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ABSTRACT. During the past two decades or so, fractional integral operators
have been one of the most important tools in the development of inequalities
theory. By this means, a lot generalized intergral inequalities involving various
the fractional integral operators have been presented in the literature. Very
recently, mixed conformable fractional integral operators has been introduced
by T. Abdeljawad and with the help of these operators some new integral
inequalities are obtained. The main aim of the paper is to establish some new
Chebyshev type fractional integral inequalities by using mixed conformable
fractional integral operators.

1. INTRODUCTION AND PRELIMINARIES
In the present paper, our work is based on a celebrated functional introduced by
Chebyshev [4], which is defined by
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where f and g are two integrable functions which are synchronous on [a, ], i.e.

(f(x) = f(y) (9(x) —g(y)) = 0

for any x,y € [a,b], then the Chebyshev inequality is given by T'(f,g) < 0.
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The Chebyshev functional has many applications in numerical quadrature,
transform theory, probability, study of existence for solutions of differential equa-
tions, and in statistical problems. Moreover, under suitable assumptions (Cheby-
shev inequality, Griiss inequality, Minkowski inequality, Hermite-Hadamard in-
equality, Ostrowski inequality etc.), inequalities are playing a significant role in
the field of mathematical sciences, particularly, in the theory of approximations.

A remarkably large number inequalities of above type involving the special
fractional integral (such as the Riemann-Liouville, conformable, Erdélyi-Kober,
Katugampola, Hadamard and Weyl types) have been investigated by many re-
searchers and received considerable attention to it (see [8H10l/14}/16]).

Now, some fractional integral operators and Chebyshev type inequalities ob-
tained with the help of these operators will be given in the following order:

Definition 1. Let f € La,b]. The Riemann-Liouville integrals J&, f and J*_f of
order « € RT with a € Rar are defined, respectively, by

Tt @) = s | “@-0 fdt (o> a)

and

b
Jz?_f(w)=ﬁ / (t— o) f(t)dt (x <)

where I' is the familiar Gamma function (see, e.g., (19, Section 1.1]). It is noted
that J}, f(x) and J}_f(z) become the usual Riemann integrals.

Theorem 2. [7] Let p be a positive function on [0,00[ and let f and g be two
differentiable functions on [0,00[. If f' € L.([0,0[), ¢’ € Ls([0,00[), 71 +s71 =1,
then for allt >0, a > 0, we have

2|J%p(t)Jpfg(t) — Jpf(t) T pg(t)]
U et [ 6= 0= = ooty

£ Hrl\g st (T*p(1))*

Theorem 3. [7] Let p be a positive function on [0,00[ and let f and g be two
differentiable functions on [0,00[. If f' € L.([0,0[), ¢’ € Ls([0,00[), 71 +s71 =1,
then for allt >0, a, 8 > 0, we have

| Jp(t)JPpfg(t) + Jp(t)T pfg(t) — J*pf(t)] pg(t) — J°pf(t)J*py(t)|
WALIT e [ [ (¢~ =146 = 9= 7 = sptploirds

< 1F1lllg'lst T () p(t).

Definition 4. Let o > 0, p > —1, 8,1 € R; then, a generalized fractional integral
Ita’ﬁ’"’“ (in terms of the Gauss hypergeometric function) of order a for a real-valued
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ON NEW INTEGRAL INEQUALITIES 1059
continuous function f(t) is defined by [5] (see also [12])

LT =

N LLF 1- 1) f(r)d
O o (48 4 s w1~ T) S
o [ (o - st = T)
(2)
where the function o F1(—) appearing as a kernel for the operator is the Gaussian
hypergeometric function defined by

o

QFl(a’b;C;t):Z(a)(Z)(?nZ’

n=0

and (a),, is the Pochhammer symbol
(a)p=ala+1)...(a+n-1),, (a)o=1.

Theorem 5. [2] Let p be a positive function and let f and g be two synchronous
functions on [0,00). If f' € L.([0,00)), ¢’ € Ls([0,00)), =1 + s71 =1, then (for
alt>0,8<1, u>-1,a>max{0,-8—pu}, B—-1<n<0)

2|1 p(8) I p(8) f (£)g(8)} — I (6 f(#) 1 {p()g (1)}
£ 4“Hf’l\ ||g||s/ / a-1 a-1
< HE=7)" (= p)

_
X9 Fy (a+ﬂ+u,*n;a;1*;>2ﬂ (a+ﬂ+u,*n;a;1*

2
< 17yl (25 p)})

Theorem 6. [2] Let p be a positive function and let f and g be two synchronous
functions on [0,00). If f' € L.([0,00)), ¢ € Ls([0,00)), 7 > 11"t +s71 =1, then

IO T () F (g (0} + I () P (p(2) (1) g (1))
=IO () FO T ()9 (0} — T () F O (a2 g ()}

=A==t 1] |/ / /
< : Tt =) T (=)
L(a)I'(y) 0 Jo

.
X9 Fy (a + B4+ p -l — ;) o Fy (7 +o4+v, -yl — g) p(T)p(p)|T — pldrdp

,0,C,v a,B,m,
< 1FN g 1417 ()}, I (1)},

forallt > 07 a > IIla,X{O,*ﬂ*IU,},ﬁ < 17,“’ > 71;571 <77 < 077>
max{0,—d —v}, d<1l,v>-1,—-1<(<0.

