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Abstract: With ever increasing demands on agriculture, it is essential that we be able to 
adequately evaluate agriculture land resources.  Recently, efforts have been undertaken to develop 
methods and tools for the purpose of evaluating agricultural land resources.  However, to be 
successful, assessments need to incorporate the state of the art knowledge in agronomy, soil 
science, and economics into a user-friendly, decision support tool.  Also, it is well known that the 
process of assessment land resources is full of uncertainty. Uncertainty is inherent in this process, 
which involve data and model uncertainty that range from measurement error, to inherent 
variability, to instability, to conceptual ambiguity, to over-abstraction, or to simple ignorance of 
important factors.  This manuscript examines the evaluation of land resources as a fuzzy modeling 
task.  Data collected from a precision agriculture study in central Texas, USA was utilized for the 
assessment of land resources, and a model of fuzzy indicators and procedures for computer 
simulations were developed. The theoretical considerations are illustrated within this example. 
Key words: land resources, agriculture, fuzzy indicators.  

 
INTRODUCTION and LITERATURE REVIEW 
The ultimate goal of sustainable agriculture is to 
develop farming systems that are productive and 
profitable, conserve the natural resource base, 
protect the environment, and enhance health and 
safety over the long term.  Assessment of 
agricultural land resources is a very important 
component of understanding agriculture potential 
and therefore maintaining a sustainable agriculture.  
Many investigations have been carried out with aims 
to inventory and protect agricultural land resources.  
Research on classification of agricultural soil types 
based on their ability to sustain agricultural crops 
(CDC, 2003) and assessment of soil capability for 
agriculture (Ali et al., 2007) are examples of these 
efforts.  In these efforts, many methods and tools 
have recently been developed to evaluate 
agricultural land resources.  These tools have 
incorporated state of the art knowledge in 
agronomy, animal science, and economics into user-
friendly, decision support tools.  Crop simulation 
models, for example, are excellent tools for 
assessing potential impacts of weather-related 
production variability associated with natural 
resources (GPFARM DSS, 2003).  

The process of assessing agricultural land resources 
is full of uncertainty. Uncertainty is inherent in this 
process because it involves both data and model 
imprecision.  This uncertainty ranges from 
measurement error, to inherent variability, to 
instability, to conceptual ambiguity, to over-
abstraction, or to simple ignorance of important 
factors.  Current technology utilized in assessment 
tools do not necessarily deal well with this 
uncertainty because they depend on the multiplicity 
of specific relationship of the measured components.  
In other words, small errors in any measured data or 
modeled relationship can propagate through the tool, 
potentially resulting in large errors in interpretation.    
For dealing with the uncertainties and randomness 
that occurs with assessing agricultural land, fuzzy 
sets theory and fuzzy logic can be utilized (Jager, 
1995; Pedrycz and Gomide, 1998; Ross, 1995).  
Fuzzy set theory is a mathematical approach that has 
been used successfully to address many scientific 
and technical problems dealing with abstract 
questions.  Recently several tools, based on fuzzy 
sets theory and fuzzy logic, have been developed for 
decision support regarding the problems of land 
evaluation (Burrough 1986; 1989; Burrough et al., 
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1992; 1998; Baja et al., 2002; 2007; Krueger-
Shvetsova et al., 2003; Kurtener et al., 2000; 2000a; 
2002; Ramli and Baja, 2007; Yakushev, 2002). 
Undoubtedly, investigations of Burrough (1989; 
1992) have pioneered the real world applications of 
fuzzy technology for land evaluation.  This 
manuscript uses fuzzy modeling for the evaluation of 
land resources.  The manuscript is organized into 
two parts. The first part addresses the use of fuzzy 
indicator modeling for the evaluation of agricultural 
land resource, and the second part contains an 
example which illustrates this approach. 
 
MATERIAL AND METHODS 
Model of fuzzy indicators for evaluation of 
agricultural land resource 
In general, indicators are a subset of the many 
possible attributes that could be used to quantify the 
condition of a particular landscape or ecosystem.  
They can be derived from biophysical, economic, 
social, management and institutional attributes.  
These indicators can be developed from a range of 
measurement types (Walker, 1996; 2002).  Indicators 
can be used as valuable tools for evaluation and 
decision-making process because they synthesize 
information and can thus be used to help understand 
a complex system.  Currently, indicators are heavily 
used in the evaluation of land use changes in rural 
areas (de la Rosa and van Diepen, 2002) and 
agricultural sustainability (Rigby et al., 2000). 
According to Sombroek (2006), land quality indices in 
relation to agriculture can be distinguished into several 
classes as follows:  1.) Land quality indices related to 
productivity from crops or other plant growth (crop 
yields, moisture availability, nutrient availability, 
oxygen availability in the root zone, adequacy of 
foothold for roots, workability of the land (ease of 
cultivation), salinity or sodicity, soil toxicity, resistance 
to soil erosion, pests and diseases related to the land); 
2.) Land quality indices related to domestic animal 
productivity (productivity of grazing land, climatic 
hardships affecting animals, endemic pests and 
diseases, nutritive value of grazing land, toxicity of 
grazing land, resistance to degradation of vegetation, 
resistance to soil erosion under grazing conditions, 
availability of drinking water); and 3.) Land quality 
indices related to management and inputs (terrain 

