence, 2, — 0. The other case
is obvious. g

Proposition 2.14. Let E be an mn-continuous and mn-complete normed l-algebra. Then
every l-almost order bounded and order Cauchy net is mn-convergent.
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Proof. Let (z4)aca be an l-almost order bounded order Cauchy net. Then the net (zo —
Ta')(a,a')eAx A 18 [-almost order bounded and is order convergent to zero. Since E is mn-

continuous, &y — o — 0. By using Proposition 2.8, we have o — o M> 0. Hence, we get
that (z4)aca is mn-Cauchy, and so it is mn-convergent because of mn-completeness. [J

3. The mn-topology on normed [-algebra

In this section, we now turn our attention to topology on normed [-algebras. We
show that the mn-convergence in a normed [-algebra is topological. While mo- and uo-
convergence need not be given by a topology. But, it was observed in [9] that the un-
convergence is topological. Motivated from that definition of the mn-convergence, we give
the following construction of the mn-topology.

Let € > 0 be given. For a non-zero positive vector v € E, we put
Vue={z € E: |||z ul| <e}.

Let N be the collection of all the sets of this form. We claim that N is a base of neighbor-
hoods of zero for some Hausdorff linear topology. It is obvious that 24 — 0 if and only
if every set of N contains a tail of this net, hence the mn-convergence is the convergence
induced by the mentioned topology.

We have to show that N is a base of neighborhoods of zero. To show this we apply
[14, Thm.3.1.10.]. First, note that every element in N contains zero. Now, we show that
for every two elements of N, their intersection is again in N. Take any two set V,,, ., and
Vig,eo in N. Put € = €1 Aeg and u = ug V ua. We show that V,, . €V, ., NVy, .,. For any
x € Vye, we have |||z| - u|| < e. Thus, it follows from |z| - uy < || - u that

[lz|-w| < |l|o] - ul| <& <er.

Thus, we get x € V,,, ,. By a similar way, we also have x € V,,, c,.

Next, it is not a hard job to see that Vi, . + Vi, . C Vy 2., so that for each U € N, there
is another V' € N such that V + V C U. In addition, one can easily verify that, for every
U € N and every scalar A with |[A\| <1, we have AU C U.

Now, we show that, for each U € N and each y € U, there exists V € N with y+V C U.
Suppose y € V,, .. We should find § > 0 and a non-zero v € E such that y +V, s C V.
Take v := u. Hence, since y € V,, ., we have |||y - u| < e. Put § :=e— |||y|-ul|. We
claim that y +V, 5 C Vi, .. Let’s take x € V,, 5. We show that y + x € V,, .. Consider the
inequality |y + z| - u < |y| - w + |z| - u. Then we have

My + 2l - ull < Iyl - wll + 2] - ull < [llyl - ul| +6 =e.

Finally, we show that this topology is Hausdorff. It is enough to show that (N = {0}.
Suppose that it is not hold true, i.e., assume that 0 # x € V,, . for all non-zero u € E and
for all € > 0. In particular, take 2 € V},| .. Thus, we have |||z|?|| < e. Since ¢ is arbitrary,
we get |22 =0, i.e., x = 0 by using [17, Thm.142.3.]; a contradiction.

Recall that the statement V,, . is either contained in [—u,u] or contains a non-trivial
ideal holds true for the un-topology. However, it is not true for the mn-topology. To see
this, we give the following counterexample.

Example 3.1. Consider the l-algebra E = C]0, 1] with the sup-norm topology 7. Take
a =1and A = B(0,10). The set U, 4 = {x € E : |z|-a € A} = B(0,10) is neither
contained in [—a, a] = [-1, 1] = B(0,1) nor contains a non-trivial ideal.
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Lemma 3.2. If V, . is contained in [—u,u], then u is a strong unit.