Definition 7. [11] The Hadamard fractional integral of order o € RY of a function
f(@), for allt > 1, is defined as

w0 = s [ (eet)” 0%

2)p()p(p)lr = pldrdp
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Theorem 8. [13] Let p be a positive function and let f and g be two differentiable
functions on [1,00). If f' € L.([1,00)), ¢ € Ls([1,00)), 7 > 1, 771+ 571 =1, then
forallt > 1 and a > 0,

2[aJ{p)} m I ) f(B)g(t)} — aJ {p@)F )} T {p(t)g(t)}|

[T ngs// (1) 1<10 0 119(77)12(1))7_/)'6[7@
17191t Car T o0

Theorem 9. [13] Let p be a positive function and let f and g be two differentiable
functions on [1,00). If f' € L.([1,00)), ¢ € Ls([1,00)), r > 1, 771 +s71 =1, then

11 {p()} 1 {p(O)F ()9O} +r T {p(t)} 1T {p(t) f()g(t)}
—aJ* ) f(O} n I {p()g()} 1 S {p(O)F ()} 1T {p(t)g(D)}|

11l Hgl\e// (1 0! > <1g;> 1P<T};<P>|Tp|d7dp

||f o119 llst T {p(®)} 1T {p(t)},
forallt>1, a>0 and 8 > 0.

IN

IN

Definition 10. [12] Let o >0, 8 >0 and n € R, then the Erdélyi-Kober frac-

tional integral operators I " of order a for a real-valued continuous function f(t)
is defined as

" —B(nte) rt
LU0y = S [ = e
- ﬁtrB(Z; : / AU — 7)o f(r)dr

Theorem 11. [2] Suppose that p be a positive function, f and g be differentiable
functions on [0,00), f' € L.([0,00)), ¢ € Ls([0,00)) such that r=' + s~ =1 with
r>1. Then for allt >0, a>0,5>0,n€ R andn > —1:

2 |13 (ML {p() f(Og()} — TE (O FOME {p(g(0)}]
_ 26”+°‘||f|| ||g||s// et et
X9 Fy (a—|—ﬂ+,u,—n;a;1— %)2171 (oz—|—ﬂ+,u,—n;a;1—

< Nl st (73 0 0})

Theorem 12. (2] Suppose that p be a positive function, f and g be differentiable
functions on [0,00), f' € L.([0,00)), ¢’ € Ls([0,00)) such that v > 1 and r—' +

2) p(plo)lr = pldrdp
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571 =1. Then for all t > 0 the following inequality holds:
I {p(t) Mg {p(t) f(£)g(t) } + I {p(6) 2 {p(t) f(£)g(£)}
— 17 {p(t) f () M5 {p(t)g(8)} — I {p(t) ()} I3 {p(t)g ()}

Bt Plrte) =00 ]|, [|g'|ls [* tTﬂ(n+1)71p5(C+1)fl(tﬁ _ rByalg _ oy
B (a)I'(v) o Jo

xp(T)p(p)|T — pldrdp
< ||f’|Irllg’llstIZ"“{p(t)LI§’”{p(t)}7

where a, B,v,6 >0, n,{ € R andn > —1 and ¢ > —1.

A

Definition 13. [15] Let p > 0, ¢ > 0, w,d,\,0,¢,p € C, R(c) > 0, R(p) > 0
and R(o) > 0. Let f € L[a,b] and = € [a,b]. Then the fractional integral operator
(e“199° £) defined by Rahman et al. is as the following:

at,p,o
@taep@ = [ @07 Bl - i) f(r)dr
where

and By(x,y) is an extension of Beta function defined in [15]

1
Bp(%y):/ TN — )P e T Al @y,p > 0,
0

where R(p) > 0, R(z) > 0 and R(y) > 0. Also, here B is familiar Beta function as
follows:

[(a)L'(b) _ /1 " ta =0 tdt,  a,b>0.

