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Abstract
We prove that all trace 1, 2×2 invertible matrices over Z are nil-clean and, up to similarity,
that there are only two trace 1, 2 × 2 invertible matrices over Z.
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1. Introduction
We first recall the following.
An element a in a unital ring R is clean (see [5]) if a = e + u with an idempotent e ∈ R

and a unit u ∈ R, and, nil-clean (see [4]) if a = e + t with an idempotent e and a nilpotent
t. It is strongly nil-clean if et = te. A nil-clean element is called trivial if e ∈ {0, 1}, the
trivial idempotents. A unit u is called unipotent if u = 1 + t, for some nilpotent t.

A ring is clean (or nil-clean) if so are all its elements. Via unipotent units, it is easy to
see that nil-clean rings are clean.

Though all these notions are well-known for some time, very little is known about which
clean elements of a ring are nil-clean. Actually, besides the unipotent units (indeed, a unit
is strongly nil-clean if and only if it is unipotent), we do not know which units of a ring
are nil-clean.

We can discard the trivial nil-clean elements. Indeed, if e = 0, then there is no unit
which is nilpotent (unless R = 0), and if e = 1, a = 1 + t, are precisely the unipotent
units. Over any commutative domain, such 2 × 2 matrices M , are easily characterized by
det(M − I2) = Tr(M − I2) = 0.

In this note, using an adequate (but nontrivial) Number Theory machinery, we charac-
terize the (nontrivial) nil-clean units in the matrix ring M2(Z).

Notice that non-trivial nil-clean 2×2 matrices over any commutative domain have trace
1.

As our main result, conversely, we show that trace 1, 2 × 2 units over Z are nil-clean,
that is, a 2 × 2 unit over Z is non-trivial nil-clean if and only if it has trace 1.

Up to similarity, we also prove that all trace 1, 2 × 2 units are similar to
[

0 1
−1 1

]
or

to
[

2 1
−1 −1

]
.
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2. Binary quadratic forms preliminaries
The proof of our main result requires some preparation.
First consider a particular Diophantine equation, namely

(x + y)2 + xy = m (*)

where m is a positive integer.

Lemma 2.1. For any divisor m of a positive integer A(A + 1) − 1, A > 1, the equation
(*) is solvable.

Proof. From the general theory of quadratic binary forms, we know that the integer
m is represented by a binary quadratic form of discriminant d only if the congruence
u2 ≡ d(mod4k) is solvable, where k is the square-free part of m (see [2], Theorem 7, p.
145). In our case, i.e. for the form G(x, y) = (x + y)2 + xy, d = 5 and the class number
of Q[

√
5] is 1, hence the above condition becomes necessary and sufficient. The solvability

of the congruence u2 ≡ 5(mod4k) is equivalent to the property that all prime factors of
form 5s + 2 or 5s + 3 from the factorization of m have even exponent.

Since we have to solve this equation for a divisor m of A(A + 1) − 1, this reduces to
show that if m divides A(A + 1) − 1, then m has this property. But this holds because if
a prime p divides A(A + 1) − 1, then it also divides (2A + 1)2 − 5 = 4[A(A + 1) − 1], so 5
must be a quadratic residue modulo p.

On the other hand, denoting by
(

a

p

)
the Legendre symbol, according to the Gauss

reciprocity law (see [1], Theorem 9.1.3),
(5

p

) (
p

5

)
= (−1)

p − 1
2

·
5 − 1

2 = 1. Because(5
p

)
= 1, it follows

(
p

5

)
= 1 and so p is a quadratic residue modulo 5, i.e., p is congruent

to 0, 1 or 4 modulo 5, as desired. �

Next, we consider another particular Diophantine equation, namely

(x − y)2 + xy = m (**)

where m is a positive integer.

Lemma 2.2. For any divisor m of a positive integer A(A + 1) + 1, A > 1, the equation
(**) is solvable.

