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Abstract

This paper uses the convolution theorem of the Laplace transform to derive new inverse
Laplace transforms for the product of two parabolic cylinder functions in which the argu-
ments may have opposite sign. These transforms are subsequently specialized for products
of the error function and its complement thereby yielding new integral representations for
products of the latter two functions. The transforms that are derived in this paper also
allow to correct two inverse Laplace transforms that are widely reported in the literature
and subsequently uses one of the corrected expressions to obtain two new definite integrals
for the generalized hypergeometric function.
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1. Introduction

The parabolic cylinder function is intensively used in various domains such as chemical
physics [17], lattice field theory [8], astrophysics [30], finance [20], neurophysiology [5] and
estimation theory [4]. Products of parabolic cylinder functions involving both positive and
negative arguments arise in, for instance, problems of condensed matter physics [7, 18] and
the study of real zeros of parabolic cylinder functions [9-11]. The error function erf(z)
and its complement erfc(z) emerge as special cases of the parabolic cylinder function and
play a prominent role in, for instance, the conduction of heat [6], statistics and probability
theory [15,23] and hydrology [2].

However, the extensive tables of inverse Laplace transforms [14,21,26] present relatively
few expressions for products of parabolic cylinder functions especially when signs of the
arguments differ. For example, [26] only specifies the following inverse Laplace transforms
for such set—up
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D, (a\/p—i—\/ﬁ) {DV (—aW) +D, <a p—\/p*— b2>}

see Equations (3.11.4.9) and (3.11.4.10).
This paper uses the convolution theorem of the Laplace transform to derive inverse
Laplace transforms for

pi exp Gp (y — $)) D, (21/2y1/2p1/2> {Dy (—21/2951/21?1/2) + D, (21/2371/2]31/2)}
with ¢ = 0 or —%, i.e. for expressions in which the arguments have opposite sign and
differ, and where also the orders take on different values.

These results also offer inverse Laplace transforms for the product of (complementary)
error functions as the parabolic cylinder function for order —1 specializes into the com-
plementary error function. As a result, novel integral representations are obtained for
products of the (complementary) error functions and, for instance, the integral represen-
tation for 1 — erf(a)? in [19] can be generalized into 1 — erf(a)erf(b).

The paper also corrects two inverse Laplace transforms that are reported in [14,21,26].
Combinations of one of the corrected results with the results derived in this paper are par-
ticularly interesting as they yield two definite integrals for the generalized hypergeometric
function that are not reported in, for instance, the comprehensive overview in [16].

The remainder of this paper is organized as follows. Section 2 presents the relation
between the parabolic cylinder function and the Kummer confluent hypergeometric func-
tion that is central to the subsequent derivations. Also, more detail is presented on the
formulation of the convolution theorem for the Laplace transform given that the limits of
integration in the integrals in the product differ. Section 3 presents the inverse Laplace
transforms for products of the parabolic cylinder function and uses these results to obtain
novel integral representations for products of (complementary) error functions. Section
4 corrects two widely-reported inverse Laplace transforms. Section 5 uses one of these
corrected expressions together with the results of Section 3 to derive two novel definite
integrals for the generalized hypergeometric function.

2. Notation and background

The parabolic cylinder function in the definition of Whittaker [29] is denoted by D, (z),
where v and z represent the order and the argument, respectively. Equation (4) on p. 117
in [13] defines the parabolic cylinder function as follows

, I'[1/2 v 11
Dy (z) =2 exp (—42) {P[(l[—/u)]/ﬂq) (_2;2;222>

ssrr® (rre) ) 21

where @ (a;b; z) is Kummer’s confluent hypergeometric function

[e.9]

D (asbsz) = ((Z;:';,

n

n=0

" [z] denotes the gamma function
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and (z),, denotes the Pochhammer symbol

~ T'[z+4n]
(Z)n_Wa

see Equation (1) on p. 434 in [24], Equations (6.1.1) and (6.1.22) in [1], respectively.
Note that the definition (2.1) holds for z as well as —z and adding the corresponding
relation for D, (—z) to (2.1) then gives

29W+3)/2 /= — v
w+2)/2 /7 v
D,(=z)+ D, (2) = Fz[(l_l/)\//;] exp (—%z2> ¢ (—2; %; ;/22) (2.3)

see Equations (46:5:4) and (46:5:3) in [22].