Blab) =515 =,

Theorem 14. [17] Let t be a positive function on [0,00) and let f and g be two
differentiable functions on [0,00). If f' € L.([0,0)), ¢’ € Ls([0,00)), r~t +s7! =
1, then for all x > 0, o, 6 > 0, we have

2|(e5enotre) i) (005t) @ip) = (570 0tF ) (@) (5255 tg) (@sp)
< g | ) / (= @ = )" — plt(r)Ep)

X Bt (w(x —7)%p) Bgit s (w(z — p)*;p) drdp
< I e ((20558) @)
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Theorem 15. [17/ Let t be a positive function on [0,00) and let f and g be two
differentiable functions on [0,00). If f' € L.([0,0)), ¢’ € Ls([0,00)), r~ 1 +s71 =
1, then for all x > 0, o, B, A\, 0 > 0, we have

16,4, . ,6,q,T, . 16,4, . 16,4, .
(ervanet) sm) (Lot fo) (wm) + (estret) (wm) (5725540 g) (wsp)
16,9, 16,9, 16,9, . ,6,g,7,¢ .
~ (ctapetr) wp) (etg) sp) = (& Lomts ) (i) (72559 ) (2:)|
< PN [ [ @ e 0 = i)

g, d,q,r
XEg v (wlz — )% p) Egi g (w(z — p)*; p) drdp

,6,9,7, 16,4,7,
< PNl o (527055 0) (im) (e Farct) (im):

Definition 16. (1| Let f be defined on [a,b] and o € C, Re(a) > 0, p > 0. Then
(i) The mized left conformable fractional integral of f is defined by

01w = e [ T (P z)p)M(b —splds (3)

and
(i) The mized right conformable fractional integral of f is defined by

3 f(a >F(la)/:f(s)((sa)pp(x“)")M(sa)f”ds. ()

For recent results related to this operators, we refer the reader [1,/6[18].

2. MAIN RESULTS

We obtain in this section certain integral inequalities for the differentiable func-
tions involving the mixed conformable fractional integral operator.

Theorem 17. Let p be a positive function on [0,00[ and let f and g be two dif-
ferentiable functions on [0,00[. If f' € L.([0,00]), ¢’ € Ls([0,00]), r~ ! +s71 =1,
then for allt > 0, a, p > 0, we have

2| 5327 p(t) 63 pfg(t) — 637 Fo(t) 63 pg(1)]

< 1L, Hglls V/( —wﬂ—(b—t)fﬂ)“(b_x)p_l

P—(b—1t)r ol
5 ((b y) ; ”) (b—y) o — ylp(w)p(y)dxdy]

IN

1711119 15 (33%°p(2))” . (5)
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Proof. Let f and g be two functions satisfying the conditions of Theorem [I7] and
let p be a positive function on [0, ool.
Define
H(z,y) := (f(z) = f(y)(9(z) — 9(y))); =,y €(0,t),t>0. (6)
a—1
Multiplying (6] by ﬁ (W) (b — )P~ !p(z) and integrating the re-
sulting identity with respect to = from 0 to ¢, we can write

i t (b*l’)p — (bft)p a—1 . - i ) )
F(a)/o < P ) (0 — )" "p(z)H(z,y)d
= 03pfo(t) — F(y) 53 py(t) — 9y )b”o"ppf( B+ S (®)g(y) 63 p(t). (7)

Now, multiplying (7)) by ﬁ (W) - (b—y)?~p(y) and integrating the

resulting identity with respect to y from 0 to ¢, we can write

[ () o

8 ( . ; oot ) (b—y)" 'p(2)p(y)H (x, y)dx

= 2(q3*p(t) §3*Ppfg(t) — 3P pf(t) 63 py(1)) - (8)
On the other hand, we have

H(z,y) //f w)dudw. 9)

Using Holder inequality for double integral, we can write

"(u)|" dudw "(w)]* dudw

H(z,y)| < (10)
Since
Y Y / T T r—t Y / T a
[ r@rae) =iy | 170 (1)
and
vy, s L, s
[ Wwirdude] =y | [l 2
then, we can estimate H as follows:
|H(z,y)| < |z — "(u)["du "(w)]*du (13)

On the other hand, we have

e
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. ((b—y)ﬂ;w— ) (=) @) ()| H . )l dady
1
(a)
( (

18 /(f( =) e

t)
y)p _t)p> - b_y)P—l

Apwie | 17 @ . TR

Applying again Holder inequality to right-hand side of , we can write

g [ [ (422502 oy

x(( —y)’ (b t)) (b— )P~ p(@)p(y)| H (. )| dady

IN

X

dxdy.  (14)