factors affecting mechanization (trafficability), terrain 
factors affecting construction and maintenance of 
access-roads (accessibility), size of potential 
management units (e.g. forest blocks, farms, fields), 
location in relation to markets and to supplies of 
inputs).  A Special class of the land quality indices is 
fuzzy indicators.  These indicators are based on fuzzy 
sets theory (Jager, 1995; Pedrycz and Gomide, 1998; 
Ross, 1995).  
Fuzzy sets theory is a generalization of conventional 
set theory, in which the concept of belonging to a set 
has been modified to include partial degrees of 
membership, i.e., values along the continuum 
between 0 and 1, encoded in a fuzzy membership 
function (MF).  MF is the central concept of the fuzzy 
sets theory.  MF represents the relationship of an 
element to a set.  MF of a fuzzy set is expressed on a 
continuous scale from 1 (full membership) to 0 (full 
non-membership).  
Recently, several models of fuzzy indicators have 
been developed to address a variety of questions 
and problems related to land evaluation.  These 
models include a model of a fuzzy reliability index 
intended for assessment of difference between fuzzy 
resistance of ecosystem and fuzzy antropogeneous 
load (Bogardi et al., 1996), a concept of 
management of fuzzy indicators (Krueger-Shvetsova, 
2003), and a model of land suitability indices for 
cropping (Baja 2001, 2001a).  Examples where Fuzzy 
indicators have been successfully applied include 
uses for zoning territory contaminated by heavy 
metals (Kurtener et al., 1999; 2002), for the multi-
dimensional assessment of urban areas after flooding 
(Kurtener et al., 1999), for the assessment of 
polluted agricultural fields in order to design a 
strategy for territorial prophylactic actions (Kurtener 
et al., 1999a), for the assessment of burned forest 
areas with the aim of planning land restoration 
(Kurtener et al., 2000), for land suitability 
assessment in the process of agricultural 
experimentation (Kurtener et al., 2000a), for 
assessment of agricultural lands to plan site-specific 
residue management (Kurtener et al., 2000b), and 
for the multi-dimensional evaluation of areas on the 
land market (Kurtener et al.,2000c;Yakishev et al., 
2000).  Likewise, a model of fuzzy indicator has been 
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developed to address the decision needed for the 
evaluation of agricultural land resources.  
The fuzzy indicator model for the evaluation of 
agricultural land resources used two general types of 
fuzzy indicators (FI).  These two general types 
utilized were the individual fuzzy indicators (IFI) and 
the combined fuzzy indicators (CFI).  The IFI shows 
the degree of accordance of n category of land 
resource, j attribute characterized land resource, i 
user group, and k task of land resource evaluation.  
As an example, a j attribute could be: (a) attributes 
related to yield productivity from crops or other plant 
growth, (b) attributes related to domestic animal 
productivity, or (c) attributes related to management 
and inputs.  Examples of i user groups could be (a) 
farmers, (b) government managers, or (c) market 
traders.  Examples of k task of evaluation could be: 
(a) use in agricultural activities, (b) application in 
teaching process, or (c) utilization on land market. 
One of the crucial questions for the evaluation 
process is to determine the categories to be used to 
describe the land resources.  For example, three 
categories were used in Kaiumov’s (1977) data: low, 
average, and high. In determining land resources, 
categories Katorgin (2004) gave six categories 
shown in Table 1.  

A IFI is defined as a number in the range from 0 
to 1, which reflected an expert concept and modeled 
by appropriate membership function.  The expert 
concept has to take into account the number of 
categories of land resources.  For example, if the 
number of categories is equal to five, then the 
number of the membership functions also has to be 
five.  In this case, for definition of the first category 
and the fifth category, asymmetric left and 
asymmetric right membership functions were utilized 
(Fig. 1).  Definition of second, third, and fourth 
categories is carried out with symmetric membership 

functions.  The choice of a membership function is 
somewhat arbitrary and should mirror the subjective 
expert concept.  Recently methodological basis for 
definition of membership functions was developed 
(Burrough 1986; 1989; Burrough et al., 1992; 1998; 
Baja et al., 2002; 2007; Krueger-Shvetsova et al., 
2003; Kurtener et al., 2000; 2000a; 2002; Ramli and 
Baja, 2007; Yakushev 2002). 