The convolution theorem of the Laplace transform will be used to derive inverse Laplace
transforms for products of two parabolic cylinder functions. The functions in the products
are taken from inverse Laplace transforms for the parabolic cylinder function and the
Kummer confluent hypergeometric function, respectively. The inverse Laplace transforms
that will be used for ® (a;b; z) and D, (z) are not both defined over the half-line (0, c0).
As a result, the convolution theorem becomes somewhat more involved. The Laplace
transforms of the original functions fi (¢t) and fs (t) are defined as

— B1
Fo) = [ ewmamd  p>a
o
— B2
o) = [Cewmhmd g
a2
where Rep > 0. The convolution theorem then can be specified, see [25], as
_ _ B1+B2
AL T2 )= [ e (ot fi (1) folt)dt (24)
o +as

where f1 (t) % f2 (t) is the convolution of fi (t) and fs (t) that is to be obtained from

min(fB1; t—a2)

CEACEY| fu(0) fo(t =) dr (25

max(a1; t—B2)
3. Inverse Laplace transforms for products of parabolic cylinder functions

This section derives several inverse Laplace transforms for products of parabolic cylinder
functions in which the sign of the arguments may differ and utilizes these results to obtain
new integral representations for products of (complementary) error functions.

Theorem 3.1. Let v and p be two complex numbers with Rev < 1 and Re p < min [1 — Rev,
2+ Rev|. Then, the following inverse Laplace transform holds for Rep > 0, x > 0,
largy| <7, y >0

p—1/2 exp (%p (y — :U)) D, (21/2y1/2p1/2) (D, (_21/2331/21)1/2) - D, (21/2:31/2]91/2)}

. 2(#*11)/2\/7? x B (—p)/ (w2
Sl SiErmystae A A L D (3.1)

w2 om (<4, 1Y ”_M.ﬂw—y—w)

X (y+t)H<q 1( 97 9 + 2 T(z—t)(y+t)

22+(:U'+l/)/2 7Ty1/2$1/2 o . ) V
F[—u/?]\r‘f[_y/g] /x exp (—pt) tWD/2 (f — g)~(Hut)/2

_ l—p 1-v 3 Y
_ AL=1/2 ( = )dt
X(y x‘i‘) 2471 2 ) 2 ,2’t(y—$+t)

_l’_
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where 9 F} (a, b; ¢; z) denotes the Gaussian hypergeometric function

oo
n 2"
oF(a,byc;2) = E —' |z] < 1,
n=0 ’ﬂ

see Equation (1) on p. 430 in [24].

Proof. The inverse Laplace transform in Equation (5) on p. 290 in [14] is

o0
I [v] exp (%ap) D_s, (21/2a1/2p1/2) = /0 exp (—pt) 27V a1 (t + a)7”71/2 dt (3.2)
[Rep > 0,Rev > 0, larga| < 7]
and the inverse Laplace transform in Equation (3.33.2.2) in [26] is

21-b e
exp (—zp) ® (a; b; xp) = I‘[b—cl;][fl‘)][a]/o exp (—pt) Pz — ) dt (3.3)

[Rep > 0,Reb > Rea > 0,z > 0]
These two inverse Laplace transforms, in the notation of Theorem 3.1, are rewritten as
[ [~ /2] exp (Syp) D, (21/2y1/2p1/?) = /OOO oxp (—pt) 22y 22 (¢ ) D2 gy
[Rep > 0,Repn <0, |argy| < 7] (3.4)
and
xl/zj%r 1+ v/2T (1= ) /2 exp (~2p) @ (<3 5o )
= /a: exp (—pt) /% (z — t)7(1+”)/2 dt
' [Rep > 0,—2 < Rev < 1,z > 0] (3.5)

The original functions f; (t) and f2 (t) are taken from the inverse Laplace transforms (3.4)
and (3.5), respectively, with

Fr(8) = 22y 227 ()02 and fy () = 772 (0 — 1)~/

The integration limits in (2.4) and (2.5) are 31 = 00, f2 = x and a; = ay = 0 such that
the convolution integral is given by

£ (1) 2 (1) =/0tf1<7>f2<t—7>d7 [

= t fi(r) fa(t—71)dr t>x

t—x

First, the convolution integral for ¢t < x is
fi(t) x fa(t / 2“/2 12 —p/2— 1(T+y)( 1)/2 (t_T)V/Q <$—(t—7))_(1+y)/2d7-

The substitution 7 = tu allows to rewrite the integral as

fi (t) * fo (t) = 2“/275(1’*#)/2yu/2 (:E _ t)*(1+l/)/2

1 (n=1)/2 —(1+v)/2
X / w2 (1 + tu) (1 —u)"/? (1 _ ! u) du
0 Yy t—=x
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The integral in the latter equation will be expressed in terms of the Appell hypergeometric
function Fj (a, by, by; c; 21, 22), which is defined as

— = (@D (b1),, (b2),, 27723
Fy (a,b1,bo;¢; 21, 29) = Z Z @ + (ba)r, (b2) 1' 2| max {|21],[22]} < 1,
== () man mlin!

