

RESEARCH ARTICLE

The multiplicative norm convergence in normed Riesz algebras

Abdullah Aydın

Department of Mathematics, Muş Alparslan University, Muş, Turkey

Abstract

A net $(x_{\alpha})_{\alpha \in A}$ in an *f*-algebra *E* is called multiplicative order convergent to $x \in E$ if $|x_{\alpha} - x| \cdot u \xrightarrow{\circ} 0$ for all $u \in E_+$. This convergence was introduced and studied on *f*-algebras with the order convergence. In this paper, we study a variation of this convergence for normed Riesz algebras with respect to the norm convergence. A net $(x_{\alpha})_{\alpha \in A}$ in a normed Riesz algebra *E* is said to be multiplicative norm convergent to $x \in E$ if $||x_{\alpha} - x| \cdot u|| \to 0$ for each $u \in E_+$. We study this concept and investigate its relationship with the other convergences, and also we introduce the *mn*-topology on normed Riesz algebras.

Mathematics Subject Classification (2020). 46A40, 46E30

Keywords. *mn*-convergence, normed Riesz algebra, *mn*-topology, Riesz spaces, Riesz algebra, *mo*-convergence

1. Introduction and preliminaries

Let us recall some notations and terminologies used in this paper. An ordered vector space E is said to be vector lattice (or, Riesz space) if, for each pair of vectors $x, y \in E$, the supremum $x \lor y = \sup\{x, y\}$ and the infimum $x \land y = \inf\{x, y\}$ both exist in E. For $x \in E$, $x^+ := x \lor 0, x^- := (-x) \lor 0$, and $|x| := x \lor (-x)$ are called the *positive* part, the *negative* part, and the *absolute value* of x, respectively. A vector lattice E is called *order complete* if every nonempty bounded above subset has a supremum (or, equivalently, whenever every nonempty bounded below subset has an infimum). A vector lattice is order complete if and only if $0 \leq x_{\alpha} \uparrow \leq x$ implies the existence of the sup x_{α} . A partially ordered set A is called *directed* if, for each $a_1, a_2 \in A$, there is another $a \in A$ such that $a \geq a_1$ and $a \geq a_2$ (or, equivalently, $a \leq a_1$ and $a \leq a_2$). A function from a directed set A into a set E is called a net in E. A net $(x_{\alpha})_{\alpha \in A}$ in a vector lattice E is order convergent (or *o-convergent*, for short) to $x \in E$, if there exists another net $(y_{\beta})_{\beta \in B}$ satisfying $y_{\beta} \downarrow 0$, and for any $\beta \in B$ there exists $\alpha_{\beta} \in A$ such that $|x_{\alpha} - x| \leq y_{\beta}$ for all $\alpha \geq \alpha_{\beta}$. In this case, we write $x_{\alpha} \xrightarrow{o} x$. An operator $T: E \to F$ between two vector lattices is called *order continuous* whenever $x_{\alpha} \xrightarrow{o} 0$ in E implies $Tx_{\alpha} \xrightarrow{o} 0$ in F. A vector $e \ge 0$ in a vector lattice E is said to be a *weak order unit* whenever the band generated by e satisfies $B_e = E$, or equivalently, whenever for each $x \in E_+$ we have $x \wedge ne \uparrow x$; see much more information of vector lattices for example [1, 2, 16, 17]. Recall that a net $(x_{\alpha})_{\alpha \in A}$ in a vector lattice E is

Email address: aaydin.aabdullah@gmail.com

Received: 28.10.2019; Accepted: 17.04.2020

unbounded order convergent (or shortly, uo-convergent) to $x \in E$ if $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$ for every $u \in E_+$. In this case, we write $x_{\alpha} \xrightarrow{uo} x$, we refer the reader for an exposition on uo-convergence to [3,5–11].

A vector lattice E under an associative multiplication is said to be a *Riesz algebra* (or, shortly, *l*-algebra) whenever the multiplication makes E an algebra (with the usual properties), and besides, it satisfies the following property: $x \cdot y \in E_+$ for every $x, y \in E_+$. A Riesz algebra E is called *commutative* whenever $x \cdot y = y \cdot x$ for all $x, y \in E$. Also, a subset A of an *l*-algebra E is called *l*-subalgebre of E whenever it is also an *l*-algebra under the multiplication operation in E

An *l*-algebra X is called: *d*-algebra whenever $u \cdot (x \wedge y) = (u \cdot x) \wedge (u \cdot y)$ and $(x \wedge y) \cdot u = (x \cdot u) \wedge (y \cdot u)$ holds for all $u, x, y \in X_+$; almost f-algebra if $x \wedge y = 0$ implies $x \cdot y = 0$ for all $x, y \in X_+$; f-algebra if, for all $u, x, y \in X_+$, $x \wedge y = 0$ implies $(u \cdot x) \wedge y = (x \cdot u) \wedge y = 0$; semiprime whenever the only nilpotent element in X is zero; unital if X has a multiplicative unit. Moreover, any f-algebra is both d- and almost f-algebra (cf. [2, 12, 13, 17]). A vector lattice E is called Archimedean whenever $\frac{1}{n}x \downarrow 0$ holds in E for each $x \in E_+$. Every Archimedean f-algebra is commutative; see for example [13, p.7]. Assume E is an Archimedean f-algebra with a multiplicative unit vector e. Then, by applying [17, Thm.142.1(v)], in view of $e = e \cdot e = e^2 \ge 0$, it can be seen that e is a positive vector. On the other hand, since $e \wedge x = 0$ implies $x = x \wedge x = (x \cdot e) \wedge x = 0$, it follows that e is a weak order unit (cf.[12, Cor.1.10]). In this article, unless otherwise, all vector lattices are assumed to be real and Archimedean and all *l*-algebras are assumed to be commutative.