In natural conditions, boundaries between 
categories of land resource are fuzzy.  In other 
words, between neighboring categories there is a 
transition zone.  In order to take into account this 
fact in the design of membership functions, it is 
necessary to allow a transition zone between two 
neighboring membership functions.  In this example 
(Fig. 1), the transition zone between membership 
functions one and two is characterized by interval 
from 0.1 to 0.16, transition zone between the 
membership functions two and three is characterized 
by interval from 0.35 to 0.4, etc.  It is easy to see 
that within the boundaries of transition zones, one 
value of land attribute fit two values of membership 
functions. 
A CFI is defined using fuzzy aggregated operations.  
A CFI gives an integrated estimation of agricultural 
land resources.  A structure for the model of fuzzy 
indicator for the evaluation of agricultural land 
resources is outlined in Figure 2.  Four main steps 
were used to realize this model as follows:  
Structuring phase: perception of problem, 
identification of task of resource evaluation, 
definition of user group and identification of criteria; 
Fuzzy modeling phase: formulation of expert concept 
and selection or building of suitable membership 
functions; 
Computation phase: calculation of fuzzy indicators; 
and 
Evaluation phase: perception of results obtained. 

 

Table 1.  Soil classification according nutrient content (Katorgin, 2004) 
Category Available K, % Available P, % Humus, % 

1 Very low <10 < 10 < 2 
2 Low 10.1 - 20 11 - 15 2.1 - 4 
3 Average 20.1 - 30 16 - 30 4.1 - 6 
4 Increased 

concentration 
30.1 - 40 31 - 45 6.1 - 8 

5 High 40.1 - 60 46 - 60 8.1 –-10 
6 Very high > 60 >60 > 10 
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Figure 1. Membership functions, which are used for delineation of resources of agricultural land into five 

categories. 

 

 
Figure 2. Structure of model of fuzzy indicator for evaluation of agricultural land resources. 

 
 
Example of application 
Study site  
In this example, we used data of an experiment 
carried out on a agricultural field located on the Elm 
Creek watershed in Bell County, TX (Torbert et al., 
2000).  The soils within the study site consisted of a 
Heiden clay (fine, montmorillonitic, thermic Udic 
Chromusterts), a Houston black clay (fine, 
montmorillonitic, thermic Udic Pellusterts), and a 
Ferris clay (fine, montmorillonitic, thermic Udorthertic 
Chromusterts).  Soil samples were collected multiple 

points designated as: bgs 1 - bgs 20 (Fig. 3) at 6 
depth increments (0-6, 6-12, 12-24, 24-36, 36-48 
inches).  For each of the soil samples, the soil was 
analyzed for organic C, inorganic C, Total C, Total N, 
Total P, extractable P, NO3 and NH4.  The inorganic C 
was carbonate (CaCO3) and the Total C was organic C 
+ inorganic C.  The extractable P was soil extracted 
with a reagent to determine plant available P.   
At each of these points, corn yield was also 
determined for the three years of the study.  The corn 
yield was determined with a yield monitor on a corn 
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harvester, which continuously determined the yield as 
it harvested the corn on very small increments.  The 
yield at each sampling point was determined by taking 
an average of the measured corn yield for every point 
that the yield monitor measured that was within 15 m 
of the soil sampling point.  The yield data was 
measured in bushels/acre.   

 
 
Figure 3. Study site, with the soil sampling locations 

(points bgs 1 - bgs 20). 
 

Definition of individual fuzzy indicator  
For definition of each individual fuzzy indicator (IFI) 
we used a combination of five membership functions 
shown previously in Figure 1.  In particular, an 
asymmetric left membership function called a “Z-
shaped built-in membership function” was used for 
taking into account the specificity of the first category.  
A symmetric membership function called a 
“trapezoidal-shaped built-in membership function” 
was applied for classes 2, 3, and 4.  An asymmetric 
right membership functions called a “S-shaped built-in 
membership function” was used for taking into 
account specificity of the fifth category. 
The Z-shaped built-in membership function is 
characterized by two reference points: xlow and xopt.  
These points are defined as follows: 
 

If x < xlow, then IFI = 1, and  
If x > xopt then IFI = 0.  

 
For example, reference points in the case of IFI on 
organic C concentration (for class one) are: xlow = 

2% and xopt  =  2.4%.  Figure 4 shows graphically 
the Z-shaped built-in membership function. 

 
Figure 4. IFI on organic C (class one) using the Z-

shaped built-in membership function. 