see Equation (1) on p. 448 in [24]. In particular, the following integral representation of
the Appell hypergeometric function Fi (a, b1, be;c; 21, z2) will be used

'[a]T [c — a
I'[c]

1
/ w1 — )T (1 = zu) TP (1 — 20u) T2 du
0

Fi(a,b1,ba;¢; 21, 22) =

for Rec > Rea > 0, see Equation (5) on p. 231 in [12]. This gives

. w2 Dl=n/2T [+ (v/2)]
F1 () * fo(t) = on/24(v u)/2yu/2 (z —t) (1+v)/2
L1+ —p)/2]
1 1— — t t
XFl <_u7 +V7 Mal"i‘l/ Ma 7_)

2" 2 2 2 t—x oy

The above Appell hypergeometric function can further be simplified into the Gaussian
hypergeometric function given

Fy (a,b1,ba;b1 + bo; 21,22) = (1 — 22) "o Fy <a,bl;b1 + bo; le _52>
— 29

see Equation (1) on p. 238 in [12]. The final expression for the convolution integral for
t < x then is

o e T [—u/2T 1+ (v/2)]
FiL () » fo () = 2472407002 (g — gy (02 gy S PR

t<zx (3.7)

« oF, <_,u 1—{—1/'1 vV— t(t—}—y—x))
2 2 2 (t-2)(y+0)

Second, the convolution integral for ¢ > x is given by

¢
A fat)= [ 202y 2071270 (p )W D2 )2 (g (= 7)) "2 g
t—x
The treatment of this convolution integral is similar to that of the integral for ¢ < x such
that only the main steps are mentioned. The substitutions 7 = s —z +t and s = xu
express the integral in terms of the Appell hypergeometric function Fj (a, b1, bo;c; 21, 22)
that again can be simplified into the Gaussian hypergeometric function. The convolution
integral for ¢t > « then is given by

1 — v — v—
fi(t)* fo(t) = ﬁx1/2y1/221+(u/2) (t — ) /2y oy gy 1)/24(v=1)/2

l—p 1—-v 3 Y >
2 t .
2 "2 '2t(tty-—a) >e (38)

of which the derivation also used the following linear transformation formula

XFW—VﬂﬂFH+@ﬂHﬁE<

21 (a,bi652) = (1= 2) "2 1 (a,c — by zz_1>

see Equation (15.3.4) in [1].
Plugging (3.7) and (3.8) into the convolution integral (3.6) then gives

exp (%py — paz) D, (21/2y1/2p1/2) ® (1 ; - g;pﬂ:) (3.9)
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(1/2)=1 o —1/2 .
T 1+ (21/ — 1) /\Q]fp [(1—v)/2] /0 exp (—pt) tv=m)/2 (z — t)—(1+y)/2

I1+v v—p t(zx—y-—t)
t“/2F<—H 1 . dt
X(y+) 247 27 92 3 + 2 7(1U—t)(y+t)

2u/2y1/2 ()
= J o (v—1)/2 o —(I4p+v)/2
tET | ettt (- )

_ w12 g (l=p l-v3  ay )
X(y $+t) 21( 9 ) 2 ’27t<y—$+t) dt

in which the recurrence and duplication formulas of the gamma function were employed
to simplify expressions given that

1 2z—l 1
Pli+e) =T, T2 = =2 2T [T [+ 3],
see Equations (6.1.15) and (6.1.18) in [1].
Finally, plugging the definition (2.2) into (3.9) and simplifying gives the inverse Laplace
transform (3.1). O

The parabolic cylinder function specializes into the complementary error function when
its order is at —1. The inverse Laplace transform (3.1) thus can be used to obtain an
integral representation for the product of complementary error functions. However, this
result will not be shown here as its integrand contains an inverse trigonometric function
rather than the rational functions that are typical for existing integral representations, see
for instance [16,19]. Instead, the term p~'/2 in inverse Laplace transforms such as (3.1)
will be removed given that the resulting relations yield integrands in which such rational
functions emerge. This will be illustrated in Theorem 3.2 and Corollary 3.3.

