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Abstract: The present paper aims at the reduction of attributes for a family of agricultural 
equipments, bran finisher type. Seven attributes are taken into consideration for each equipment. 
Software XLSTAT processes the experimental data, computes the eigenvalues, draughts a scree 
plot and a biplot. The first two new properties cover approx. 80% from the total variance in the 
studied case, while the first three, new attributes describe 100% of the variance, offering even a 
visual representation, which simplifies significantly the choice of the adequate bran finisher 
equipment.  
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INTRODUCTION
The multitude of agricultural and food industry 

equipments and their characteristics, as well as their 
different performances, make it difficult to choose the 
industrial appliances for a given application. PCA was 
originally proposed by K. Pearson and independently 
developed by Hotelling (Hotelling, 1936). The goals of 
PCA are to extract the most important information 
from the available data,  compress the size of the 
data set by keeping only this important information, 
simplify the description of the data set, and analyze 
the structure  of the observations and the variables. 
The choice of tools in the agricultural area is selected 
from a wide spectrum (Voicu et al., 2008). Usually 
the choice is not based on all the attributes, but on a 
combination of properties. In the first stage, for each 
device, it is taken into consideration, as many 
attributes as possible. The PCA is the standard 
technique to reduce multivariate data sets in a 
subspace of small dimension, regularly three or two 
dimensions.  The purpose of preprocessing is to try to 
transform the data into the most suitable form for the 
main purpose of this research. 
 
MATERIALS and METHOD 

At the beginning the data are given, as a nxp-
matrix, objects/attributes, a table y= (yij), i=1,2,..,n 
j=1,2,…,m. Each row of the matrix represents an 

object (individual) with its attributes, and each 
column is an attribute (property, variable). The 
number of attributes gives the dimension of the initial 
representation space of the objects. Anyway it is 
considered an m-dimensional coordinate system, 
each coordinate being an attribute. Instead of actual 
attributes the PCA uses new factors, but only a few, 
which are artificial ones.  

The problem is mathematically formulated as 
follows: it is supposed that yt=(y1, y2,…, ym) is a 
random vector with the center of dispersion m and 
the covariance matrix ∑. The PCA procedures try to 
identify new uncorrelated variables z1, z2,…, zm, 
whose variance decreases, when the index increases 
from 1 to m (Croux et al., 2005). The first PC explains 
the maximum variance in the data; the second PC 
explains the maximum variance that has not been 
accounted by the first PC, and so on. The PCA solves 
the problem of finding the directions of the greatest 
variance of the linear combination of the old 
coordinates. This means that a set of the coefficient 
vectors a1, a2,…, ak should be found, each new 
variable being a linear combination of the initial 
variables. The first principal component: 

mm yayaz 11111 ...              (1) 

is chosen, so that  
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     1111 aayaVarzVar trtr      (2) 

is maximum, under the restriction:  

0111 aatr                                   (3) 

A so-called Lagrange function is used to find the 
conditional extreme of a function, given the 
relationship: 

   1; 11111   aaaaaL trtr       (4) 

where λ is an undetermined multiplier. The necessary 
conditions for the extreme are: 
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The directions of the new coordinate axes, called 
principal components, or factors, have been chosen, 
in such a way, that the deformations of the original 
cloud implied by this representation are minimal 
(Târcolea et al., 2009). The coordinates of the objects 
(samples) in the new system are called scores. The 
corresponding relationships between the original 
variables and the new principal components are 
called loadings.  

RESULTS and DISCUSSION 

The PCA is a standard technique to reduce 
multivariate data sets in a subspace of small 
dimension, in this case a tri-, respectively bivariate. 
The number of noticeable attributes gives the 
dimension of the initial representation space of the 
objects. 

Instead of the former attributes, the PCA uses 
new factors, but artificial ones. The dimensional 
reduction of attributes for a family of equipments is 
the concern of the present researches. 

As a relevant example let's take an application 
from the agricultural machinery (Ranken et al., 1997), 
concerning the selection of usual dehusking 
equipment in the Romanian market (Voicu and 
Casandroiu, 1995): seven important mechanical and 
technological properties are presented for a detailed 
analysis. Let’s consider 4 equipments (objects), each 
of them having 7 attributes (Table 1). 

Table 1.  Bran finishers characteristics 

Characteristics FTO FT 
30/60 

FT 
40/80 

BRAN 
BRUSH

Var1 Mean yield 
capacity, kg/h 687 275 550 650 

Var2 
Necesary area 
for the 
equipment, m2 

0.93 1.064 1.73 1.322 

Var3 Installed 
power, kW 4 2.2 5.5 4.4 

Var4 Equipment 
mass, kg 285 320 650 530 

Var5 Dependability 
coefficient 0.92 0.85 0.88 0.83 

Var6 
Air flow for 
aspiration, 
m3/min 

5 3.5 4.5 5.5 

Var7 Specific loading 85 24.5 27.5 175 
 
The ANOVA method was applied as a preliminary 

test, to verify if the attributes are statistically 
identical; the null hypothesis is rejected, based on the 
result of the F test and p-value. 

XLSTAT is a Microsoft Excel add-in, the main 
product of the company Addinsoft (www.xlstat.com). 
The results calculated by applying this software are 
presented bellow (Tables 2,3,4 and Figures 1,2,3). 
The three largest eigenvalues are 3.463, 2.131 and 
1.406 (Table 2). This suggests that the corresponding 
PC’s (F1, F2, F3) are enough.  
 

