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Abstract
In this study, our main objective is to determine some monotonic and log-concavity prop-
erties of generalized k-Bessel function by using its Hadamard product representation and
some earlier results on power series. In addition, by using the relationships between Bessel-
type special functions and some basic functions, we present some specific examples related
to the monotonic and log-concavity properties of some trigonometric and hyperbolic func-
tions.
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1. Introduction and preliminaries
In the recent years many geometric and monotonic properties of some special functions

like Bessel, Struve, Lommel, Mittag-Leffler, Wright and their generalizations were inves-
tigated by many authors. Comprehensive information about these investigations can be
found in [1–8, 10, 14] and references therein. Especially, some inequalities and monotonic
properties of the above mentioned functions are usefull in engineering, physics, probability
and statistics, and economics. It is known that log-concavity and log-convexity properties
have a crucial role in economics. Comprehensive information about the log-concavity and
the log-convexity properties can be found in [13] and its references. In this study, moti-
vated by the some earlier results which are given in [14, 15], our main aim is to present
some monotonic and log-concavity properties of generalized k-Bessel functions. Moreover,
we give some specific examples regarding our obtained result by using the relationships
between Bessel-type functions and elementary trigonometric and hyperbolic functions.

It is known that, most of special functions can be defined with the help of Euler’s gamma
function. Therefore, we would like to remind the definitions of gamma function and its
k-generalization. The Euler’s gamma function Γ is defined by the following improper
integral, for x > 0:

Γ(x) =
∫ ∞

0
tx−1e−tdt.

Email address: aktasibrahim38@gmail.com; ibrahimaktas@kmu.edu.tr
Received: 17.09.2019; Accepted: 28.05.2020

https://orcid.org/0000-0003-4570-4485


On monotonic and logarithmic concavity properties of generalized k-Bessel function 181

Also, the k-gamma function is defined by (see [12])

Γk(x) =
∫ ∞

0
tx−1e

−tk

k dt

for k > 0. We know that the k-gamma function Γk reduces to the classical gamma function
Γ when k → 1. In addition, Pochammer k-symbol is defined by

(λ)n,k = λ(λ + k)(λ + 2k) . . . ((λ + (n − 1)k))
for λ ∈ C, k ∈ R and n ∈ N+. Other properties of Pochammer k-symbol and k-gamma
function can be found in [12].

In this paper, we are considering the generalized k-Bessel function defined by the fol-
lowing series representation (see [14]):

W k
ν,c(x) =

∞∑
n=0

(−c)n

n!Γk(nk + ν + k)

(
x

2

)2n+ ν
k

(1.1)

for k > 0, ν > −1 and c ∈ R. It is clear that the generalized k-Bessel function reduces
to classical Bessel and modified Bessel functions for appropriate values of the parameters
k and c, respectively. More precisely, taking k = c = 1 and k = −c = 1 in (1.1), we have
that

W 1
ν,1(x) =

∞∑
n=0

(−1)n

n!Γ(n + ν + 1)

(
x

2

)2n+ν

= Jν(x) (1.2)

and
W 1

ν,−1(x) =
∞∑

n=0

1
n!Γ(n + ν + 1)

(
x

2

)2n+ν

= Iν(x), (1.3)

where Jν(x) and Iν(x) denote classical Bessel and modified Bessel functions of the first
kind, respectively. In [15], the author studied some geomertric properties such as radii of
starlikeness and convexity of generalized k-Bessel function. Also, the author gave an infi-
nite product representation of generalized k-Bessel function by using Hadamard’s theorem
as follow (see [15, Lemma 1.1]):

W k
ν,c(x) =

(
x
2
) ν

k

Γk(ν + k)
∏
n≥1

(
1 − x2

kw2
ν,c,n

)
, (1.4)

where kwν,c,n denotes nth positive zero of generalized k-Bessel function W k
ν,c(x).

Now, we would like to give the definition of logarithmic concavity of a function.