A net $(x_{\alpha})_{\alpha \in A}$ in an *f*-algebra *E* is called *multiplicative order convergent* (or shortly, *mo-convergent*) to $x \in E$ whenever $|x_{\alpha} - x| \cdot u \xrightarrow{\circ} 0$ for all $u \in E_+$. Also, it is called *mo-Cauchy* if the net $(x_{\alpha} - x_{\alpha'})_{(\alpha,\alpha') \in A \times A}$ *mo*-converges to zero. *E* is called *mo-complete* if every *mo*-Cauchy net in *E* is *mo*-convergent, and it is also called *mo-continuous* if $x_{\alpha} \xrightarrow{\circ} 0$ implies $x_{\alpha} \xrightarrow{\mathrm{mo}} 0$; see much more detail information [4]. Recall that a norm $\|\cdot\|$ on a vector lattice is said to be a *lattice norm* whenever $|x| \leq |y|$ implies $||x|| \leq ||y||$. A vector lattice equipped with a lattice norm is known as a *normed Riesz space* or *normed vector lattice*. Moreover, a normed complete vector lattice is called *Banach lattice*. A net $(x_{\alpha})_{\alpha \in A}$ in a Banach lattice *E* is *unbounded norm convergent* (or *un-convergent*) to $x \in E$ if $||x_{\alpha} - x| \wedge u|| \to 0$ for all $u \in E_+$ (cf. [8–10, 15]). We routinely use the following fact: $y \leq x$ implies $u \cdot y \leq u \cdot x$ for all positive elements *u* in *l*-algebras. So, we can give the following notion.

Definition 1.1. An *l*-algebra *E* which is at the same time a normed Riesz space is called a *normed l-algebra* whenever $||x \cdot y|| \le ||x|| \cdot ||y||$ holds for all $x, y \in E$.

Motivated by the above definitions, we give the following notion.

Definition 1.2. A net $(x_{\alpha})_{\alpha \in A}$ in a normed *l*-algebra *E* is said to be *multiplicative norm* convergent (or shortly, *mn-convergent*) to $x \in E$ if $|||x_{\alpha} - x| \cdot u|| \to 0$ for all $u \in E_+$. Abbreviated as $x_{\alpha} \xrightarrow{\text{mn}} x$. If the condition holds only for sequences then it is called sequentially *mn*-convergence.

In this paper, we study only the mn- cases because the sequential cases are analogous in general.

Remark 1.3. (i) For a net $(x_{\alpha})_{\alpha \in A}$ in a normed *l*-algebra E, $x_{\alpha} \xrightarrow{\mathrm{mn}} x$ implies $x_{\alpha} \cdot y \xrightarrow{\mathrm{mn}} x \cdot y$ for all $y \in E$ because of $|||x_{\alpha} \cdot y - x \cdot y| \cdot u|| \leq |||x_{\alpha} - x| \cdot |y| \cdot u||$ for all $u \in E_+$; see for example [12, p.1]. The converse holds true in normed *l*-algebras with the multiplication unit. Indeed, assume $x_{\alpha} \cdot y \xrightarrow{\mathrm{mn}} x \cdot y$ for each $y \in E$. Fix $u \in E_+$. So, $|||x_{\alpha} - x| \cdot u|| = |||x_{\alpha} \cdot e - x \cdot e| \cdot u|| \xrightarrow{\mathrm{mn}} 0$.

A. Aydın

- (ii) In normed l-algebras, the norm convergence implies the mn-convergence. Indeed, by considering the inequality $|||x_{\alpha} - x| \cdot u|| \leq ||x_{\alpha} - x|| \cdot ||u||$ for any net $x_{\alpha} \xrightarrow{\text{mn}} x$, we can get the desired result.
- (iii) If a net $(x_{\alpha})_{\alpha \in A}$ is order Cauchy and $x_{\alpha} \xrightarrow{\text{mn}} x$ in a normed *l*-algebra then we have $x_{\alpha} \xrightarrow{\text{mo}} x$. Indeed, since the order Cauchy norm convergent net is order convergent to its norm limit, we can get the desired result.
- (iv) In order continuous normed *l*-algebras, it is clear that the *mo*-convergence implies the mn-convergence.
- (v) In order continuous normed *l*-algebras, following from the inequality $||x_{\alpha} x| \cdot u|| \leq 1$ $||x_{\alpha} - x|| \cdot ||u||$, the order convergence implies the *mn*-convergence.
- (vi) In atomic and order continuous Banach lattice l-algebras, an order bounded and mn-convergent to zero sequence is sequentially mo-convergent to zero; see [9, Lem.5.1.].
- (vii) For an mn-convergent to zero sequence (x_n) in a Banach lattice l-algebra, there is a subsequence (x_{n_k}) which sequentially *mo*-converges to zero; see [11, Lem.3.11.].

Example 1.4. Let E be a Banach lattice. Fix an element $x \in E$. Then the principal ideal $I_x = \{y \in E : \exists \lambda > 0 \text{ with } |y| \le \lambda x\}$, generated by x in E under the norm $\|\cdot\|_{\infty}$ which is defined by $||y||_{\infty} = \inf\{\lambda > 0 : |y| \le \lambda x\}$, is an AM-space; see [2, Thm.4.21.].

Recall that a vector e > 0 is called order unit whenever for each x there exists some $\lambda > 0$ with $|x| \leq \lambda e$ (cf. [1, p.20]). Thus, we have $(I_x, \|\cdot\|_{\infty})$ is AM-space with the unit |x|. Since every AM-space with the unit, besides being a Banach lattice, has also an l-algebra structure (cf. [2, p.259]). So, we can say that $(I_x, \|\cdot\|_{\infty})$ is a Banach lattice *l*-algebra. Therefore, for a net $(x_{\alpha})_{\alpha \in A}$ in I_x and $y \in I_x$, by applying [2, Cor.4.4.], we get $x_{\alpha} \xrightarrow{\text{mn}} y$ in the original norm of E on I_x if and only if $x_{\alpha} \xrightarrow{\text{mn}} y$ in the norm $\|\cdot\|_{\infty}$. In particular, take x as the unit element e of E. Then we have $E_e = E$. Thus, for a net $(x_{\alpha})_{\alpha \in A}$ in E, we have $x_{\alpha} \xrightarrow{\text{mn}} y$ in the $(E, \|\cdot\|_{\infty})$ if and only if $x_{\alpha} \xrightarrow{\text{mn}} y$ in the $(E, \|\cdot\|)$.

