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ABSTRACT. In 1934 the concept of algebraic hyperstructures was first intro-
duced by a French mathematician, Marty. In a classical algebraic structure,
the composition of two elements is an element, while in an algebraic hyper-
structure, the result of this composition is a set. In this paper, we prove some
results in topological hyper nearring. Then we present a proximity relation on
an arbitrary hyper nearring and show that every hyper nearring with a topol-
ogy that is induced by this proximity is a topological hyper nearring. In the
following, we prove that every topological hyper nearring can be a proximity
space.

1. INTRODUCTION

In 1934, the concept of hypergroups was first introduced by a French mathemati-

cian, Marty . In the following, it was studied and extended by many researchers,
namely, Corsini , Corsini and Leoreanu , Davvaz , Frenni , Koskas ,
Mittas , Vougiouklis, and others. The topological hyper nearring notion is de-
fined and studied by Borhani and Davvaz in [2].
In the 1950’s, Efremovic , a Russian mathematician, gave the definition of
proximity space, which he called infinitesimal space in a series of his papers. He
axiomatically characterized the proximity relation A is near B for subsets A and
B of any set X. The set X, together with this relation, was called an infinitesimal
(proximity) space. Defining the closure of a subset A of X to be the collection of
all points of X near A, Efremovic showed that a topology can be introduced
in a proximity space.

In this paper, we study some remarks on topological hyper nearring, then we
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define a proximity relation on hyper nearring and, we will prove that every hyper
nearring with a topology that is induced by this proximity is a topological hyper
nearring. In the following, we show that every topological hyper nearring is a
proximity space.

2. PRELIMINARIES

In this section, we recall some basic classical definitions of topology from [21]
and definitions related to hyperstructures that are used in what follows.

Definition 1. [6] A hyper nearring is an algebraic structure (R, +, -) which satisfies
the following axioms:

(1) (R,+) is a quasi canonical hypergroup, i.e., in (R, +) the following conditions
hold:

(i) z4+(y+2)=(x+y)+zforal z,y,z € R;
(ii) There is 0 € R such that z+0 =0+ z =z, for all z € R;
(iii) For any = € R there exists one and only one ' € R such that 0 € © + z’
(we shall write —z for 2’ and we call it the opposite of x);
(iv) z€x+yimpliesy € —x +z and z € 2 — y.
If A and B are two non-empty subsets of R and =z € R, then we define:

A+B= U a+b, x4+ A={z}+ AandA+z = A+ {x}.

acA
beB

(2) (R, ) is a semigroup respect to the multiplication, having 0 as a left absorbing
element, i.e., z -0 =0 for all x € R. But, in general, 0 - x # 0 for some = € R.

(3) The multiplication is left distributive with respect to the hyperoperation +,
ie,x-(y+z)=z-y+ax-zforalzxyzeR.

Note that for all z,y € R, we have —(—z) = 2,0 = -0, —(x +y) = -y — x
and z(—y) = —xy. Let R and S be two hyper nearrings. The map f: R — S is
called a homomorphism if for all z,y € R, the following conditions hold: f(z+y) =
flz)+ fly), f(x-y) = f(z)- f(y) and f(0) = 0. It is easy to see that if f is a
homomorphism, then f(—z) = —f(z), for all z € R. A nonempty subset H of
a hyper nearring R is called a subhyper nearring if (H,+) is a subhypergroup of
(R,4+), i.e., (1) a,b € H implies a + b C H; (2) a € H implies —a € H; and (3)
(H,-) is a subsemigroup of (R,-). A subhypergroup A of the hypergroup (R,+) is
called normal if for all z € R, we have x + A — xz C A. Let H be a normal hyper
R-subgroup of hyper nearrring R. In [14], Heidari et al. defined the relation

x ~ y(mod H) if and only if (zx —y) N H # 0, for all z,y € H.

This relation is a regular equivalence relation on R. Let p(z) be the equivalence
class of the element x € H and denote the quotient set by R/H. Define the
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hyperoperation @& and multiplication ® on R/H by

pla) ®pb) = {p(c) : c€pla)+pb)},

pla) © p(b) = pla-b),
for all a,b € R. Let (R,+,-) be a hyper nearring and 7 a topology on R. Then,
we consider a topology 7* on P*(R) which is generated by B = {Sy : V € 7},
where Sy = {U € P*(R) : U CV,U € 7}, V € 7. In the following we consider
the product topology on R x R and the topology 7* on P*(R) [2].