Proof. Take a positive element x € E,. Then we have a positive scalar A such that
(Ax)-a € A. Thus we get Az € U, 4 and so, Ax € [—a,a]. Then one can see that a is a
strong unit. [l

4. The mn-convergence on semiprime normed f-algebras

Recall that an element x in an f-algebra F is called nilpotent whenever " = 0 for some
natural number n € N. The algebra E is called semiprime if the only nilpotent element
in E is the null element ([17, p.670]). We begin the section with the next useful result.

Proposition 4.1. Let (x4)aca be a net in nilpotent elements of a normed f-algebra E.
If £ — x then x is also a nilpotent element.

Proof. Take a fixed positive element v € Ey. Then, by using [13, Prop.10.2(iii)] and
[17, Thm.142.1(ii)], we get
|lza — 2| - ul| = [[|ta - u—2 - ul|| = [|J2a-uv—2 ul| = |z ul| - 0.

Thus ||z - u|| = 0 and hence z - u = 0 for every u € X;. Then y-x =0 forall y € E. Tt
follows now from [12, p.157] that = is nilpotent in E. O

Remark 4.2. By considering Proposition 4.1, it is easy to see that mn-convergence in
normed f-algebra F has an unique limit if and only if F is semiprime normed f-algebra.

Unless stated otherwise, we will assume that F is a semiprime normed f-algebra and
all nets and vectors lie in E.

Proposition 4.3. Let (x4)aca be a net in E. Then we have that
(i) 0 < x4 = x implies x € E,
(ii) if (za) is monotone and xo >z then To = .

Proof. (i) Assume (r4)qca consists of non-zero elements and mn-converges to x € E.
Then, by using Proposition 2.2, we have z, = 2 == z*. Also, following from Remark

4.2, we get x+ = x. Therefore, we get x € E,.

(ii) For the order convergence of (24)acA, it is enough to show that z, T and z, — =
implies z, — z. For a fixed index o, we have r3 — To € Xy for all f > a. By applying
(i), we can see 13 — T4 —> T — 4 € Xy as B — oco. Therefore, x > z,, for the index .
Since « is arbitrary, x is an upper bound of (z,). Assume y is another upper bound of
(o), i.e., y > x4 for all a. So, y — 24—y —2 € Xy, or y >z, and so x, T . O

Theorem 4.4. The following statements are equivalent:
(i) E is mn-continuous;
(i) if 0 < xo 1< x holds in E then (x4) is an mn-Cauchy net;

(iii) x4 | O implies xo —=0 in E.

Proof. (i)=(ii) Take a net 0 < x, 1< x in E. Then there exists another net (yg) in F
such that (yg — Ta)a,s | 0; see [2, Lem.4.8]. Thus, by applying Proposition 2.13, we have
(Y5 — Ta)a,p — 0 because E is mn-continuous. Therefore, the net (z,) is mn-Cauchy
because of ||zo — To|aarea < ||Ta — ysll + lyg — zar |-

(ii)=-(iii) Put x4 { 0 in F and fix arbitrary ag. Thus, we have z, < 4, for all o > ay,
and so we can get 0 < (Zo, — Ta)azae T< Ta,. Then it follows from (i) that the net
(Tay — Ta)a>ap 18 mn-Cauchy, ie., (z/ — za) 280 as ap < a, @ — oo. Since E is mn-
complete, there exists an element x € E satisfying o, — x as ag < a — oo. It follows
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from Proposition 4.3 that x, | 0 because of z, | and z, — 0, and so, following from
Remark 4.2 tha we have z = 0. Therefore, we get z — 0.

(iii)=-(i) It is just the implication of Proposition 2.13. O

Corollary 4.5. Fvery mn-continuous and mn-complete normed f-algebra E is order com-
plete.

Proof. Suppose E is mn-continuous and mn-complete. Fory € E,, putanet 0 <z, 1<y
in F. By applying Theorem 4.4 (i7), the net (z) is mn-Cauchy. Thus, there exists an
element z € E such that 2, — x because of mmn-completeness. Since x, 1 and z,, =,
it follows from Lemma 4.3 that x, 1 x. Therefore, F is order complete. ]
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