2. The *mn*-convergence on normed *l*-algebras

We begin the section with the next list of properties of mn-convergence which follows directly from the inequalities $|x-y| \leq |x-x_{\alpha}| + |x_{\alpha}-y|$ and $||x_{\alpha}| - |x|| \leq |x_{\alpha}-x|$ for arbitrary net in $(x_{\alpha})_{\alpha \in A}$ in vector lattice.

Lemma 2.1. Let $(x_{\alpha})_{\alpha \in A}$ and $(y_{\beta})_{\beta \in B}$ be two nets in a normed *l*-algebra *E*. Then the followings hold:

- (i) $x_{\alpha} \xrightarrow{\mathrm{mn}} x \iff (x_{\alpha} x) \xrightarrow{\mathrm{mn}} 0 \iff |x_{\alpha} x| \xrightarrow{\mathrm{mn}} 0;$ (ii) $if x_{\alpha} \xrightarrow{\mathrm{mn}} x \text{ then } y_{\beta} \xrightarrow{\mathrm{mn}} x \text{ for each subnet } (y_{\beta}) \text{ of } (x_{\alpha});$
- (iii) suppose $x_{\alpha} \xrightarrow{\text{mn}} x$ and $y_{\beta} \xrightarrow{\text{mn}} y$, then $ax_{\alpha} + by_{\beta} \xrightarrow{\text{mn}} ax + by$ for any $a, b \in \mathbb{R}$; (iv) if $x_{\alpha} \xrightarrow{\text{mn}} x$ then $|x_{\alpha}| \xrightarrow{\text{mn}} |x|$.

The lattice operations in normed *l*-algebras are *mn*-continuous in the following sense.

Proposition 2.2. Let $(x_{\alpha})_{\alpha \in A}$ and $(y_{\beta})_{\beta \in B}$ be two nets in a normed *l*-algebra *E*. If $x_{\alpha} \xrightarrow{\min} x \text{ and } y_{\beta} \xrightarrow{\min} y \text{ then } (x_{\alpha} \vee y_{\beta})_{(\alpha,\beta) \in A \times B} \xrightarrow{\min} x \vee y.$

Proof. Assume $x_{\alpha} \xrightarrow{\text{mn}} x$ and $y_{\beta} \xrightarrow{\text{mn}} y$. Then, for a given $\varepsilon > 0$, there exist indexes $\alpha_0 \in A$ and $\beta_0 \in B$ such that $|||x_\alpha - x| \cdot u|| \leq \frac{1}{2}\varepsilon$ and $|||y_\beta - y| \cdot u|| \leq \frac{1}{2}\varepsilon$ for every $u \in E_+$ and for all $\alpha \geq \alpha_0$ and $\beta \geq \beta_0$. It follows from the inequality $|a \vee b - a \vee c| \leq |b - c|$ in vector lattices (cf. [2, Thm.1.9(2)]) that

$$\begin{split} \left\| |x_{\alpha} \vee y_{\beta} - x \vee y| \cdot u \right\| &\leq \left\| |x_{\alpha} \vee y_{\beta} - x_{\alpha} \vee y| \cdot u + |x_{\alpha} \vee y - x \vee y| \cdot u \right\| \\ &\leq \left\| |y_{\beta} - y| \cdot u \right\| + \left\| |x_{\alpha} - x| \cdot u \right\| \leq \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon \end{split}$$

for all $\alpha \geq \alpha_0$ and $\beta \geq \beta_0$ and for every $u \in E_+$. That is, $(x_\alpha \vee y_\beta)_{(\alpha,\beta) \in A \times B} \xrightarrow{\text{mn}} x \vee y$. \Box

The following proposition is similar to [4, Prop.2.7.], and so we omit its proof.

Proposition 2.3. Let B be a projection band in a normed l-algebra E and P_B be the corresponding band projection. Then $x_{\alpha} \xrightarrow{\text{mn}} x$ in E implies $P_B(x_{\alpha}) \xrightarrow{\text{mn}} P_B(x)$ in both E and B.

A positive vector e in a normed vector lattice E is called *quasi-interior point* if and only if $||x - x \wedge ne|| \to 0$ for each $x \in E_+$. If (x_α) is a net in a vector lattice with a weak unit ethen $x_\alpha \xrightarrow{uo} 0$ if and only if $|x_\alpha| \wedge e \xrightarrow{o} 0$; see [10, Lem. 3.5]. Also, there exist some results for the quasi-interior point case in [9, Lem. 2.11] and for p-unit case in [5, Thm. 3.2]. We give an expansion to normed l-algebras with the mn-convergence for quasi-interior points in the next result.

Proposition 2.4. Let $(x_{\alpha})_{\alpha \in A}$ be a positive and decreasing net in a normed *l*-algebra *E* with a quasi-interior point *e*. Then $x_{\alpha} \xrightarrow{\text{mn}} 0$ if and only if $(x_{\alpha} \cdot e)_{\alpha \in A}$ norm converges to zero.