Proof. The proof is similar to the proof of the previous lemma. Just notice that now the
discriminant is −3 and the corresponding class number is also 1. Moreover, if a prime p
divides A(A + 1) + 1, then it also divides (2A + 1)2 + 3 = 4[A(A + 1) + 1], −3 must be a
quadratic residue modulo p and so on. �

Secondly, we need the following

Proposition 2.3. Suppose A(A+1)+ BC = 1 for integers A, B, −C > 1. We can always
chose solutions (b, d) and (a, c) of the equation (*) with m = B and m = −C, respectively,
such that ad − bc = 1.

Proof. Again we use the theory of binary quadratic forms.
Consider the quadratic form F (x, y) = Bx2 + (2A + 1)xy − Cy2.
Its discriminant is equal to (2A + 1)2 + 4BC = 5 (by our hypothesis). Using the

reduction theory of quadratic forms, since the class number of Q[
√

5] is 1, it is well-known
that (see [3]) all integer quadratic forms with discriminant 5 are SL(2,Z)-equivalent to



The nil-clean 2 × 2 integral units 43

G(x, y) = (x + y)2 + xy, which has also discriminant 5. The equivalence means that there
exist integers a, b, c, d with ad − bc = 1 such that G(ax + by, cx + dy) = F (x, y).

If we set x = 1, y = 0 we get G(a, c) = B and if we set x = 0, y = 1 we get G(b, d) = −C
and we are done. �

Proposition 2.4. Suppose A(A + 1) + BC = −1 for integers A, B, −C > 1. We can
always chose solutions (b, d) and (a, c) of the equation (**) with m = B and m = −C,
respectively, such that ad − bc = 1.

Proof. We consider again the quadratic form F (x, y) = Bx2 + (2A + 1)xy − Cy2. Its
discriminant is (2A + 1)2 + 4BC = −3 and so is the discriminant of G(x, y) = (x − y)2 +
xy. Since the corresponding class number is 1, these are SL(2,Z)-equivalent, there exist
integers a, b, c, d with ad− bc = 1 such that G(ax+ by, cx+dy) = F (x, y) and we complete
the proof as for the previous proposition. �

3. The main result
By E11 we denote the matrix with all entries zero, excepting the NW corner, which is 1.

Recall that over any principal ideal domain, every non-trivial 2 × 2 idempotent matrix is
similar to E11. The result holds also in a more general setting (see [6]), but this hypothesis
suffices for our proof below.

We first give a characterization, up to similarity, of the non-trivial nil-clean units in
M2(Z).

Proposition 3.1. An integral 2×2 matrix U is a non-trivial nil-clean unit iff it is similar

to one of the following two matrices: V1 =
[

0 1
−1 1

]
, V−1 =

[
2 1

−1 −1

]
. More precisely,

if det U = 1, it is similar to V1 and if det U = −1, it is similar to V−1.

Proof. Since nil-clean and unit are invariant (properties) to conjugation, up to similar-
ity, owing to the previous paragraph, we can suppose the idempotent in the nil-clean
decomposition being E11. Nilpotent matrices having zero trace and zero determinant,

we deal with (nil-clean) matrices M =
[

a + 1 b
c −a

]
such that a2 + bc = 0. Since

det M = −(a + 1)a − bc = −a ∈ {±1} we distinguish two cases.

Case 1. If a = −1 then bc = −1 which give two matrices: V1 = E11 +
[

−1 1
−1 1

]
and

transpose (which is similar to V1: just conjugate by
[

1 0
0 −1

]
).

Case 2. If a = 1 then bc = −1 which give two matrices: V−1 = E11 +
[

1 1
−1 −1

]
and

transpose (which is similar to V−1: the same conjugation). �

Example. A =
[

8 5
−11 −7

]
=

[
9 6

−12 −8

]
+

[
−1 −1
1 1

]
. Here U =

[
3 2

−4 −3

]
and

U−1AU =
[

2 1
1 1

]
U = V−1, as stated.

Just taking the conjugates of these two matrices we can find the form of all the non-
trivial nil-clean units in M2(Z). This is[

(a + c)(b + d) + ad (b + d)2 + bd
−(a + c)2 − ac −(a + c)(b + d) − bc

]
for integers a, b, c, d with ad − bc = 1.
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Theorem 3.2. Trace 1, 2 × 2 units over Z are nil-clean.