Definition 1.1 ([13]). A function f is said to be log-concave on interval (a, b) if the
function log f is a concave function on (a, b).

To show log-concavity of a function f on the interval (a, b), it is sufficient to show one
of the following two conditions:

i. f ′

f monotone decreasing on (a, b).
ii. log f ′′ < 0.

Also the following lemma due to Biernacki and Krzyż (see [11]) will be used in order to
prove some monotonic properties of the mentioned functions.

Lemma 1.2. Consider the power series f(x) =
∑

n≥0 anxn and g(x) =
∑

n≥0 bnxn, where
an ∈ R and bn > 0 for all n ∈ {0, 1, . . . }, and suppose that both converge on (−r, r), r > 0.
If the sequence {an

bn
}n≥0 is increasing(decreasing), then the function x 7→

(
f(x)
g(x)

)
is also

increasing(decreasing) on (0, r).

It is important to note that the above result remains true for the even or odd functions.
The outcomes of our paper is as follow: In Section 2, we give our main results and their

consequences, while the Section 3 is devoted for some applications of our main results.
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2. Main results
In this section, we present our main results and their consequences.

Theorem 2.1. Let k > 0, k + ν > 0, c ∈ R and kwν,c,n denote the nth positive zero of the
generalized k-Bessel function W k

ν,c(x). Further, consider the following sets:

δ1 =
∪

n≥1
(kwν,c,2n−1, kwν,c,2n) , δ2 =

∪
n≥1

(kwν,c,2n, kwν,c,2n+1) and δ3 = [0, kwν,c,1) ∪ δ2.

The generalized k-Bessel function

Θk
ν,c(x) = Γk(ν + k)2

ν
k x− ν

k W k
ν,c(x) =

∞∑
n=0

(−c)n

n! (ν + k)n,k

(
x

2

)2n

(2.1)

has the following properties:
a. the function x 7→ Θk

ν,c(x) is negative on δ1 and it is positive on δ3,

b. the function x 7→ Θk
ν,c(x) is a decreasing function on [0, kwν,c,1),

c. the function x 7→ Θk
ν,c(x) is strictly log-concave on δ3.

Proof. a. If we consider the infinite product representation of generalized k-Bessel func-
tion W k

ν,c(x) which is given by (1.4), then it can be easily seen that the function Θk
ν,c(x)

can be written by the following product representation:

Θk
ν,c(x) =

∏
n≥1

(
1 − x2

kw2
ν,c,n

)
. (2.2)

In order to investigate the sign of the function x 7→ Θk
ν,c(x) on the mentioned sets, we

rewrite the function x 7→ Θk
ν,c(x) as

Θk
ν,c(x) = UnVn,

where
Un =

∏
n≥1

kwν,c,n + x

kw2
ν,c,n

and Vn =
∏
n≥1

(kwν,c,n − x) .

It is clear that Un > 0 for all x ∈ R+ ∪ {0}. On the other hand, since

0 < kwν,c,1 < kwν,c,2 < · · · < kwν,c,n < · · · ,

we can say that, if x ∈ (kwν,c,2n−1, kwν,c,2n), then the first (2n − 1) terms of Vn are strictly
negative and remained terms are strictly positive. Also, if x ∈ (kwν,c,2n, kwν,c,2n+1), then
the first 2n terms of Vn are strictly negative and the rest is strictly positive. In addition,
all the terms of Vn are strictly positive for x ∈ [0, kwν,c,1). As a consequence, the function
x 7→ Θk

ν,c(x) is negative on δ1 and it is positive on δ3.

b. We know from part a. that the function x 7→ Θk
ν,c(x) is positive on the interval

[0, kwν,c,1). The logarithmic differentation of (2.2) implies that(
Θk

ν,c(x)
)′

Θk
ν,c(x)

=
∞∑

n=1

2x

x2 − kw2
ν,c,n

.