Proof. The forward implication is immediate because of $e \in E_+$. For the converse implication, fix a positive vector $u \in E_+$ and $\varepsilon > 0$. Thus, for a fixed index α_1 , we have $x_{\alpha} \leq x_{\alpha_1}$ for all $\alpha \geq \alpha_0$ because of $(x_{\alpha})_{\alpha \in A} \downarrow$. Then we have

$$x_{\alpha} \cdot u \le x_{\alpha} \cdot (u - u \wedge ne) + x_{\alpha} \cdot (u \wedge ne) \le x_{\alpha_{1}} \cdot (u - u \wedge ne) + n(x_{\alpha} \cdot e)$$

for all $\alpha \geq \alpha_1$ and each $n \in \mathbb{N}$. Hence, we get

$$||x_{\alpha} \cdot u|| \le ||x_{\alpha_1}|| \cdot ||u - u \wedge ne|| + n ||x_{\alpha} \cdot e||$$

for every $\alpha \geq \alpha_1$ and each $n \in \mathbb{N}$. So, we can find n such that $||u - u \wedge ne|| < \frac{\varepsilon}{2||x_{\alpha_1}||}$ because e is a quasi-interior point. On the other hand, it follows from $x_{\alpha} \cdot e \xrightarrow{||\cdot||} 0$ that

there exists an index α_2 such that $||x_{\alpha} \cdot e|| < \frac{\varepsilon}{2n}$ whenever $\alpha \ge \alpha_2$. Since index set A is directed, there exists another index $\alpha_0 \in A$ such that $\alpha_0 \ge \alpha_1$ and $\alpha_0 \ge \alpha_2$. Therefore, we get

$$||x_{\alpha} \cdot u|| < ||x_{\alpha_0}|| \frac{\varepsilon}{2||x_{\alpha_0}||} + n\frac{\varepsilon}{2n} = \varepsilon,$$

and so $||x_{\alpha} \cdot u|| \to 0$.

Remark 2.5. A positive and decreasing net $(x_{\alpha})_{\alpha \in A}$ in an order continuous Banach *l*-algebra *E* with weak unit *e* is *mn*-convergent to zero if and only if $x_{\alpha} \cdot e \xrightarrow{\|\cdot\|} 0$. Indeed, it is known that *e* is a weak unit if and only if *e* is a quasi-interior point in an order continuous Banach lattice; see for example [1, p.135]. Thus, following from Proposition 2.4, one can get the desired result.

The *mn*-convergence passes obviously to any normed *l*-subalgebra Y of a normed *l*-algebra E, i.e., for any net $(y_{\alpha})_{\alpha \in A}$ in Y with $y_{\alpha} \xrightarrow{\text{mn}} 0$ in E implies $y_{\alpha} \xrightarrow{\text{mn}} 0$ in Y. For the converse, we give the following theorem whose proof is similar to [4, Thm. 2.10], and so we omit it.

Theorem 2.6. Let Y be a normed l-subalgebra of a normed l-algebra E and $(y_{\alpha})_{\alpha \in A}$ be a net in Y. If $y_{\alpha} \xrightarrow{\text{mn}} 0$ in Y then it mn-converges to zero in E for both of the following cases hold;

- (i) Y is majorizing in E;
- (ii) Y is a projection band in E.

It is known that every Archimedean vector lattice has a unique order completion; see [2, Thm. 2.24]. Moreover, Archimedean commutative *l*-algebra admits the unique extension multiplication to the order completion of it.

Theorem 2.7. Let E and E^{δ} be order continuous normed *l*-algebras with E^{δ} being order completion of E. Then, for a sequence (x_n) in E, the followings hold true:

- (i) If $x_n \xrightarrow{\text{mn}} 0$ in E then there is a subsequence (x_{n_k}) of (x_n) such that $x_{n_k} \xrightarrow{\text{mn}} 0$ in E^{δ} ;
- (ii) If $x_n \xrightarrow{\text{mn}} 0$ in E^{δ} then there is a subsequence (x_{n_k}) of (x_n) such that $x_{n_k} \xrightarrow{\text{mn}} 0$ in E.

Proof. Let $x_n \xrightarrow{\mathrm{mn}} 0$ in E, i.e., $|x_n| \cdot u \xrightarrow{\|\cdot\|} 0$ in E for all $u \in E_+$. Now, let's fix $v \in E_+^{\delta}$. Then there exists $u_v \in E_+$ such that $v \leq u_v$ because E majorizes E^{δ} . Since $|x_n| \cdot u_v \xrightarrow{\|\cdot\|} 0$, by the standard fact in [1, Exer.13., p.25], there exists a subsequence (x_{n_k}) of (x_n) such that $(|x_{n_k}| \cdot u_v)$ order converges to zero in E. Thus, we get $|x_{n_k}| \cdot u_v \xrightarrow{0} 0$ in E^{δ} ; see [10, Cor.2.9.]. Then it follows from the inequality $|x_{n_k}| \cdot v \leq |x_{n_k}| \cdot u_v$ that we have $|x_{n_k}| \cdot v \xrightarrow{0} 0$ in E^{δ} . That is, $x_{n_k} \xrightarrow{\mathrm{mo}} 0$ in the order completion E^{δ} because $v \in E_+^{\delta}$ is arbitrary. It follows from the order continuous norm that $x_{n_k} \xrightarrow{\mathrm{mn}} 0$ in the order completion E^{δ} .

For the converse, put $x_n \xrightarrow{\mathrm{mn}} 0$ in E^{δ} . Then, for all $u \in E_+^{\delta}$, we have $|x_n| \cdot u \xrightarrow{\|\cdot\|} 0$ in E^{δ} . In particular, for all $w \in E_+$, $\||x_n| \cdot w\| \to 0$ in E^{δ} . Fix $w \in E_+$. Then, again by the standard fact in [1, Exer.13., p.25], we have a subsequence (x_{n_k}) of (x_n) such that (x_{n_k}) is order convergent to zero in E^{δ} . Thus, we get $|x_{n_k}| \cdot w \xrightarrow{\Theta} 0$ in E. As a result, since w is arbitrary, $x_{n_k} \xrightarrow{\mathrm{mo}} 0$ in E. Therefore, one can get the result by using order continuous norm.

Recall that a subset A in a normed lattice $(E, |\cdot||)$ is said to almost order bounded if, for any $\epsilon > 0$, there is $u_{\epsilon} \in E_+$ such that $|(|x| - u_{\epsilon})^+|| = |||x| - u_{\epsilon} \wedge |x||| \leq \epsilon$ for any $x \in A$. For a given normed *l*-algebra *E*, one can give the following definition: a subset *A* of *E* is called an *l*-almost order bounded if, for any $\epsilon > 0$, there is $u_{\epsilon} \in E_+$ such that $|||x| - u_{\epsilon} \cdot |x||| \leq \epsilon$ for any $x \in A$. Similar to [11, Prop.3.7.], we give the following work.