Theorem 3.2. Let v and p be two complex numbers with Rev < 1 and Re p < min [1 — Rew,
2+ Rev|. Then, the following inverse Laplace transform holds for Rep > 0, x > 0,
largy| < m, y >0

exp (0 1) D (2757 (D (2% 2) -, (3201 (.10
2(,u—1/)/2ﬁy—1/2 x
_ ) )2 (e~ (140)/2
F o) AT o P e

X(y+t)(1+u)/2{2F1 <_1+,u 1+V.1—M+I/‘ t(w—y—t) )

2 "2 7 2 (-t (y+h)
it l—p 14+v 3—pu+v tl@x—y—1t) )}
P - - dt

T wr’ 1( DI

2(4+M+V)/2\/7T.:L,1/2 00 9 9
+ / exp (—pt tr=1/2 (¢ _ = @tptr)/

Pt 2 w2 Jy P (t-2)

o /2 F _H 1_1/.§. Ty )

X(y .Z‘—I—t) {2 1< 27 2 ’Q’t(y—.’ﬁ—i-t)

) F<2—u l-v 3 Ty )}dt
I+my—z+0)""'U 2 7 2 "2ty—a+1)

Proof. The recurrence relation of the parabolic cylinder function is given by

2Dy (2) = Dy (2) + pDp—1 (2)
see Equation (14) on p. 119 in [13]. Replacing z by 2Y/24'/2p!/2 and multiplying by
=12 exp (%p (y — x)) {Du (—21/2901/2191/2) -D, (21/23;1/2])1/2)} gives

21/2211/2 exp (%p (y — m)> D, (21/2y1/2p1/2) {Dy <—21/2331/2p1/2) -D, (21/2951/2]91/2)}
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= exp (3 (y — 7)) Dt (2/29/%p12) { D, (—21/221/2p1/2) (3.11)
=D, (2212 2) k4 i exp ($p (y — @) Dy (21/%9/2p1?)
x { D, (~2V251/2p112) —D, (2V/21/2p1/2) )
Plugging the transform (3.1) into (3.11) and simplifying gives (3.10). O

Corollary 3.3. The relation between the parabolic cylinder function and the complemen-
tary error function is given by

D_i(2) = \/Zexp (f) erfc (%)

see Equation (9.254.1) in [16] in which erfe(z) denotes the complementary error function.
Equations (E.3¢) and (E.3d) in [3] specify the following relations between the error function
and its complement

erfc (z) +erf (2) =1
erfc (—z) =1+ erf (2)
and thus
erfc (—z) — erfc (z) = 2erf (2) (3.12)
where erf(z) denotes the error function. The below derivations also use the following
properties of the Gaussian hypergeometric function

oF1 (0,b;¢;2) = oFy (a,0;¢;2) =1

33 1
A (1,552) =
21(,2727'2) 1— 2

see Equations (15.1.1) and (15.1.8) in [1]. Plugging the transform (3.1) into (3.11), using
pw=v=—1and (8.12) gives the following inverse Laplace transform for the product of
two (complementary) error functions

exp (py) erfe (y'/2p'/?) erf (2'/2p!/2) = (3.13)
L VY 1 /°° v
- pt) g = —pt dt
Tr/o o0 () TP w L O =

[Rep > 0,|argy| < m,y > 0, |argz| < 7,z > 0]

Using p = 1 and setting a and b at y*/? and z1/2, respectively, then gives the following
integral representation

erfc (a) erf (b) = (3.14)
aexp (—a?) [ exp(—t) _ bexp (- (a? +b?)) [ exp (—t)
m ./o (t+a2)\/idt ™ /0 (t+a2+b2)\/t—|—a2dt

[Rea > 0,Reb > 0]
which is not present in, for instance, the extensive overview in [19].

Theorem 3.4. Let v and p be two complex numbers with Rev < 1 and Re 4 < min [1 — Rew,
2 + Rev|. Then, the following inverse Laplace transform holds for Rep > 0, |argz| < ,
x>0, |argy| <m, y>0

p—1/2 exp (%p (y — x)) D, (21/2y1/2p1/2) (D, (—21/2951/21)1/2) +D, (21/2561/2]91/2)}
Q(M—V)/2\/7r

M ErEmysiaer A e L Gl e (3.15)




70 D. Veestraeten

< (y+ )2 R (_u 1+v;1+v—/~6. t(w—y—t)))dt

22 2 (-t (y+t
21+(M+V)/2ﬁ Ooex B v/2 (4 . —(14p+v)/2
+F[(1—u)/2]r[(1—ﬂ)/2]/m p (—pt) t"/2 (t — z)” U HH

1
X (y*x+t)“/2 2 I (M i ﬂcy>

2 22t (y—x+1t)
Proof. The inverse Laplace transform in Equation (6) on p. 290 in [14] is
[e.@]
I [v] p_l/2 exp (%ap) Do, (21/2(11/2]91/2) = / exp (—pt) ol/2vpr—1 (t+ a)1/2_l’ dt
0

[Rep > 0,Rev > 0, larga| < 7]

which in the notation of Theorem 3.3 gives
T[(1—p) /2 p~ 2 exp (Syp) Dy (2V/21/2p1?)