Definition 2. [2] Let (R,+,:) be a hyper nearring and (R,7) be a topological
space. Then, the system (R, +,-,7) is called a topological hyper nearring if

(1) the mapping (z,y) — = +y, from R x R to P*(R),
(2) the mapping « — —z, from R to R,
(3) the mapping (z,y) — z.y, from R x R to R,

are continuous.

EXAMPLE 1. [2] The hyper nearring R = ({0, a, b, c}, +, ) defined as follows:

+ ‘ 0 a b c . ‘ 0 a b ¢
0] {0} {a} {b} {c} 0|0 a b ¢
a | {a} {0,a} {b} {c} al| 0 a b c
b | {o} {b} {0,a,¢} {b,c} b| 0 a b ¢
c | {c} A} {b,c} {0,a,b} c| 0 a b ¢

Let 7 = {&, R, {0,a}}. Then(R,+,,7) is a topological hyper nearrring.

Lemma 1. [9] Let (R, +,-,7) be a topological hyper nearring. If U is an open set
and a complete part of R, then for every c € R, ¢+ U and U + ¢ are open sets.

Definition 3. [24] A binary relation 6 on P(X) is called a prozimity on X if and
only if § satisfies the following conditions:

(P1) ASB implies BSA,

(P2) AdB implies A # 0,

(P3) AN B # 0 implies AéB,

(P4) AS(BUC) if and only if AéB or AdC,

(P5) A B implies there exists E C X such that A SE and B SE°.

The pair (X, §) is called a prozimity space. If the sets A, B C X are d-related,
then we write AJB, otherwise we write A §B.

EXAMPLE 2. Let A,B C X and AdB if and only if A # () and B # 0. Then ¢ is a
proximity on X.

The following theorem shows a proximity relation § on X induces a topology on
X.
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Theorem 1. [2/|] If a subset A of a prozimity space (X,9) is defined to be closed
if and only if x6A implies x € A, then the collection of complements of all closed
sets so defined yields a topology 7 = 7(9) on X.

3. SOME RESULTS ON TOPOLOGICAL HYPER NEARRINGS

In this section, we present some results and properties in topological hyper near-
ring.

Lemma 2. Let (R,+,-,7) be a topological hyper nearring. Then, 0 € |J U.
RAUET

Proof. 10 ¢ |J U, thenforevery R£AU €71,0¢ U. Let U € 7, U £ 0
R#AUeT
and 0 # x € U. By the continuity of the mapping +, there exist neighborhoods
V1,Vo € 7 of z and 0, respectively, such that V3 + V5 C U. Hence, we conclude that
Vo=Rand V; + RC U. Hence, we have 0 € x + (—z) CV; + RC U and it is a
contradiction. Therefore, we have 0 € |J U. O
RAUEer
Lemma 3. Let (R,+,-,7) be a topological hyper nearring such that every open
subset of it is a complete part of R. Let U be the system of all neighborhoods of 0,
then for any subset A of R,
A= N (A+U).
veud
Proof. Suppose that 2 € A and U € U. x — U is an open neighborhood of z,
hence we have © — U N A # (). Thus there exists a € A such that a € x — U. So,

r€a+UCA+U,forallU € U. Therefore, AC (| (A+U). Now, let z € A+U,
veu
for every U € U and let V' be a neighborhood of x. = — V is a neighborhood of 0,

hence x € A+ (z — V). So, there exist a € A and ¢t € x — V such that z € a + ¢.

Thusacx—tCax+V —x=V. Then ANV # 0 and this proves that € A and
N (A+U) C A. Therefore, A= | (A+U). O
Ueu veu

Corollary 1. Let (R,+,-,7) be a topological hyper nearring such that every open
subset of it is a complete part of R and let U be the system of all neighborhoods of

0. Then,

(i) {0} = N U;
veu I
(ii) For every open set V and every closed set F' such that V N {0} # 0 and
Fn{0} #0, we have {0} CV and {0} C F ;
(iii) {0} is dense in R if and only if R has trivial topology {0, R}.
Proof. (i) It follows immediately from of Lemma

(ii) Let V' be open, V N{0} #0andtcVn{0} . V is a neighborhood of ¢ and
t € {0} , thus V is a neighborhood of 0 and by (i), {0} C V. Now, suppose that



1422 S. BORHANI-NEJAD, B. DAVVAZ

Fis a closed subset and F N {0} # (. Then, {0} € F°. F¢ is open thus we have
{0} N F¢ = ). Consequently, we get {0} C F.