Thus, we get (
Θk

ν,c(x)
)′

= Θk
ν,c(x)

∞∑
n=1

2x

x2 − kw2
ν,c,n

< 0

for all x ∈ [0, kwν,c,1). As a result, the function x 7→ Θk
ν,c(x) is a decreasing function on

[0, kwν,c,1) .
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c. In order to prove log-concavity of the function x 7→ Θk
ν,c(x), we need to show that

d2

dx2

[
log Θk

ν,c(x)
]

< 0

for all x ∈ δ3. Now, by using the infinite product representation of the function Θk
ν,c(x)

which is given by (2.2) we infer that

d2

dx2

[
log Θk

ν,c(x)
]

= d2

dx2

log
∏
n≥1

(
1 − x2

kw2
ν,c,n

)
= d

dx

[
d

dx

∞∑
n=1

log
(

1 − x2

kw2
ν,c,n

)]

= d

dx

∞∑
n=1

−2x

kw2
ν,c,n − x2

= −2
∞∑

n=1

kw2
ν,c,n + x2(

kw2
ν,c,n − x2

)2

< 0

for x ∈ δ3. Thus, the proof is completed. �

By setting k = c = 1 and k = 1, c = −1 in the Theorem 2.1 we have the following
properties for the classical Bessel and modified Bessel functions, respectively.

Corollary 2.2. Let ν > −1 and jν,n denote the nth positive zero of the classical Bessel
function Jν(x). Further, consider the next sets:

A1 =
∪

n≥1
(jν,2n−1, jν,2n) , A2 =

∪
n≥1

(jν,2n, jν,2n+1) and A3 = [0, jν,1) ∪ A2.

The following assertions are true:
a. the function Θ1

ν,1(x) = Γ(ν + 1)2νx−νJν(x) is negative on A1 and it is positive on
A3,

b. the function Θ1
ν,1(x) = Γ(ν + 1)2νx−νJν(x) is a decreasing function on [0, jν,1) ,

c. the function Θ1
ν,1(x) = Γ(ν + 1)2νx−νJν(x) is strictly log-concave on A3.

Corollary 2.3. Let ν > −1 and ϵν,n denote the nth positive zero of the modified Bessel
function Iν(x). Further, consider the next sets:

B1 =
∪

n≥1
(ϵν,2n−1, ϵν,2n) , B2 =

∪
n≥1

(ϵν,2n, ϵν,2n+1) and B3 = [0, ϵν,1) ∪ B2.

The following assertions are true:
a. the function Θ1

ν,−1(x) = Γ(ν +1)2νx−νIν(x) is negative on B1 and it is positive on
B3,

b. the function Θ1
ν,−1(x) = Γ(ν + 1)2νx−νIν(x) is a decreasing function on [0, ϵν,1) ,

c. the function Θ1
ν,−1(x) = Γ(ν + 1)2νx−νIν(x) is strictly log-concave on B3.

Theorem 2.4. Let k > 0, ν > 0, c ∈ R and kwν,c,n denote the nth positive zero of the
generalized k-Bessel function W k

ν,c(x). Then, the function x 7→ W k
ν,c(x) is strictly log-

concave on (0, kwν,c,1) ∪ δ2.

Proof. It is known that the product of two strictly log-concave function is also strictly
log-concave. By using this fact it is possible to prove the log-concavity of the generalized
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k-Bessel function W k
ν,c(x) on δ3. Hence, we rewrite the function W k

ν,c(x) as follow:

W k
ν,c(x) =

(
x
2
) ν

k

Γk(ν + k)
Θk

ν,c(x).

Since
d2

dx2

[
log

(
x

2

) ν
k

]
= − ν

kx2 < 0

for ν > 0, k > 0 and x ∈ R+, the function x 7→
(

x
2
) ν

k is strictly log-concave on R+. In
addition, it is known from part c. of Theorem 2.1 that the function Θk

ν,c(x) is strictly log-
concave on δ3. As a result, the function W k

ν,c(x) is strictly log-concave on (0, kwν,c,1) ∪ δ2
as a product of two strictly log-concave functions. �

Now, by taking k = c = 1 and k = 1, c = −1 in Theorem 2.4, we deduce the following
properties for the classical Bessel and modified Bessel functions, respectively.