:/ exp (—pt) 24/24~ (D12 (1 4 )12 gy
0

[Rep > 0,Rep < 1, |argy| < 7] (3.16)
The inverse Laplace transform (3.3) is specialized for a = —% and b = % and gives
12 v 1
Wr [(1+v) /2]T [-v/2]exp (—ap) ® (—2; bR xp)

:/ exp (—pt) tV=D/2 (z — )~/ gy
0
[Rep > 0,—1 < Rev <0,z > 0] (3.17)

The original functions f; (¢) and f (t) are taken from the inverse Laplace transforms (3.16)
and (3.17), respectively

i) = on/24—(p+1)/2 (t+ y)u/z and fo (t) = fv=1)/2 (z — t)—(u/2)71
Using steps akin to those used in the proof of Theorem 3.1 then yields

—1/2 1, 1/2,1/2,1/2 v 1
P exp <2py px) D, (2 y/'°p ) i) ( 5 2,p:c> (3.18)
/2 1/2,1/2 x
__ 2PVme Ty / exp (—pt) 01072 (g — )~1-(/2
T+ (v - /2T /2] Jo
_ 1- v v—pu tlx—y—1t)
NE-10/2 5 ( B oY 2 )
X(y+) 2471 2 ) +2) + 2 ’(l'—t)(y‘i‘t)
/2 00 1 9
+ —/ exp (—pt) t*/% (t — z)~H#)/
L(1—p)/2] Ja
_ p/2 kv L Yy )
X(y .’L’+t) 2F1( 27 2’2’t(y—x—|—t) dt

The first integral in (3.18) can be rewritten via the following linear transformation formula
for the Gaussian hypergeometric function

oF1 (a,b;¢;2) = (1 — 2) P 3 F (¢ — a,c — b ¢; 2) (3.19)
see Equation (15.3.3) in [1]. Combining the resulting expression for the transform (3.18)
with the definition (2.3) then gives the inverse Laplace transform (3.15). O

Theorem 3.5 specifies the inverse Laplace transform for the product of two parabolic
cylinder functions of which the arguments have opposite sign and Corollary 3.6 specializes
this expression for a single parabolic cylinder function with negative sign in the argument.
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Theorem 3.5. Let v and u be two complex numbers with Rev < 1 and Re p < min [1 — Rev,
2+ Rev|. Then, the following inverse Laplace transform holds for Rep > 0, x > 0,
largy| <, y >0

p—1/2 exp (lp (y — x)) D, <21/2y1/2p1/2) D, (721/2331/2])1/2) (3.20)

,u v /2\/‘
- (v=p)/2 ~(14v)/2
T+ (v—p) /2T v /eXp (=pi)t (@=1)
w2 p (B LRV vt (z—y—1) )
21+(u+u)/2ﬁw1/2y1/2 () 1 9
+ / exp (—pt t=1/2 (¢ _ At/
P vz J, CPCPI )

1—pu 1—v 3 T
_ m-1/2 ) p 3, y )
x(y—z+t) {2 1( 2 T2 2t(y—z+t)

o Tl=w/2AT[-v/2] (t(y—w+t))”22pl(_ﬂ_y.1.W))}dt

Tl - 2T -0 /2 day > 2yt
Proof. The transform (3.20) is obtained by adding the inverse Laplace transforms (3.1)
and (3.15) and simplifying the resulting expression. O
Corollary 3.6. Using y = 0, the properties

o2M2\ I
D, (0) =

- T[(1-p)/2]
[e|T ¢ —a—b]

Fi(a,byc;1) =
2F1abiel) = F T
see BEquations (46:7:1) in [22] and (15.1.20) in [1], and pn = 0 gives
p 2 exp (—%px) D, (—21/2951/21)1/2) = (3.21)
271//2\/,7.(. x
o /2 (o —(140) /2
F[—V]F[l—i—u/Q]/o exp (—pt) t"/* (x — t) dt
+ L /oo exp (—pt) t/? (t — x)—(1+'/)/2 dt
M —-v)/2 )

[Rep > 0,Rev < 1,z > 0]

Theorem 3.7. Let v and p be two complexr numbers with Re(v + p) < 1. Then, the
following inverse Laplace transform holds for Rep > 0, |argz| < m, x > 0, |argy| < m,
y =0, largx +argy| <m

p71/2 exp (%p (y + x)) D, (21/2y1/2p1/2> D, (21/2x1/2p1/2) _ (3.22)
9(utv)/2
r-p—v

wm/ exp (—pt) tHHFI2 (y 4 )12 (3 4 1)
0

1—p— t t
X oI (-H,—V; b SRS AL) ) t
27 2 2 (x+1t)(y+1)
which is identical to the transform in Equation (2.1) in [28].