(iii) Let {0} is dense in R and U be nonempty and open in R. Then, R = {0}
and by (ii) {0} C U. Therefore, R = U. 0

Lemma 4. Let (R,+,-,7) be a topological hyper nearring such that every open
subset of it is a complete part of R. Then {0} is open if and only if T is discrete.

Proof. 1t is straightforward. O

Theorem 2. Let (R,+,-,7) be a topological hyper nearring such that every open
subset of it is a complete part and H be a normal subhyper group of it. Then R/H
is discrete if and only if H is open.

Proof. Suppose that R/H is discrete and 7 is the natural mapping z +— 7(z) =
H + z of R onto R/H. Then, the identity, 7(0) of R/H is an isolated point. So,
7~1(w(0)) = H is open of R. Now, if H is open, since 7 is open, it follows that
m(H) is open. Hence the identity w(H) of R/H is an isolated point. Therefore, we
conclude that R/H is discrete. O

Theorem 3. Let (R,+,-,7) be a topological hyper nearring such that every open
subset of it is a complete part. Then, the following conditions are equivalent:

(1) R is a Tp- space;

(2) {0} is closed.

Proof. (1=2) Let R be a Ty- space and let 2 € {0}. We prove that z = 0. If z # 0,
then by (1) there exists an open neighborhood U containing only 0 or z, but since
T € m, hence U is a neighborhood of 0, such that x € U. So, z € —U + z. By
Lemma —U + x is an open neighborhood of x, such that 0 ¢ —U + x (Because if
0 € —U + z, then there exists u € U such that 0 € —u + z. So, x =u+0 € U),
this is a contradiction. Thus, x = 0 and it follows that 0 is closed.

(2=1) Let {0} be closed and z,y € R,z # y. We show that there exist an open
neighborhood U containing only z or y. If y = 0, since {0} is closed and x # 0,
then z is an interior point of R\ {0}. Hence, there exists a neighborhood U of x
such that 0 ¢ U. Now, if z # 0,y # 0 and = # y, then 0 € z — y. Consequently,
by the previous part, for every t € x — y there exists a neighborhood U, of ¢, such
that 0 ¢ U;. We consider U = |J U;. Thenz —y C U and 0 € U.Thus U + y

tex—y
is a neighborhood of x such that y ¢ U + y (since 0 ¢ U). Therefore, R is a Tp-
space. ([l

Let (X, 7) be a topological space. If f is a arbitrary mapping from X onto Y,
then consider the family 7 = {U : U C Y, f 1(U) € 7}. Obviously 7 is a
topology on Y.

Theorem 4. [25] Let f : (X,7) — (Y, 7') be a continuous function. Then " < Ty.
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Lemma 5. Let f : R — R’ be a homomorphism of hyper nearrings. Then for every
subset AC R, f~1(f(A)) = kerf + A.

Proof. Let AC Rand t € f~1(f(A)). Then f(t) € f(A) and it follows that there
exists a € A such that f(¢t) = f(a). Thus 0 € f(t) — f(a) = f(¢t — a). Hence there
exists & € t —a such that f(z) =0. Then « € kerf. Thust € z+a C kerf+ A and
this shows that f=1(f(A)) C kerf + A. It is obvious that kerf + A C f~1(f(4)).
Therefore, f~1(f(A)) = kerf + A. O

Theorem 5. Let (R,+,-,7) and (R',+',',7") be two topological hyper nearring
such that every open subset of them is a complete part and [ from R onto R’ be a
homomorphism. Then (R',T¢) is a topological hyper nearring.