Corollary 2.5. The function x 7→ Jν(x) is strictly log-concave on (0, jν,1) ∪ A2, while the
function x 7→ Iν(x) is strictly log-concave on (0, ϵν,1) ∪ B2.

Our last main result is the following theorem.

Theorem 2.6. The function Φk
ν,−1(x) = x(Θk

ν,−1(x))′

Θk
ν,−1(x) is increasing on (0, ∞) for v > −1

and ν + k > 0.

Proof. If we put c = −1 in definition of the function Θk
ν,c(x), then we get the following

infinite series representation for the function Θk
ν,−1(x), that is,

Θk
ν,−1(x) =

∞∑
n=0

Pn,ν,kx2n, (2.3)

where Pn,ν,k = 1
n!4n(ν+k)n,k

. Differentiating both sides of the equality (2.3) and by multi-
plying by x obtained equality, we get that

x
(
Θk

ν,−1(x)
)′

=
∞∑

n=0
Rn,ν,kx2n,

where Rn,ν,k = 2n
n!4n(ν+k)n,k

. According to Cauchy-Hadamard theorem for power series,
it can be easily shown that both power series

∑∞
n=0 Pn,ν,kx2n and

∑∞
n=0 Rn,ν,kx2n are

convergent on (−∞, ∞), since

lim
n→∞

∣∣∣∣∣ Pn,ν,k

Pn+1,ν,k

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣ Rn,ν,k

Rn+1,ν,k

∣∣∣∣∣ = ∞.

Here we used the equality (ν + k)n+1,k = (ν + k + nk)(ν + k)n,k for the Pochammer k-
symbol. On the other hand, it can be easily seen that Rn,ν,k ∈ R and Pn,ν,k > 0 for all
n ∈ {0, 1, . . . }, ν > −1 and ν + k > 0. Now, if we consider the sequence

Un = Rn,ν,k

Pn,ν,k
= 2n,

then we have
Un+1
Un

= n + 1
n

> 1.

So the sequence {Un}n≥0 is increasing. The proof is completed by applying Lemma 1.2. �
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3. Applications
In this section, we want to give some applications of our main results. Therefore, we

consider the relationships among of the functions x 7→ Θk
ν,c(x), x 7→ Jν(x) and x 7→ Iν(x).

We know from (1.2) and (1.3) that, the following equalities

W 1
ν,1(x) = Jν(x) and W 1

ν,−1(x) = Iν(x)

hold true for k = c = 1 and k = 1, c = −1, respectively. On the other hand, we know from
[9] that some basic trigonometric and hyperbolic functions can be written in terms of Bessel
and modified Bessel functions for some special values of ν. Especially, for ν = −1

2 , ν = 1
2

and ν = 3
2 we have the following basic trigonometric and hyperbolic functions:

J− 1
2
(x) =

√
2

πx
cos x, J 1

2
(x) =

√
2

πx
sin x, J 3

2
(x) =

√
2

πx

(sin x

x
− cos x

)
and

I− 1
2
(x) =

√
2

πx
cosh x, I 1

2
(x) =

√
2

πx
sinh x, I 3

2
(x) = −

√
2

πx

(sinh x

x
− cosh x

)
.

By using above relationships, we have the followings:

Θ1
− 1

2 ,1(x) = cos x, Θ1
1
2 ,1(x) = sin x

x
, Θ1

3
2 ,1(x) = 3

(sin x − x cos x

x3

)
and

Θ1
− 1

2 ,−1(x) = cosh x, Θ1
1
2 ,−1(x) = sinh x

x
, Θ1

3
2 ,−1(x) = 3

(
x cosh x − sinh x

x3

)
respectively.