Proof. Subtracting the inverse Laplace transform (3.1) from (3.10) gives

p—1/2 exp (%p (y — :E)) D, (21/2y1/2p1/2) D, (21/2:1:1/2171/2) _
o(u+v)/2

OOeX —pt) /2 (t — )~ v)/
+F[(1—u—u)/2]/m p (—pt) /2 (t — o) (AFutn)/2
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Caapp2) VTP —p—v) /2] pov 1wy
-zt {F[(l—u)/2]F[(1—V)/2]2F1< Y D)

VAl (1= p—v) /2] doy  \V? l—p 1—v 3  ay
T T u/2 T /2 (t(y—xﬂ)) o (S5 ’2’t<y—x+t>>}dt

in which the linear transformation formula (3.19) was used. Subsequently, using the linear
transformation formula

[e]T ¢ —a — b]
Fy(a,bic; 2) = Fi(abia+b—c+1;1—
2 1((1, ,C,Z) F[C—G]F[C—b]Q 1(@, ;a+ c+ 1 Z)
IN N b—
+(1—2)? T a+ C]gFl(c—a,c—b;c—a—b—Fl;l—z)

I'[a] T [b]
in Equation (15.3.6) in [1] gives

p—1/2 exp (%p (y — x)) D, (21/2y1/2p1/2> D, (21/21'1/2]?1/2) _

o(vtu)/2 /oo L ) )
exp (—pt) /2 (t — )" WFRE/2 (g 4 )R/
@ —u— v/ ). PP ey
1— u— _
¥ oF) (_u’_v; 7 V;(t :v)(y+t)>dt
27 2 2 t(y—xz+t)

Multiplying both sides by exp (px), using the substitution s = ¢t — x and subsequently
re-introducing ¢ then gives (3.22). O

As noted earlier, removing the term p~1/2 from transforms such as (3.22) allows obtaining

integral representations for (complementary) error functions in which the integrand con-
tains rational functions. This is illustrated in Theorem 3.8 and Corollary 3.9 in which the
integral representation for 1 — erf(a)? in [19] is generalized into 1 — erf(a)erf(b).

Theorem 3.8. Let v and p be two complex numbers with Re(v + p) < 1. Then, the
following inverse Laplace transform holds for Rep > 0, |argz| < m, x > 0, |argy| < ,
y >0, largx +argy| <7
exp (%p (y+ 1‘)) D, (21/2y1/2p1/2) D, (21/2301/2191/2) = (3.23)
2(u+u)/2x71/2 /oo 1 9
exp (—pt)t~ —(v+p)/2 Y+t n/
ETEYE N D
0 (L iy e
2' 72 2 (m+t)(y+i)
vt ( wl—v pu+v tx+y+t) )}
-2 (5 1= ;
(n+v)(x+1) 2" 2 2 T(z+t)(y+t)

Proof. The inverse Laplace transform (3.23) is obtained via the above recurrence relation
of the parabolic cylinder function. Replacing z by 21/2z'/2p!/2 in the recurrence relation

and multiplying by p~1/2exp (1p (y + 7)) Dy (21/2y"/?p/2) gives
exp (3 (y+ @) D, (2/%'/2p!/2) D, (2'/22/2p1/?) =
2712072 2 exp (3p (y + 7)) Dy (2V/291/%p"/2) Dy (21/221/2p1/2)
2 2 2 2 ey (L (4 ) Dy (212412102) D,y (21/21/21/2)

Plugging the transform (3.22) into the latter expression and simplifying the result via the
linear transformation formula (3.19) gives (3.23). O
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Corollary 3.9. The below derivations employ the following property of the Gaussian hy-
pergeometric function

1 1 2
Fi(l,=;2;2) =2oF1(=,1;2;2 ) = ————
21( 5 Z> 21(2 Z> Vi
see Equation (84) on p. 473 in [24]. Using u = v = —1 in (3.23) gives the following
inverse Laplace transform for the product of two complementary error functions

exp (p (v +y)) erfe (y'/2p!/?) erfe (2!/2p'/?) = (3.24)

1/ooexp(_pt) vavr +t+ gy +t
™ Jo (x4+y+t)/(x+t)(y+1)
[Rep >0, largy| < m,y >0, |argz| < 7,2 > 0, |argz + argy| < 7]

Usingp =1, y/2 = a and /2 = b then gives the following integral representation for the
product of two complementary error functions

erfc (a) erfc(b) = (3.25)
1 i avt+a? +bv't + b
x P <_ <a2 - 62)) /0 o (1) (t+ a2 +b2) /(t + a?) (t + b?)