Proposition 2.8. Let E be a normed l-algebra. If $(x_{\alpha})_{\alpha \in A}$ is l-almost order bounded and mn-converges to x, then $(x_{\alpha})_{\alpha \in A}$ converges to x in norm.

Proof. Assume $(x_{\alpha})_{\alpha \in A}$ is an *l*-almost order bounded net. Then the net $(|x_{\alpha} - x|)_{\alpha \in A}$ is also *l*-almost order bounded. For any fixed $\varepsilon > 0$, there exists $u_{\varepsilon} > 0$ such that

$$\left\| |x_{\alpha} - x| - u_{\epsilon} \cdot |x_{\alpha} - x| \right\| \le \epsilon.$$

Since $x_{\alpha} \xrightarrow{\text{mn}} x$, we have $||x_{\alpha} - x| \cdot u_{\varepsilon}|| \to 0$. Therefore, following from Proposition 2.2, we get $||x_{\alpha} - x|| \leq \varepsilon$, i.e., $x_{\alpha} \to x$ in the norm.

Proposition 2.9. In an order continuous Banach l-algebra, every l-almost order bounded mo-Cauchy net converges mn and in norm to the same limit.

Proof. Assume a net $(x_{\alpha})_{\alpha \in A}$ is *l*-almost order bounded and *mo*-Cauchy in an order continuous Banach *l*-algebra *E*. Then the net $(x_{\alpha} - x_{\alpha'})_{(\alpha,\alpha') \in A \times A}$ is *l*-almost order bounded and is *mo*-convergent to zero. Thus, it *mn*-converges to zero by the order continuity of the norm. Hence, by applying Proposition 2.8, we get that the net $(x_{\alpha} - x_{\alpha'})_{(\alpha,\alpha') \in A \times A}$ converges to zero in the norm. It follows that the net (x_{α}) is norm Cauchy, and so it is norm convergent because *E* is Banach lattice. As a result, we have that (x_{α}) *mn*-converges to its norm limit by Remark 1.3(*ii*).

The multiplication in normed *l*-algebra is *mn*-continuous in the following sense.

Theorem 2.10. Let E be a normed l-algebra, and $(x_{\alpha})_{\alpha \in A}$ and $(y_{\beta})_{\beta \in B}$ be two nets in E. If $x_{\alpha} \xrightarrow{\text{mn}} x$ and $y_{\beta} \xrightarrow{\text{mn}} y$ for some $x, y \in E$ and each positive element of E can be written as a multiplication of two positive elements then we have $x_{\alpha} \cdot y_{\beta} \xrightarrow{\text{mn}} x \cdot y$.

Proof. Assume $x_{\alpha} \xrightarrow{\text{mn}} x$ and $y_{\beta} \xrightarrow{\text{mn}} y$. Then $|x_{\alpha} - x| \cdot u \xrightarrow{\|\cdot\|} 0$ and $|y_{\beta} - y| \cdot u \xrightarrow{\|\cdot\|} 0$ for every $u \in E_+$. Let's fix $u \in E_+$ and $\varepsilon > 0$. So, there exist indexes α_0 and β_0 such that $||x_{\alpha} - x| \cdot u|| \le \varepsilon$ and $||y_{\beta} - y| \cdot u|| \le \varepsilon$ for all $\alpha \ge \alpha_0$ and $\beta \ge \beta_0$.

Next, we show the *mn*-convergence of $(x_{\alpha} \cdot y_{\beta})$ to $x \cdot y$. By considering the equality $|x \cdot y| \leq |x| \cdot |y|$ (cf. [12, p.1]), we have

$$\begin{aligned} \| |x_{\alpha} \cdot y_{\beta} - x \cdot y|u\| &= \| |x_{\alpha} \cdot y_{\beta} - x_{\alpha} \cdot y + x_{\alpha} \cdot y - x \cdot y| \cdot u \| \\ &\leq \| |x_{\alpha}| \cdot |y_{\beta} - y| \cdot u\| + \| |x_{\alpha} - x| \cdot |y| \cdot u \| \\ &\leq \| |x_{\alpha} - x| \cdot |y_{\beta} - y| \cdot u\| + \| |y_{\beta} - y| \cdot |x| \cdot u\| + \| |x_{\alpha} - x| \cdot |y| \cdot u \|. \end{aligned}$$

The second and the third terms in the last inequality both order converge to zero as $\beta \to \infty$ and $\alpha \to \infty$ respectively because of $|x| \cdot u, |y| \cdot u \in E_+$ and $x_\alpha \xrightarrow{\text{mn}} x$ and $y_\beta \xrightarrow{\text{mn}} y$. Now, let's show the *mn*-convergence of the first term of last inequality. For fixed u, we can find two positive elements $u_1, u_2 \in E_+$ such that $u = u_1 \cdot u_2$ because the positive element of E can be written as a multiplication of two positive elements. So, we can get

$$|||x_{\alpha} - x| \cdot |y_{\beta} - y| \cdot u|| = ||(|x_{\alpha} - x| \cdot u_{1}) \cdot (|y_{\beta} - y| \cdot u_{2})|| \le |||x_{\alpha} - x| \cdot u_{1}|| \cdot ||y_{\beta} - y| \cdot u_{2}||.$$

Therefore, we see $|x_{\alpha} - x| \cdot |y_{\beta} - y| \cdot u \xrightarrow{\|\cdot\|} 0$. Hence, we get $x_{\alpha} \cdot y_{\beta} \xrightarrow{\mathrm{mn}} x \cdot y$.

In Theorem 2.10, the case of each positive element of E can be written as a multiplication of two positive elements is called *the factorization property* for *f*-algebras in [13, Def.12.10]. But, instead of that property, we can give another easy condition in the following result.

