

RESEARCH ARTICLE

Addendum to "Ideal Rothberger spaces" [Hacet. J. Math. Stat. 47(1), 69-75, 2018]

Manoj Bhardwaj

Department of Mathematics, University of Delhi, New Delhi-110007, India

Abstract

In this addendum we give an example to show that there is an error in Theorem 3.7 in "Ideal Rothberger spaces" [Hacet. J. Math. Stat. 47(1), 69-75, 2018]. We also prove the theorem with different hypothesis.

Mathematics Subject Classification (2020). 54D20, 54B20

Keywords. Rothberger modulo ideal spaces, perfect maps

We use notation and terminology from [2]. In [2], the author gave the following theorem for inverse invariant.

A function f from a topological space X to a space Y is said to be perfect map [1] if

- (1) f is onto
- (2) f is continuous
- (3) f is closed map
- (4) $f^{-1}(y)$ is compact in X for each $y \in Y$.

Theorem 1 ([2]). Let $f : X \to Y$ be a perfect map and \mathfrak{I} be an ideal in Y. If Y is Rothberger modulo \mathfrak{I} , then X is Rothberger modulo $f^{-1}(\mathfrak{I})$.

Here we give an example which contradicts the Theorem 1 given in [2].

Example 2. Let \mathbb{R} be set of real numbers with usual topology and $\mathcal{I} = \{\phi\}$ be an ideal in $\{a\}$. Take a constant function f from [0, 1] to one point Rothberger space or $\{a\}$, where [0, 1] is compact closed subspace of \mathbb{R} . Then f is closed, open, onto and continuous map. Also $f^{-1}(a) = [0, 1]$ is compact but [0, 1] is not Rothberger [3] since $\{a\}$ is Rothberger.

Now we give positive result regarding this and provide maps under which Rothberger modulo an ideal spaces are inverse invariant.

Theorem 3. Let f be an open bijective map from a space X to Y and \mathfrak{I} be an ideal in Y. If Y is Rothberger modulo \mathfrak{I} , then X is Rothberger modulo $f^{-1}(\mathfrak{I})$.

Proof. Let $\langle \mathcal{U}_n : n \in \omega \rangle$ be a sequence of open covers of X. Then for each n,

$$\mathcal{V}_n = \{f(U) : U \in \mathcal{U}_n\}$$

Email address: manojmnj27@gmail.com

Received: 14.01.2020; Accepted: 20.05.2020

is an open cover of Y. Since Y is Rothberger modulo \mathfrak{I} , there are $J \in \mathfrak{I}$ and a sequence $\langle \mathcal{W}_n : n \in \omega \rangle$ such that for each n, \mathcal{W}_n is a singleton subset of \mathcal{U}_n and for each $y \in Y \setminus J$, belongs to $\bigcup \mathcal{W}_n$ for some n. Now assume that for each n,

$$\mathcal{W}_n = \{f(U_{n,1})\} \text{ and } \mathcal{G}_n = \{U_{n,1}\}\$$

Then $f^{-1}(J) \in f^{-1}(\mathfrak{I})$ and sequence $\langle \mathfrak{G}_n : n \in \omega \rangle$ witnesses Rothberger modulo $f^{-1}(\mathfrak{I})$ property of X for the sequence $\langle \mathfrak{U}_n : n \in \omega \rangle$. Let $x \in X \setminus f^{-1}(J)$. Then

$$y = f(x) \in Y \setminus J$$
 and $y \in \bigcup \mathcal{W}_n$ for some n .

This implies that $y \in f(U_{n,1})$. Since f is one-to-one, $x \in U_{n,1}$. So $x \in \bigcup \mathfrak{G}_n$ for some n. This completes the proof.

References

- R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag Berlin, 1989.
- [2] A. Güldürdek, Ideal Rothberger spaces, Hacet. J. Math. Stat. 47 (1), 69–75, 2018.
- [3] M. Sakai and M. Scheepers, Combinatorics of open covers, in: K.P. Hart, J. van Mill, P. Simon (eds.), Recent Progress in General Topology III, pp. 751–799, Atlantis Press, Paris, 2014.