[Rea > 0,Reb > 0]

which gives an alternative to the representation given on p. 70 in [27]. Using a = 0 and
erfc (0) = 1, see Equation (40:7) in [22], gives

erfc (b) = %exp (—b2> /OOO (eXp(_t)dt

t402) V1
[Reb > 0]
erf (b)) =1— %exp (—?) /Ooo mdt (3.26)
[Reb > 0]

The definition of the complementary error function gives erf(a) erf(b) = erf(b)—erfc(a) erf(b)
such that plugging (3.26) and (3.14) into the latter relation gives

1 —erf(a)erf(b) = (3.27)

) o0 1 exp (—a?)
—exp (—52) /0 exp (—1) { (t+b2)VE  (t+ a2+ b2) \/W} “

+ 2 exp (—a?) /*’2 exp(—t) .,
—exp (—a —_—
T P 0 (t+a?)Vit

[Rea > 0,Reb > 0]
which generalizes the expression for 1%7’]"(@)2 in Equation (8) on p. 4 in [19] to differing
arguments. Note that the representation in [19] can easily be obtained from (3.27) by using
a = b which gives

2a @ exp (—t)
1 —erf(a)? = = exp (—a? / ——— " dt
ria) m Xp( a) 0 (t+a?)Vt
The substitution t = a%s? then gives
4 Lexp (—a?s?)
_ 2 _ % 2 exXp (—a”s”)
1 —erf(a)” = - exp( a )/0 211 ds

which is the integral representation in [19].
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4. Correcting two inverse Laplace transforms

This Section utilizes the above results to correct two inverse Laplace transforms that are
frequently found.

4.1. First correction

The following inverse Laplace transform is specified in Equation (3.11.4.3) in [26]

DV (a’\/f)) D—V—l (a\/f)) -
1 a?
<1/ + 2) arccos l%H dt  *x

00 (tQ _ a2) —1/2
exp (—pt) ——=——cos
/a p (—pt) oTi
where ** indicates that the expression is not correct. The corrected expression, however,
can easily be obtained from the results in Section 3.

Theorem 4.1. Let v be a complex number. Then, the following inverse Laplace transform
holds for Rep > 0 and Rea > 0

Dy (ay/p) D—y—1 (a/p) = (4.1)
[e’e) a t2 - ﬁ 2
/l , &XP (—pt) ( \/%t) cos

2(1

4t

2t — a?
(2v 4 1) arcsin [ a ] dt

Proof. Using a = 21/2241/2 = 21/2y1/2 and = —v — 1 allows to rewrite (3.23) as follows

exp (%QQP) D, (a\/p) D—,—1 (a\/p) =
Lo 14w 14w 1 4t(a®+1)
aﬁ/o *p(~pt)t {2F1 ( 2 72 72 (a2+2t)°

2ut 1—v 14v 3 4t(a®+t
+— 2F1 ; Pe ( 3 dt
a2 + 2t 2 2 "2 (a1 20)

Multiplying both sides by exp (—%a2p>, using the substitution s = ¢ + %aQ and subse-
quently re-introducing ¢ gives

Dy (ay/p) D—y—1(a\/p) =

91/2  roo —1/2 l+v 1+4+v 1 48 —a*
- —pt) (2t — a? F - gy
aﬁ %aQGXP( p)( (1) 2471 2 ) 2 527 At2

1/(2t—a2) 1—v 1+v 3 42 — gt
F 2. dt
MY, 21( 2 2 "2 42

The quadratic transformation formula in Equation (15.3.22) in [1] states
1 11 1
o F1 (a,b;a—i—b—i— 2;2) =l (Qa,Qb;a—l—b—i— 5;5 — 5\/1 —z)
Using the latter relation gives

Dy (ay/p) D-yoi (ayp) =

21/2 00 9 —-1/2 1 2t —a?
ol %GZexp(fpt) (Qtfa) o Fy flfy,lJru,Q,Tt

V(2t7a2) 3 2t — a2
— oM 1-1 = — dt
Ty 21( LItV Ty
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The latter result can be simplified on the basis of the relations (15.2.10) and (15.2.20) in
[1], respectively

(c—a)oFy (a—1,b;¢;2) 4+ (2a — ¢ — az + bz) o F (a, b ¢; 2)
+a(z—1)2F 1 (a+1,b;¢;2) =0
c(1—=2)9F; (a,b;¢;2) —coaF1 (a— 1,b;¢;2) + (¢ — b) 20F; (a,b;¢+1;2) =0
The latter two relations can be combined into
(ac - cz) oF1 (a—1,b;¢;2) + (02 —ac+c(a—"b) z) oFy (a,b;¢; 2)
+a(b—c)zeF (a+1,b;c+1;2)=0

2 1 2t —a? 1 2t —a?
a2F1<1+V7—V;'a Yl SN R

which gives

ot 2" 4t 2 4t
V(Zt—a) 3 2t — a2
2R (1-v1 =22
T ( LItV T )