Corollary 2.11. Let *E* be a normed *l*-algebra, and $(x_{\alpha})_{\alpha \in A}$ and $(y_{\beta})_{\beta \in B}$ be two nets in *E*. If $x_{\alpha} \xrightarrow{\text{mn}} x$ and $y_{\beta} \xrightarrow{\text{mn}} y$ for some $x, y \in E$ and at least one of two nets is eventually norm bounded then we have $x_{\alpha} \cdot y_{\beta} \xrightarrow{\text{mn}} x \cdot y$.

Proof. Modify Theorem 2.10.

We give some basic notions motivated by their analogies from vector lattice theory.

Definition 2.12. Let $(x_{\alpha})_{\alpha \in A}$ be a net in a normed *l*-algebra *E*. Then

- (1) (x_{α}) is said to be *mn-Cauchy* if the net $(x_{\alpha} x_{\alpha'})_{(\alpha,\alpha') \in A \times A}$ *mn*-converges to 0,
- (2) E is called *mn-complete* if every *mn*-Cauchy net in E is *mn*-convergent,
- (3) E is called *mn*-continuous if $x_{\alpha} \xrightarrow{o} 0$ implies that $x_{\alpha} \xrightarrow{mn} 0$,

Proposition 2.13. A normed *l*-algebra is mn-continuous if and only if $x_{\alpha} \downarrow 0$ implies $x_{\alpha} \xrightarrow{\text{mn}} 0$.

Proof. Suppose any decreasing to zero net is mn-convergent to zero. We show mn-continuity. Let $(x_{\alpha})_{\alpha \in A}$ be an order convergent to zero net in a normed *l*-algebra *E*. Then there exists another net $z_{\beta} \downarrow 0$ in *E* such that, for any β there exists α_{β} so that $|x_{\alpha}| \leq z_{\beta}$, and so $||x_{\alpha}|| \leq ||z_{\beta}||$ for all $\alpha \geq \alpha_{\beta}$. Since $z_{\beta} \downarrow 0$, by assumption, we have $z_{\beta} \xrightarrow{\text{mn}} 0$, i.e., for fixed $\varepsilon > 0$ and $u \in E_+$, there is β_0 such that $||z_{\beta} \cdot u|| < \varepsilon$ for all $\beta \geq \beta_0$. Thus, there exists an index α_{β_0} so that $||x_{\alpha}| \cdot u|| \leq \varepsilon$ for all $\alpha \geq \alpha_{\beta_0}$. Hence, $x_{\alpha} \xrightarrow{\text{mn}} 0$. The other case is obvious.

Proposition 2.14. Let E be an mn-continuous and mn-complete normed l-algebra. Then every l-almost order bounded and order Cauchy net is mn-convergent.

$$\square$$

Proof. Let $(x_{\alpha})_{\alpha \in A}$ be an *l*-almost order bounded order Cauchy net. Then the net $(x_{\alpha} - x_{\alpha'})_{(\alpha,\alpha')\in A\times A}$ is *l*-almost order bounded and is order convergent to zero. Since *E* is *mn*-continuous, $x_{\alpha} - x_{\alpha'} \xrightarrow{\text{mn}} 0$. By using Proposition 2.8, we have $x_{\alpha} - x_{\alpha'} \xrightarrow{\parallel \cdot \parallel} 0$. Hence, we get that $(x_{\alpha})_{\alpha \in A}$ is *mn*-Cauchy, and so it is *mn*-convergent because of *mn*-completeness. \Box

3. The *mn*-topology on normed *l*-algebra

In this section, we now turn our attention to topology on normed l-algebras. We show that the mn-convergence in a normed l-algebra is topological. While mo- and uo-convergence need not be given by a topology. But, it was observed in [9] that the un-convergence is topological. Motivated from that definition of the mn-convergence, we give the following construction of the mn-topology.

Let $\varepsilon > 0$ be given. For a non-zero positive vector $u \in E_+$, we put

$$V_{u,\varepsilon} = \{ x \in E : \| |x| \cdot u \| < \varepsilon \}.$$

Let \mathbb{N} be the collection of all the sets of this form. We claim that \mathbb{N} is a base of neighborhoods of zero for some Hausdorff linear topology. It is obvious that $x_{\alpha} \xrightarrow{\mathrm{mn}} 0$ if and only if every set of \mathbb{N} contains a tail of this net, hence the *mn*-convergence is the convergence induced by the mentioned topology.

We have to show that \mathcal{N} is a base of neighborhoods of zero. To show this we apply [14, Thm.3.1.10.]. First, note that every element in \mathcal{N} contains zero. Now, we show that for every two elements of \mathcal{N} , their intersection is again in \mathcal{N} . Take any two set V_{u_1,ε_1} and V_{u_2,ε_2} in \mathcal{N} . Put $\varepsilon = \varepsilon_1 \wedge \varepsilon_2$ and $u = u_1 \vee u_2$. We show that $V_{u,\varepsilon} \subseteq V_{u_1,\varepsilon_1} \cap V_{u_2,\varepsilon_2}$. For any $x \in V_{u,\varepsilon}$, we have $|||x| \cdot u|| < \varepsilon$. Thus, it follows from $|x| \cdot u_1 \leq |x| \cdot u$ that

$$|||x| \cdot u_1|| \le |||x| \cdot u|| < \varepsilon \le \varepsilon_1$$

Thus, we get $x \in V_{u_1,\varepsilon_1}$. By a similar way, we also have $x \in V_{u_2,\varepsilon_2}$.

Next, it is not a hard job to see that $V_{u,\varepsilon} + V_{u,\varepsilon} \subseteq V_{u,2\varepsilon}$, so that for each $U \in \mathbb{N}$, there is another $V \in \mathbb{N}$ such that $V + V \subseteq U$. In addition, one can easily verify that, for every $U \in \mathbb{N}$ and every scalar λ with $|\lambda| \leq 1$, we have $\lambda U \subseteq U$.