Now, by using the above relationships in Corollary 2.2, Corollary 2.3, Corollary 2.5 and
Theorem 2.6, respectively, we can give the following some interesting examples.

Example 3.1. The following assertions hold true.

i. The function x 7→ Θ1
− 1

2 ,1(x) = cos x is strictly log-concave on
[
0, j− 1

2 ,1

)
∪ T1,

where T1 =
∪

n≥1

(
j− 1

2 ,2n, j− 1
2 ,2n+1

)
and j− 1

2 ,n denotes the nth positive zero of the
equation cos x = 0.

ii. The function x 7→ Θ1
1
2 ,1(x) = sin x

x is strictly log-concave on
[
0, j 1

2 ,1

)
∪ T2, where

T2 =
∪

n≥1

(
j 1

2 ,2n, j 1
2 ,2n+1

)
and j 1

2 ,n denotes the nth positive zero of the equation
sin x = 0.

iii. The function x 7→ Θ1
3
2 ,1(x) = 3

(
sin x−x cos x

x3

)
is strictly log-concave on

[
0, j 3

2 ,1

)
∪T3,

where T3 =
∪

n≥1

(
j 3

2 ,2n, j 3
2 ,2n+1

)
and j 3

2 ,n denotes the nth positive zero of the
equation tan x = x.

Example 3.2. The following statements are valid.

i. The function x 7→ Θ1
− 1

2 ,−1(x) = cosh x is strictly log-concave on
[
0, ϵ− 1

2 ,1

)
∪ S1,

where S1 =
∪

n≥1

(
ϵ− 1

2 ,2n, ϵ− 1
2 ,2n+1

)
and ϵ− 1

2 ,n denotes the nth positive zero of the
equation cosh x = 0.

ii. The function x 7→ Θ1
1
2 ,−1(x) = sinh x

x is strictly log-concave on
[
0, ϵ 1

2 ,1

)
∪ S2, where

S2 =
∪

n≥1

(
ϵ 1

2 ,2n, ϵ 1
2 ,2n+1

)
and ϵ 1

2 ,n denotes the nth positive zero of the equation
sinh x = 0.
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iii. The function x 7→ Θ1
3
2 ,−1(x) = 3

(
sinh x−x cosh x

x3

)
is strictly log-concave on

[
0, ϵ 3

2 ,1

)
∪

S3, where S3 =
∪

n≥1

(
ϵ 3

2 ,2n, ϵ 3
2 ,2n+1

)
and ϵ 3

2 ,n denotes the nth positive zero of the
equation tanh x = x.

Example 3.3. The following assertions hold true.
i. The function J− 1

2
(x) =

√
2

πx cos x is strictly log-concave on
[
0, j− 1

2 ,1

)
∪ T1.

ii. The function J 1
2
(x) =

√
2

πx sin x is strictly log-concave on
[
0, j 1

2 ,1

)
∪ T2.

iii. The function J 3
2
(x) =

√
2

πx

(
sin x

x − cos x
)

is strictly log-concave on
[
0, j 3

2 ,1

)
∪ T3.

iv. The function I− 1
2
(x) =

√
2

πx cosh x is strictly log-concave on
[
0, ϵ− 1

2 ,1

)
∪ S1.

v. The function I 1
2
(x) =

√
2

πx sinh x is strictly log-concave on
[
0, ϵ 1

2 ,1

)
∪ S2.

vi. The function I 3
2
(x) = −

√
2

πx

(
sinh x

x − cosh x
)

is strictly log-concave on
[
0, ϵ 3

2 ,1

)
∪

S3.

Example 3.4. The following functions
Φ1

− 1
2 ,−1(x) = x tanh x, Φ1

1
2 ,−1(x) = x coth x − 1

and
Φ1

3
2 ,−1(x) = (x2 + 3) sinh x − 3x cosh x

x cosh x − sinh x
are increasing functions on (0, ∞).
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