Proof. We should show that +', -/ and inverse operation are continuous on (R’, 7).
Suppose that z’,y’ € R and 2’ +'y" C U’ € 74. Since f is onto, then there exist
x,y € R’ such that f(z) = 2’ and f(y) = /. Hence f(x +y) = f(z) +' fly) =
' +'y CU'. So, z+y C f~1(U’) € 7(since U’ € 7¢). Since + is continuous, then
there exist neighborhoods U, € 7 and U, € 7 of elements = and y, respectively,
such that U, + U, C f~4(U’). By Lemmas and Y fU) =kerf+' U, €T
and f~!(f(U,)) € 7. Hence f(U,) € 75 and f(U,) € 7¢. Therefore, we obtain

fU) + f(U,) = f(U +Uy) C f(fTHU) =U".
This completes the proof. O

Theorem 6. Let f from (R,7) onto (R',7") be a homomorphism of topological
hyper nearrings. Then f: (R,7) — (R',T¢) is continuous and open.

Proof. If U € 7y, by the definition of 74, f~!(U) € 7. Thus, f is continuous.

Now, let U be an open subset in R. Then by Theorem [5| f ~*(f(U)) = kerf + U is
open in (R, 7). Thus by the definition of 74, f(U) € 7. This means f(U) is open
in R'. Therefore, f is open. a

Let R be a topological hyper nearring, H be normal hyper R-subgroup of R and
7 be natural mapping of R onto R/H by x — 7(z) = H + x. Then, by Theorem
3.30 |2] (R/H, 1) is a topological hyper nearring. It is called the quotient space of
topological hyper nearring R that we showed 7, by 7 in [2].

Theorem 7. Let R be a Ty-topological hyper nearring such that every open subset
of it is a complete part of R and H be a discrete subhypergroup of R. Then H is
closed.

Proof. Let x € H. Since H is a discrete subhypergroup of R, then 0 € H and
there exists an open neighborhood V of 0 such that V N H = {0}. By Lemma
x — V is an open neighborhood of x. Therefore, x — V N H # () (because x € H).
Hence there exists h € H such that h € x — V and h € x — v, for some v € V.
Thusv € ~h+x CVNHCVNH (lett € VN H and Uy is a neighborhood of

t. U; NV is an open neighborhood of ¢ and since t € H, then (U;NV)NH # 0
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and Uy N (VN H) # 0. Tt follows that t € VN H and VN H C VN H). Thus
v € VNH = {0} = {0}(by Theorem [3) and it follows that z = h € H and H is

closed. O

Theorem 8. Let R be a topological hyper nearring and H a dense subhypergroup
of R. If V is a neighborhood of 0 in H, then V is a neighborhood of 0 of R.

Proof. Since V is a neighborhood of 0 in H, it follows that there exists an open
neighborhood U of 0 in R such that U N H C V. Hence, we obtain U =U NG =
UNH CUNH CV. Therefore, 0 is an interior point V and V is open in R. O

4. TOPOLOGICAL HYPER NEARRING DERIVED FROM A PROXIMITY SPACE

In this section, we define a proximity relation on an arbitrary hyper nearring and
prove that every hyper nearring with topology whose is induced by this proximity
relation is a topological hyper nearring. Also, we show that every topological hyper
nearring is a proximity space.

Theorem 9. Let (R,+,) be a hyper nearring, N be a normal subhypergroup of R
and A, B C R. We define AdB if and only if there exist a € A and b € B such that
—b+a C N, then (R,0) is a proximity space.

Proof. (P1) Suppose that AdB. Then, there exist a € A and b € B such that
—b+aC N. So, we get —a+bC —N = N. Therefore, B/A.

(P,) Tt is obvious.

(P3) Let there exists t € AN B # (. Then —z+x C —x+ N +2z C N. So, we
conclude that AdB.

(Py) Tt is straightforward.

(Ps) Let A B and E := B+ N. If AOE = B + N, then there exist a € A
and b € B such that —(b+ N) +a C N. Therefore, —N — b+ a C N and this
implies that —b4+a C N + N C N. Thus, A6B and it is a contradiction. Hence
A SE. Also, B SE°. If BOE, then there exist b € B and x € (B + N) such that
—x +bC N. Therefore, z € b+ N C B + N and it is a contradiction. O

Theorem 10. In the proximity space (R, ) that (R,+,-) is a hyper nearring and
0 is defined relation in Theorem@ the set 6 ={x+ N : x € R} is a base for the
topology T = 7(0).