Now, we show that, for each $U \in \mathbb{N}$ and each $y \in U$, there exists $V \in \mathbb{N}$ with $y + V \subseteq U$. Suppose $y \in V_{u,\varepsilon}$. We should find $\delta > 0$ and a non-zero $v \in E_+$ such that $y + V_{v,\delta} \subseteq V_{u,\varepsilon}$. Take v := u. Hence, since $y \in V_{u,\varepsilon}$, we have $|||y| \cdot u|| < \varepsilon$. Put $\delta := \varepsilon - |||y| \cdot u||$. We claim that $y + V_{v,\delta} \subseteq V_{u,\varepsilon}$. Let's take $x \in V_{v,\delta}$. We show that $y + x \in V_{u,\varepsilon}$. Consider the inequality $|y + x| \cdot u \leq |y| \cdot u + |x| \cdot u$. Then we have

$$|||y + x| \cdot u|| \le |||y| \cdot u|| + |||x| \cdot u|| < |||y| \cdot u|| + \delta = \varepsilon.$$

Finally, we show that this topology is Hausdorff. It is enough to show that $\bigcap \mathbb{N} = \{0\}$. Suppose that it is not hold true, i.e., assume that $0 \neq x \in V_{u,\varepsilon}$ for all non-zero $u \in E_+$ and for all $\varepsilon > 0$. In particular, take $x \in V_{|x|,\varepsilon}$. Thus, we have $||x|^2|| < \varepsilon$. Since ε is arbitrary, we get $|x|^2 = 0$, i.e., x = 0 by using [17, Thm.142.3.]; a contradiction.

Recall that the statement $V_{u,\varepsilon}$ is either contained in [-u, u] or contains a non-trivial ideal holds true for the *un*-topology. However, it is not true for the *mn*-topology. To see this, we give the following counterexample.

Example 3.1. Consider the *l*-algebra E = C[0, 1] with the sup-norm topology τ . Take a = 1 and A = B(0, 10). The set $U_{a,A} = \{x \in E : |x| \cdot a \in A\} = B(0, 10)$ is neither contained in [-a, a] = [-1, 1] = B(0, 1) nor contains a non-trivial ideal.

Lemma 3.2. If $V_{u,\varepsilon}$ is contained in [-u, u], then u is a strong unit.

Proof. Take a positive element $x \in E_+$. Then we have a positive scalar λ such that $(\lambda x) \cdot a \in A$. Thus we get $\lambda x \in U_{a,A}$ and so, $\lambda x \in [-a, a]$. Then one can see that a is a strong unit.

4. The *mn*-convergence on semiprime normed *f*-algebras

Recall that an element x in an f-algebra E is called *nilpotent* whenever $x^n = 0$ for some natural number $n \in \mathbb{N}$. The algebra E is called *semiprime* if the only nilpotent element in E is the null element ([17, p.670]). We begin the section with the next useful result.

Proposition 4.1. Let $(x_{\alpha})_{\alpha \in A}$ be a net in nilpotent elements of a normed f-algebra E. If $x_{\alpha} \xrightarrow{\text{mn}} x$ then x is also a nilpotent element.

Proof. Take a fixed positive element $u \in E_+$. Then, by using [13, Prop.10.2(iii)] and [17, Thm.142.1(ii)], we get

$$\left\| \left| x_{\alpha} - x \right| \cdot u \right\| = \left\| \left| x_{\alpha} \cdot u - x \cdot u \right| \right\| = \left\| x_{\alpha} \cdot u - x \cdot u \right\| = \left\| x \cdot u \right\| \to 0.$$

Thus $||x \cdot u|| = 0$ and hence $x \cdot u = 0$ for every $u \in X_+$. Then $y \cdot x = 0$ for all $y \in E$. It follows now from [12, p.157] that x is nilpotent in E.

Remark 4.2. By considering Proposition 4.1, it is easy to see that mn-convergence in normed f-algebra E has an unique limit if and only if E is semiprime normed f-algebra.

Unless stated otherwise, we will assume that E is a semiprime normed f-algebra and all nets and vectors lie in E.

Proposition 4.3. Let $(x_{\alpha})_{\alpha \in A}$ be a net in E. Then we have that

- (i) $0 \le x_{\alpha} \xrightarrow{\mathrm{mn}} x$ implies $x \in E_+$,
- (ii) if (x_{α}) is monotone and $x_{\alpha} \xrightarrow{\text{mn}} x$ then $x_{\alpha} \xrightarrow{\text{o}} x$.

Proof. (i) Assume $(x_{\alpha})_{\alpha \in A}$ consists of non-zero elements and *mn*-converges to $x \in E$. Then, by using Proposition 2.2, we have $x_{\alpha} = x_{\alpha}^{+} \xrightarrow{\text{mn}} x^{+}$. Also, following from Remark 4.2, we get $x^{+} = x$. Therefore, we get $x \in E_{+}$.

(ii) For the order convergence of $(x_{\alpha})_{\alpha \in A}$, it is enough to show that $x_{\alpha} \uparrow$ and $x_{\alpha} \xrightarrow{\text{mn}} x$ implies $x_{\alpha} \xrightarrow{\circ} x$. For a fixed index α , we have $x_{\beta} - x_{\alpha} \in X_{+}$ for all $\beta \geq \alpha$. By applying (i), we can see $x_{\beta} - x_{\alpha} \xrightarrow{\text{mn}} x - x_{\alpha} \in X_{+}$ as $\beta \to \infty$. Therefore, $x \geq x_{\alpha}$ for the index α . Since α is arbitrary, x is an upper bound of (x_{α}) . Assume y is another upper bound of (x_{α}) , i.e., $y \geq x_{\alpha}$ for all α . So, $y - x_{\alpha} \xrightarrow{\text{mn}} y - x \in X_{+}$, or $y \geq x$, and so $x_{\alpha} \uparrow x$. \Box

Theorem 4.4. The following statements are equivalent:

- (i) E is mn-continuous;
- (ii) if $0 \le x_{\alpha} \uparrow \le x$ holds in E then (x_{α}) is an mn-Cauchy net;
- (iii) $x_{\alpha} \downarrow 0$ implies $x_{\alpha} \xrightarrow{\text{mn}} 0$ in E.