 
Trapezoidal-shaped built-in membership function is 
characterized by four reference points: xlow1 , xopt1 , 
xopt2 and xlow2 . These points are defined as 
follows:  
  

If x < xlow1, then IFI = 0,  
If  xopt1 <x < xopt2, then IFI = 1, 
If x > xlow2, then IFI = 0. 

For example, reference points in the case of IFI 
on total P (for class three) are: xlow1 =  0.015%, 
xopt1 = 0.025%, xopt2 = 0.028%, and xlow2  = 
0.034%.  Figure 5 shows graphically the trapezoidal-
shaped built-in membership function. 

In this study, data collected includes four 
attributes: organic C, total N, available P, and yield. 
Therefore, number of attributes used for 
characterization of land resources was limited by four 
attributes.  Also we assume that the allocation of 
these attributes could be presented by five classes.  
Then we set the lower and upper limits of values for 
these attributes within each class (Table 2). 

However, the actual data only in certain portions 
of these limits and therefore the values of these 
attributes were variously allocated among the classes 
(Table 3).  For example, organic C is present in 
categories 1 and 2, total N is located in category 2 
only, available P occurred in categories 3 and 4, and 
yield was present in categories 2 and 3. 
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Figure 5. IFI on P (class three) using the trapezoidal-

shaped built-in membership function 
 

Definition of the combined fuzzy indicators 
(CFI) for particular case  

In this example, CFI was defined using weighted 
average operation as follows (Baja et al., 2002; 2007, 
Kurtener et al., 2000; 2000a; 2002): 

 
CFI = Σwi IFI(xi),  

 
where wi is a weighting factor for the i land property 
x, Σ wi  = 1, and 0 < wi < 1;and IFI(xi) denotes a 
individual fuzzy indicator for the i land property x.  In 
this study, we assumed that the importance of all IFIs 
was the same. 

Calculation and visualization 
The calculation of fuzzy indicators was carried out 

utilizing the author’s program, which included several 
scripts written on MATLAB (The Mathworks Inc, 
2004).  Also, a software prototype developed by 
Krueger-Shvetsova and Kurtener (2003) was utilized.  
Visualization (building contour maps) was 
accomplished with Surfer® 

(http://www.goldensoftware.com). 

 
RESULTS AND DISCUSION 

Using the developed programs, the IFI was 
calculated and mapped for all categories indicated in 
Tables 2 and 3.  Figures 6 -7 illustrate the maps of IFI 
(built for each category) which holds the greatest 
promise for making particular estimations of land 
resources.  For example, Figure 6 shows the 
classification of land resources by IFI on N (category 
two), while Figure 7 shows the IFI on Yield (category 
three).  

Figures 8-11 present the classification of land 
resources by CFI.  Theses maps illustrate spatial 
allocation of weighted average estimations of land 
resource.  For example, Figure 10 illustrates spatial 
allocation of land resources for category three.  It is 
easy to see that for category three the greatest 
estimations are located in eastern part of study site. 

Table 2.  The classification of land resources. 

Category Organic C, % Total N, % Available P, % Yield, Bu/acre 

1 Very low < 2.3 > 0.1 0.008 > 60 

2 Low 2.31 - 4 0.11 - 0.25 0.0081 - 0.02 61 - 120 

3 Average  4.1 - 7 0.251 - 0.35 0.021 - 0.04 121 -160 

4 High  7.1 -10 0.351 - 0.5 0.041 - 0.06 161 - 220 

5 Very high > 10 > 0.5 > 0.06 > 220 

Table 3.  Allocation of values of attributes used for characterization of land resources 

Category Organic C Total N Available P Yield  

1 Very low + - - - 

2 Low + + - + 

3 Average  - - + + 

4 High  - - + - 

5 Very high - - - - 
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Figure 6.  The classification of land resources by IFI 

on N (category two). 
 

 
Figure 7.  The classification of land resources by IFI 

on Yield (category three). 
 

 
Figure 8. The classification of land resources by CFI 

(category one). 
 

 
Figure 9. The classification of land resources by I CFI 

(category two). 
 

 
Figure 10. The classification of land resources by CFI 

(category three). 
 

 
Figure 11. The classification of land resources by CFI 

(category four 
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The area-average values of CFI are given in Table 
4.  It is easy to see that categories two and three 
have the greatest estimations.  In other words, in the 
study site the land recourses would predominately be 
classified as poor (low to average). 

 
 

Table 4. The area-average values of CFI 
Category The area-average values 

of CFI 
1 Very low 0.15 
2 Low 0.45 
3 Average 0.35 
4 High 0.05 
5 Very high 0 
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