Proof. In the sequel M =
[

A + 1 B
C −A

]
denotes a trace 1, 2 × 2 integral matrix.

We first discuss the det M = −1 case (i.e. A(A + 1) + BC = 1) and (owing to the form
of the non-trivial nil-clean units deduced above) prove that there are integers a, b, c, d with
ad − bc = 1 such that

M =
[

(a + c)(b + d) + ad (b + d)2 + bd
−(a + c)2 − ac −(a + c)(b + d) − bc

]
.

Finding the integers a, b, c, d amounts to solve the system
(i) A = (a + c)(b + d) + bc
(ii) B = (b + d)2 + bd
(iii) C = −(a + c)2 − ac
(iv) 1 = ad − bc, with integer unknowns a, b, c, d.

First notice that A(A + 1) − 1 > 0 with only two (integer) exceptions: A = −1 and A = 0.

The case A = 0 reduces to A = −1, by conjugation with
[

0 1
1 0

]
and the case A = −1

was already settled as Case 1, Proposition 3.1.
Hence we can assume BC < 0 and even B > 0, C < 0 (otherwise we conjugate with[
1 0
0 −1

]
), together with A ≥ 1 (the case A ≤ −2 also reduces to A ≥ 1, by conjugation

with
[

0 1
1 0

]
).

Secondly observe that (ii) and (iii) are equations of type (x + y)2 + xy = m, that is (*).
According to Proposition 2.3, the equations (ii), (iii) and (iv) have an integer solution.
Finally, we show that any solution of (ii), (iii) and (iv) (denoted again by a, b, c, d) also

verifies (i) and we are done.
Indeed, −BC = [(b+d)2+bd][(a+c)2+ac] = (b+d)2(a+c)2+ac(b+d)2+bd(a+c)2+abcd

and so we have to check whether the degree 2 equation A(A + 1) = 1 + (b + d)2(a + c)2 +
ac(b + d)2 + bd(a + c)2 + abcd has A = (a + c)(b + d) + bc as one root, i.e.

(b+d)2(a+c)2+bc(bc+1)+(2bc+1)(a+c)(b+d) = 1+(b+d)2(a+c)2+ac(b+d)2+bd(a+c)2+abcd.

Equivalently bc(bc+1−ad)+(2bc+1)(ab+ad+bc+cd) = 1+ab2c+acd2+a2bd+bc2d+4abcd
or else (bc + 1 − ad)(ab + cd + 3bc − 1) = 0. This holds since ad − bc = 1.

Next, we settle the det M = 1 case (i.e. A(A + 1) + BC = −1) and prove that there are
integers a, b, c, d with ad − bc = 1 such that

M =
[

(a − c)(b − d) + ad (b − d)2 + bd
−(a − c)2 − ac −(a − c)(b − d) − bc

]
.

Finding the integers a, b, c, d amounts to solve the system
(i) A = (a − c)(b − d) + bc

(ii) B = (b − d)2 + bd

(iii) C = −(a − c)2 − ac

(iv) 1 = ad − bc, with integer unknowns a, b, c, d.
Therefore now we deal with the equation (**). What remains for the proof is now deduced
from Proposition 2.4 and a similar verification that any solution of (ii), (iii) and (iv)
actually satisfies also (i). �

In closing we mention that this result fails for higher dimensions of matrices. Here is a
3 × 3 example:
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take U =

 1 0 0
0 1 2
0 −1 −1

 and V =

 1 0 1
1 0 0
0 1 0

, both with trace=determinant=1. Then

Tr(U2) = −1 ̸= 1 = Tr(V 2) and so the matrices U , V have different characteristic poly-
nomials. Consequently, U and V are not similar.

Acknowledgment. Thanks are due to D. Andrica for the proof of Lemma 2.1 and to
F. Beukers for pointing out the use of the theory of binary quadratic forms in the proof
of Proposition 2.3.
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