Proof. (i) \Rightarrow (ii) Take a net $0 \le x_{\alpha} \uparrow \le x$ in *E*. Then there exists another net (y_{β}) in *E* such that $(y_{\beta} - x_{\alpha})_{\alpha,\beta} \downarrow 0$; see [2, Lem.4.8]. Thus, by applying Proposition 2.13, we have $(y_{\beta} - x_{\alpha})_{\alpha,\beta} \xrightarrow{\text{mn}} 0$ because *E* is *mn*-continuous. Therefore, the net (x_{α}) is *mn*-Cauchy because of $||x_{\alpha} - x_{\alpha'}||_{\alpha,\alpha'\in A} \le ||x_{\alpha} - y_{\beta}|| + ||y_{\beta} - x_{\alpha'}||$.

(ii) \Rightarrow (iii) Put $x_{\alpha} \downarrow 0$ in E and fix arbitrary α_0 . Thus, we have $x_{\alpha} \leq x_{\alpha_0}$ for all $\alpha \geq \alpha_0$, and so we can get $0 \leq (x_{\alpha_0} - x_{\alpha})_{\alpha \geq \alpha_0} \uparrow \leq x_{\alpha_0}$. Then it follows from (*ii*) that the net $(x_{\alpha_0} - x_{\alpha})_{\alpha \geq \alpha_0}$ is *mn*-Cauchy, i.e., $(x_{\alpha'} - x_{\alpha}) \xrightarrow{\text{mn}} 0$ as $\alpha_0 \leq \alpha, \alpha' \to \infty$. Since E is *mn*complete, there exists an element $x \in E$ satisfying $x_{\alpha} \xrightarrow{\text{mo}} x$ as $\alpha_0 \leq \alpha \to \infty$. It follows from Proposition 4.3 that $x_{\alpha} \downarrow 0$ because of $x_{\alpha} \downarrow$ and $x_{\alpha} \xrightarrow{\text{mn}} 0$, and so, following from Remark 4.2 that we have x = 0. Therefore, we get $x_{\alpha} \xrightarrow{\text{mn}} 0$.

 $(iii) \Rightarrow (i)$ It is just the implication of Proposition 2.13.

Corollary 4.5. Every mn-continuous and mn-complete normed f-algebra E is order complete.

Proof. Suppose E is mn-continuous and mn-complete. For $y \in E_+$, put a net $0 \le x_{\alpha} \uparrow \le y$ in E. By applying Theorem 4.4 (*ii*), the net (x_{α}) is mn-Cauchy. Thus, there exists an element $x \in E$ such that $x_{\alpha} \xrightarrow{\text{mn}} x$ because of mn-completeness. Since $x_{\alpha} \uparrow$ and $x_{\alpha} \xrightarrow{\text{mo}} x$, it follows from Lemma 4.3 that $x_{\alpha} \uparrow x$. Therefore, E is order complete. \Box

Acknowledgment. The author would like to thank Eduard Emelyanov and Mohamed Ali Toumi for improving the paper.

References

- [1] Y. Abramovich and C.D. Aliprantis, An Invitation to Operator Theory, American Mathematical Society, New York, 2003.
- [2] C.D. Aliprantis and O. Burkinshaw, *Positive Operators*, Springer, Dordrecht, 2006.
- [3] A. Aydın, Unbounded p_τ-convergence in vector lattice normed by locally solid vector lattices, in: Academic Studies in Mathematics and Natural Sciences-2019/2, 118-134, IVPE, Cetinje-Montenegro, 2019.
- [4] A. Aydın, Multiplicative order convergence in f-algebras, Hacet. J. Math. Stat. 49 (3), 998–1005, 2020.
- [5] A. Aydın, E. Emel'yanov, N.E. Özcan, and M.A.A. Marabeh, Compact-like operators in lattice-normed spaces, Indag. Math. 2, 633-656, 2018.
- [6] A. Aydın, E. Emel'yanov, N.E. Özcan, and M.A.A. Marabeh, Unbounded pconvergence in lattice-normed vector lattices, Sib. Adv. Math. 29, 153-181, 2019.
- [7] A. Aydın, S.G. Gorokhova, and H. Gül, Nonstandard hulls of lattice-normed ordered vector spaces, Turkish J. Math. 42, 155-163, 2018.
- [8] Y.A. Dabboorasad, E.Y. Emelyanov, and M.A.A. Marabeh, $u\tau$ -Convergence in locally solid vector lattices, Positivity **22**, 1065-1080, 2018.
- [9] Y. Deng, M. O'Brien, and V.G. Troitsky, Unbounded norm convergence in Banach lattices, Positivity 21, 963-974, 2017.
- [10] N. Gao, V.G. Troitsky, and F. Xanthos, Uo-convergence and its applications to Cesáro means in Banach lattices, Israel J. Math. 220, 649-689, 2017.
- [11] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, Math. Anal. Appl. 415, 931-947, 2014.
- [12] C.B. Huijsmans and B.D. Pagter, *Ideal theory in f-algebras*, Trans. Amer. Math. Soc. 269, 225-245, 1982.
- [13] B.D. Pagter, *f*-Algebras and Orthomorphisms, Ph.D. Dissertation, Leiden, 1981.
- [14] V. Runde, A Taste of Topology, Springer, Berlin, 2005.
- [15] V.G. Troitsky, Measures of non-compactness of operators on Banach lattices, Positivity 8, 165-178, 2004.
- [16] B.Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Wolters-Noordhoff Scientific Publications, Groningen, 1967.
- [17] A.C. Zaanen, *Riesz Spaces II*, The Netherlands: North-Holland Publishing Co., Amsterdam, 1983.