This allows to rewrite the inverse Laplace transform as

Dy (ay/p) D—y—1 (ay/p) =

—1/2
(2t — a?) L12t— a?
——F (1 — | dt
V2 /w P (—pt) TS T
Equation (90) on p. 460 in [24] states
1 1 1
oy (a, 1—aq; 2;z> =oF (1 -, 5; z) = =08 [(2a — 1) arcsin [v/z]]
Employing the latter property then gives (4.1). O

4.2. Second correction

The following inverse Laplace transform can be found in Equation (11) on p. 218 in [14],
in Equation (16.7) on p. 379 in [21] and in Equation (3.11.5.1) in [26]

exp (1a2p2) D, (ap) D, (ap) =

1 > = (L) t?
- —pt) gh v ety _t
= /0 exp (—pt) a exp | —5 5

X oFy (/"’7 —v;—

oy 2
N+V,1 pov it dt  *
2 2 " 4a?

Theorem 4.2. Let v and p be two complex numbers with Re (u+v) < 0. Then, the
following inverse Laplace transform holds for Rep > 0 and Rea > 0

exp (3a’p?) Dy, (ap) D, (ap) = (4.2)
1 o t?
- _pt) gttt tptr) _
= /0 exp (—pt) a exp | =5
+v 1l—p—v t?
XZFZ <_:ua_y7_u2 ) g 4a>dt

Proof. From the specification of, for instance, the inverse Laplace transform (3.23), it
is clear that the left-hand side of the expression in [14,21,26] contains a misprint as the

exponential term should be exp (1a2p2> rather than exp (1a2p2> ]
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5. Two new definite integrals for the generalized hypergeometric function

The below definite integrals for the generalized hypergeometric function are derived from
the inverse Laplace transform (4.2) in combination with two results from Section 3.

5.1. First integral
Using a = 2222 in (4.2) gives

exp (pzx) D, (21/21'1/2])) D, (21/2x1/2p) = (5.1)
(2) )72 /OO —(14p+v) &
T =l Jo exp (—pt)t exp | — -
o pHtv 1—,u—1/‘ﬁ
X2F2< My —=Vy 2 ) 2 ’8ZL'>dt

and the inverse Laplace transform (3.23) for y = x is

exp (pa) D, (21/2x1/2p1/2) D, (21/23:1/21)1/2) _ (5.2)
9(utv)/2,—1/2 00 .
_ —1=(v+p)/2 (I+p+v)/2
) /2]/0 exp (—pt)t (x+1)
< r ko l+v ptr t(2z+1)
27 27 2 7 (z+1t)?
vt p l—v p+v t(2x +1t)
—— = 31— ; dt
(+v)(@+t)° < 27 2 2 ' (z+t)

Let f(t) be the original function in the Laplace transform (5.1) and F (p) be the corre-
sponding image function. Equation (26) on p. 4 of [26] states that the original function

of the image function F (pl/ 2) then is related to f (t) as follows

00 7_2
2\/%/0 T exp <_4t> f(r)dr (5.3)

Hence, plugging the original function for the inverse Laplace transform (5.1) into the
expression (5.3) gives the original function of expression (5.2). Straightforward simpli-
fications and redefinitions of variables then give the following definite integral for the
generalized hypergeometric function

0o o 2
/ t= ) exp (_35+th> 2Fy | —p, —v; B - Lon Z, ) ar =
0 4y 2 2 8z

oy — (1+p+v)/2
o~ (nt)T [1 0 l/] <x+y) JF, _ﬁ7_1+1/;_u+u;y(2x+g)
2 xy 2 2 2 (x+y)

vy 1 1V'1_u+y‘y(2x+y)>} (5.4)

T N/ N F e i 7
(n+v)(z+y)° 1( 27 2 2 (z +y)*
[Re(u+v) <1,Rex > 0,Rey > 0]
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5.2. Second integral

Again, let f () be the original function in the Laplace transform (5.1) and F (p) be the
corresponding image function. Equation (29) on p. 5 of [26] states that the original

function of the image function p~V/2F (pl/ 2) is given by

2
\ﬁ/ ( 4t> f(r)dr (5.5)
The property in (5.5) establishes a relation between the inverse Laplace transforms for
exp (p*z) D, (21/21’1/21)) D, (21/2501/21)) and
p~ /2 exp (pz) D, (21/2x1/2p1/2) D, (21/2371/2191/2). Equation (5.5) then allows us to ob-

tain the following indefinite integral

o T4y, p+v 1—p—v
t (14p+v) ( ) F . dt =
/0 P\ 4y 2 T 2 '8z

u+u /2 o )
27(1+,u+1/)1-x [_M;—V:| <I::;/y < g Z H—v, y( x+y)> (5.6)

S22 (aty)
[Re (u+v) <0,Rex > > 0]
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