Proof. Let U be an open subset of R and let y € U. We should show that y+N C U.
Let t ¢ U, then t € U® and t6U¢ (since U€ is closed). —y+t C —y+y+ N C
—y+ N +y C N. Hence tdy and by (P4), yoU°. Thus y € U€ and it is a
contradiction. This implies that 3 is a base for the topology 7(0). O

Lemma 6. The normal subhypergroup N of R is a clopen set in the topology 7(9)
is defined in Theorem [10}



ON PROXIMITY SPACES AND TOPOLOGICAL HYPER NEARRINGS 1425

Proof. By Theorem [I0} N is open. Now, let 24N, for z € R. Then there exists
n € N such that —m +x C N. Therefore t € n—n+x Cn+ N = N. Thus N is
a closed subset in R. O

Theorem 11. Let (R,+,-) be a hyper nearring, the normal subhypergroup N be a
complete part of R and the relation § is defined in Theorem [d Then the system
(R,4+,-,7(0)) is a topological hyper nearring.

Proof. We should show that +, - and inverse operation are continuous. Suppose
that U is an open subset of R such that x +y C U, for z,y € R. Then by Theorem
there exists ¢ € R such that t +y C ¢t + N C U. Therefore, x + N and
y + N are neighborhoods of x and y such that (z + N)+ (y+ N)=z+y+ N C
t+N+N =t+N C U. Thus + is continuous on R. Now, Suppose that U is an open
neighborhood of —z. By Theorem [I0] there exists ¢ € R such that —z € t+ N C U.
Therefore, z € —N —t = —t + N. Hence —t + N is a neighborhoods of x and
—(=t+ N)=—-N+t=N+t=t+ N CU. This proves that inverse operation
is continuous. Now, we show that - is continuous. Suppose that U is an open
subset of R such that -y € U, for z,y € R. Then there exist ¢ € R such that
x-y €t+ N CU(by Theore. x4+ N and y + N are neighborhoods of x
and y such that (t+ N)-(y+ N) Cz-y+ N (N is a complete part of R, then
x-y+ N is a complete part of R. Hence (x+ N)-(y+ N) C z-y+ N). So,
(x4+N)- (y+N)Cax-y+ NCt+ N+ N=t+ N CU. Thus - is continuous on
R. O

EXAMPLE 3. Let R = {0,a,b} be a set with a hyperoperation + and a binary
operation - as follows:

‘ 0 a b
{0} {a} {0}
{a} {0} {0}
{o} {or {0,a}

>~ O [+

Then, (R,+,-) is a hyper nearring. We consider a normal subhyperring N =
{0,a} of R and define:

AdB if and only if there exist a € A and b € B such that —b+a C N.
Therefore, 7(6) = {2,4{0, a, b}, {0,a}, {b}}. Simply, we can show that (R, +, -, 7(4))
is a topological hyper nearring.

The following theorem, show that every topological hyper nearring is a proximity
space.



1426 S. BORHANI-NEJAD, B. DAVVAZ

Theorem 12. Let (R,+,-,7) be a topological hyper nearring such that every open
subset of it is a complete part of R. Then there exists a proximity relation § such
that (R, ) is a proxzimity space.

Proof. Let U be the system of symmetric neighborhoods at 0, for every A, B C R
and V € U. We define

ASB if and only if ANB+V # 0.

Now, we show that ¢ is a proximity relation.

(Py) Suppose that AdB. Then, there exist a € A and b € B such that a € b+ V.
Hencebea—V =a+V C A+ V. Therefore, B§A.

(P2) It is obvious.

(Ps;) Let ANB # (). Then, there exists € ANB. Therefore, z € ANB+V # (.
Thus AéB.

(Py) Tt is straightforward..

(Ps) Let A B and E := B+ V. If AOB+V, then AN(B+V)+V # 0.
Therefore AN B+ V # 0 (since V is a complete part of R, then V +V C V) and
this proves that AdB, that it is a contradiction. Hence A AFE. Also, if BIE®, it
follows that BN (B + V)¢ +V # (. Hence there exist b € B, x € (B+ V) and
v € Vsuchthat b e z+v. Thusz € b—v C B+ V and it is a contradiction.
Therefore, B SE°. O

5. CONCLUSION

In this paper we expressed the relationship between two important subjects:
algebraic hyperstructures and topology. We studied several characteristics of topo-
logical hyper nearrings and in the following, we related them to proximity spaces.
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