Table 2. The eigenvalues of the model 

Characteristics/ 
Factors 

F1 F2 F3 

Eigenvalue 3.463 2.131 1.406 
Variability (%) 49.471 30.446 20.083 
Cumulative (%) 49.471 79.917 100.000 

 

The representation of the data in a limited 
number of dimensions (3 dimensions in this case) 
facilitates to a great extent this analysis. The 
quantitative relationships between the old variables 
and the new ones (principal components) are 
represented in the Table 3. 

 

Table 3. The eigenvectors of the model 
Characteristics / 

Factors F1 F2 F3 

Var1 0.439 -0.363 0.190 
Var2 0.321 0.548 0.044 
Var3 0.490 0.159 0.287 
Var4 0.391 0.466 -0.072 
Var5 -0.011 -0.243 0.788 
Var6 0.460 -0.344 -0.101 
Var7 0.315 -0.384 -0.493 
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Figure 1 has two parts: the rectangles show the 
the fraction of the total variance of the primary data 
for each principal component, while the broken line 
describes the cumulative variance explained by the 
first three components. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Pareto scree plot 
 

The factor loadings, also called component 
loadings in PCA, are the correlation 
coefficients between the variables (rows) and factors 
(columns). Similarly to Pearson's r coefficient the 
squared factor loading is the percent of variance in 
that indicator variable explained by the factor. To get 
the percent of variance in all the variables accounted 
for by each factor, add the sum of the squared factor 
loadings for that factor (column) and divide by the 
number of variables (Table 4).  

 

Table 4. Factor loadings 

Characteristics/ 
Factors 

F1 F2 F3 

Var1 0.818 -0.530 0.225 

Var2 0.598 0.800 0.053 

Var3 0.911 0.232 0.340 

Var4 0.728 0.681 -0.085 

Var5 -0.020 -0.355 0.935 

Var6 0.856 -0.503 -0.120 

Var7 0.586 -0.561 -0.585 
 

The correlation circle (herein below having the 
axes F1 and F3) shows a projection of the initial 
variables in the factors space. In Figure 2 the 
variables are far from the center and variable 1,2, 3, 
4, 6 are close to each other; they are significantly 
positively correlated. This can be confirmed either by 
looking at the correlation matrix or by looking at the 

correlation circle on axes F1 and F3. The correlation 
circle is useful in interpreting the meaning of the 
axes. The Figure 2 shows a projection of the initial 
variables in the factors space. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Correlation circle 

 
In Table 5 are given the contribution of the 

variables (%) (Paris and Târcolea, 2009). 

 
Table 5. Contribution of the variables, (%) 

Characteristics/ 
factors 

F1 F2 F3 

Var1 19.312 13.160 3.610 

Var2 10.331 30.005 0.197 

Var3 23.978 2.535 8.226 

Var4 15.292 21.734 0.515 

Var5 0.011 5.926 62.121 

Var6 21.159 11.868 1.021 

Var7 9.917 14.772 24.310 

To confirm that a variable is well linked with an 
axis, take a look at the squared cosines table: the 
greater the squared cosine, the greater is the link 
with the corresponding axis. The closer the squared 
cosine of a given variable is to zero, the more careful 
you have to be when interpreting the results in terms 
of trends on the corresponding axis. Looking at Table 
6 it may be noticed that the pc F1 covers five of the 
variables, while F2 an F3 explain the last two. The 
table 7 gives the factors scores, Table 8 - contribution 
of the observations % and 9 – the squared cosines of 
the observations.  
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Observations (axes F1 and F2: 79.92 %)
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Table 6. Squared cosines of the variables 

Characteristics/  
factors F1 F2 F3 

Var1 0.669 0.280 0.051 

Var2 0.358 0.639 0.003 

Var3 0.830 0.054 0.116 

Var4 0.530 0.463 0.007 

Var5 0.000 0.126 0.873 

Var6 0.733 0.253 0.014 

Var7 0.343 0.315 0.342 
 

Values in bold correspond for each variable to 
the factor for which the squared cosine is the largest. 
 

Table 7.  Factor scores 

Observations F1 F2 F3 

Obs. 1 1.316 1.956 0.996 

Obs. 2 1.791 -0.561 -1.646 

Obs. 3 1.316 1.956 0.996 

Obs. 4 1.791 -0.561 -1.646 

 

 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3. Observations plot (F1 and F2) 

Table 8. Contribution of the observations (%) 

Observations F1 F2 F3 
Obs. 1 0.110 47.098 27.792 
Obs. 2 64.238 4.351 6.410 
Obs. 3 12.501 44.861 17.638 
Obs. 4 23.150 3.690 48.160 

 
Table 9. Squared cosines of the observations 

Observations F1 F2 F3  

Obs. 1 0.003 0.718 0.279 

Obs. 2 0.924 0.039 0.037 

Obs. 3 0.264 0.584 0.151 

Obs. 4 0.515 0.051 0.435 

 

Once the results have been obtained, they may be 
transformed in order to make them easier to 
interpret, for example by trying to arrange that the 
coordinates of the variables against the factors are 
either high (in absolute value), or close to zero.  

 

CONCLUSIONS 
Usually in the first stage, for each product, there 

are taken into consideration as many properties as 
possible. In the second stage, based on PCA, there 
were chosen two or three, given by the principal 
components. An artificial subspace with three (two) 
dimensions (Târcolea and Paris, 2008) with XLSTAT 
2011 software is developed in the present research. 
The initial attributes for each tool should be 
expressed with a precision of 80% as function of two 
artificial axes. The application of this model simplifies 
the design of the bran finisher equipments. The 
presented method enables many other possible 
extensions in the design process. 
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