: lr to‘ // < ) 71(b_x)p71 (15)
g <(b = (b i ) 1(b y)’ o — ylp(x ‘/ ! ()" du dxdy]r
X [rsia) /Ot/0t<(b_z) ; - ) C(b— )
g <(b—y)”;(b—t)ﬂ)“ -9 e - oo w)|dw dmdyr
Now, using the fact that
[irrad <igi | [ ] <. "

we obtain

a—1

(o)

(b—y)”— (- t>p) (b= )" pla)p(y) | H (z, y)|dzdy
£l
T(Oé

P
Fu ) () e a

X
<
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—1

. ( (b—1y)P — (b—t)° ) (b— y)p_1|x _ y|p(x)p(y)dmdy‘|
l (b— IS t>”>a_1 (b— 2y
)P — (b — -t .
y ( b—vy) t)” ) (b— y)/’*1|m — y|p($)p(y)dxdy]

From (17), we get

F2 //( —x)P —( b—t)”)al(b_x)p_1

X<b y”— —t>p> (b= )" p(x)p(y) | H (2, y)|dwdy

£l ||g||s// <bw” (b—1)" ) T apt (18)

. <(b —y)P ; (b— t)p) = (b—y)P )z — y|p(x)p(y)dxdy]

<

Since 7~! + 57! =1, then we have

wig | () o

y ( = “p) (b— )" pla)p(y) | H (x, )| dwdy

||f’|| ||9||s [//O ( —2) = ( b_t)p>a1 (b— )" (19)

(b—y) = -ty
o (B

IN

)a (b—y) o — ylp(ﬂc)p(y)d:vdy] :

By the relations @ and and using the properties of the modulus, we get the
first inequality in Theorem [17].
Now we shall prove the second inequality of Theorem we have

0<z<t 0<y<t

Hence
0<|e—yl <t (20)
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Therefore, we have

ot [ (25

x(b y"—<b—t> ) (b~ )" p(@)p(y) | H (2, y) | drdy

1£]l- |g|tV/( — ) — bt)ﬂ)“‘l(bm)pl

(b—y)y - (b-ty
(5

2
11111915t (63°Pp(t))"
Theorem [17]is thus proved.

IN

) . <b—y>ﬂ1p<x>p<y>dxdy]

O

Theorem 18. Let p be a positive function on [0,00[ and let f and g be two dif-
ferentiable functions on [0,00[. If f' € L.([0,00]), ¢’ € Ls([0,00]), r~ ! +s71 =1,

then for allt > 0, a, B, p > 0, we have

|03%7p(t) §3 ’ppfg() + 637Pp(t) §3*pfg(t)
—03%Ppf(t) 535 Ppg(t) — Bppf()g *pg(t)]
S ||f|| ||g|| //< >> b=zt

B—1
b—y)—(b—t
. (( O e ity
< 11115t 63%7p(8) 537 p(t),
where H(xz,y) are the same as given in (6]).

Proof. Using the identity @ we can write

[ (=258 o

b— (b—t)\*"!
x (( =) o el )y
= §3"p(t) 537 fg(t) + 637 () 63 pfo(t)
— 034 pf () 537 pg(t) — 537 (1) 53 py(t).
From the relation , we can obtain the following estimation

1 ' (b—x)p—(b_t)P o — p—1 T x X
o [ (B2 o ol

(21)

(22)
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1

= r<1a> /0 (wﬂ)p;(b_t)p)a_ (b— )"z — ylp(x)

Yy , . rt y )
| [ rora (w)|
Therefore, we have
/ / < b-2) ) (b— )Pt

—1

: <(b_ S ) 1(6 Y)*~ p(@)p(y)| H (2, y)|dwdy
// <b 2 ) i (b—xz)!
x((b S )ﬁ 1<b v’ 1|z ylp(x)p(y)

| sl | [

Applying Holder inequality for double integral to the right-hand side of ([24), yields

rar [ () e

i ((b_ S )ﬁ 1“’ Y)’ " p(2)p(y)|H (2, y)|dedy
. [F @ /t/t((b_x)p_(b_t)p) ey
g <(b = p>5 1 )’z = ylp(a)p(y)

/If Idudxdy}
[ g (B e

x((b_ T ﬂ) (b= )"l ~ ylp(@)p(y)

Yy
. / g (w)|* dw

dmdy} . ) (25)
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By and , we get

o [ (=5 o

P_ _ B—1

11 ||g||s// (- pp(bt)p)al(bx)pl

p, — A-1
X((b y)? — (b t)) (b —9)* Yz — ylp(2)p(y)dady.  (26)

p
Using and and the properties of modulus, we get the first inequality in
1) 0

3. REMARKS

Now, let us briefly consider some special cases of the main results. In Theorem
and Theorem if we choose p = 1 and make use of the relationship , then
the main results are reduced to Theorem |2/ and Theorem (3| obtained by Dahmani

et al. .
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