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Abstract 

In engineering, it is usual to model the data so as to make a decision under the problem of 

uncertainty. Commonly, the data in engineering is skewed to the right, and the skewed distributions 

in statistics are the appropriate models for making a decision under the Bayesian paradigm. To 

model the lifetime of an electronic device, an engineer can use the Bayesian estimators to compute 

the effect of the evidence in increasing the probability for the lifetime of an electronic device by 

using the prior information. This study presents an estimation of the shape parameter of Lomax 

distribution under Uniform and Jeffery prior by adopting SELF, QELF, WSELF, and the PELF. 

The significance of various estimators is compared and presented in graphs using simulated data 

under the Bayesian paradigm. It was determined that under a uniform prior, Bayes estimator under 

weighted error loss function (BWEL) provides a better result than others.  Under Jeffery prior, the 

precautionary error loss function (BPEL) leads to a better result than others. Moreover, an 

application to engineering is also presented for illustration purposes. 
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1. INTRODUCTION 

The Lomax distribution is one of the most commonly used distribution by the practitioner while modeling the 

data comes from lifetime experiments. The applications of this distribution are found in engineering, computer 

science, medical and other related sciences. This distribution was applied by [1-2] to model income and wealth 

related data, the distribution of computer files on server [3], etc. Many researchers have changed the Lomax 

distribution, e.g. Ghitany and Al-Awadhi [4] suggested a compound version of the exponentially distributed 

Lomax distribution. As a baseline distribution, Zografos et.al [5] employed the Cdf of the Lomax distribution. 

The concept of the Mcdonald-G distribution family with a Lomax baseline feature was demonstrated by 

Lemonte et.al [6]. Ibrahim et.al [7] adjusted the distribution of Lomax by generating the actual number with 

the power of the distribution of Cdf of Lomax. 

Recently, the Bayesian analysis has got great attention from researchers to analyze the data under the Bayesian 

paradigm rather than the classical approach. In the statistical inference of the Bayesian approach, one must 

consider the appropriate prior probability distribution. The prior probability distribution is obtained by taking
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conjugate prior, gamma prior, and Jeffery priors. In order to obtain the best representative value of the unknown 

parameters of the model, we have to use different loss functions. In this paper, we have considered different 

loss functions under uniform and Jeffrey prior. The loss function may be symmetric or asymmetric in nature. 

The symmetric loss functions are includes SELF and the asymmetric loss functions are includes QELF, WELF, 

and PELF.   

The Bayesian analysis of the unknown parameters is studied by many researchers, for example, Hasan and 

Baizid [8] discussed the Bayesian analysis of the parameter of Exponential distribution, Canavos and Taokas 

[9] presented the Bayesian analysis of the Weibull distribution. Guure et.al [10] explored the Bayesian 

estimation of two-parameter Weibull distribution using an extension of Jeffrey’s' prior information. Okasha 

[11] presented the Bayesian estimation of the Lomax distribution using type-II censored data.  Nasiri and 

Hosseini [12] discussed the Bayesian and classical estimation of parameters using record values. Jeffery’s [13] 

worked on invariant form for the prior probability function in estimation problems. Berger et.al [14] discuused 

the Bayesian anlysis for the Ploy-Weibull distribution, for the Bayesian analysis of other distributions, we refer 

to see, [15-20]. 

 

In this paper, we discussed the Bayesian estimation of the shape parameter of the Lomax distribution under 

uniform and Jeffery prior by adopting four loss functions. The main goal of the paper is to decide the loss 

function which would provide a better estimate for the shape parameter using a uniform and Jeffery prior. 

A positive continuous random variable X follows a Lomax distribution with parameter , 0   if it has the 

following Cdf 

( ) 1 1 , 0 , 0
x

xF x and




 

  
  
  

−

= − +   .                                                                                      (1) 

The corresponding probability density function is given by  

( )
1

1 , 0
x

xf x


 

 
 
   

  
  

− +

= +   .                                                                                                         (2) 

The paper explored the Bayes estimates of the shape parameter  under uniform and Jeffery priors by using 

different loss functions. 

2. PRIOR AND POSTERIOR DISTRIBUTION 

To estimate the Bayes estimator, we need to specify the prior probability distribution under uniform and Jeffery 

prior. The prior distribution for the Lomax distribution under uniform prior is given by 

( ) 1   . 

Then the posterior distribution of the Lomax distribution is defined as  
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This implies that ( ) ( )n 1,  Bif x Gamma + . 

where, 
1

log 1
n

i

i

x
B

=

  
=   

  
+ . 

Now the prior distribution for Lomax distribution under Jeffery prior is obtained as follows 

( )
2

2

logL
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= − 

 
  .                                                                                                                                  (5) 

The log likelihood function of the Lomax distribution is given by 

( ) ( )log , log( / ) 1 log 1 i

i

i

x
L x n   



  
= − +   

  
+  .                                                                             (6) 

Differentiating with respect to the parameter , we have  

( )log ,
log 1i i

i

L x xn
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+ . 

Again, differentiating with respect to the parameter , we have  

( ) 1/22

2 2

log ,iL x n
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Taking expectation and the square root of the above equation, we determined 
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Finally, we obtained the Jeffery prior as 

( ) ( ) 1f    −=      .                                                                                                                                    (7) 

Hence, the posterior probability distribution is defined by  
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Finally, the posterior distribution takes the following form 

( )
( )
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This implies that ( ) ( )n,  Bif x Gamma .       

3. BAYESIAN ESTIMATORS UNDER UNIFORM PRIOR USING DIFFERENT LOSS 

FUNCTIONS 

In this section, we have derived Bayes estimators of the parameter under uniform prior to using various loss 

functions.   

3.1. Squared Error Loss Function 

The Bayes estimator of  under SELF [14] function is defined by 

( ) ( )
2

ˆ ˆ,L    = − . 

Using the above loss function, the Bayes estimator of  is defined by solving the equation 
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Finally, we determined the result for̂  
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3.2. Quadratic Loss Function 

The QELF [15] is defined by  
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The estimator ̂  is defined by solving the equation 
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Finally, we determined the following result 
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QELF

n
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3.3. Weighted Square Loss Function 

The WELF is defined by  
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The estimator of ̂ under the WELF is defined by the equation  
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Finally, we get the following result 
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3.4. Precautionary Loss Function 

The PELF is given by  
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The Bayes estimator ̂ PELF is defined by the equation   
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Hence, we determined the result 
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4. BAYESIAN ESTIMATORS UNDER JEFFERY PRIOR USING DIFFERENT LOSS 

FUNCTIONS 

In this section, we derived Bayes estimators of the parameter under Jeffery prior by using various loss 

functions.   

4.1. Squared Error Loss Function 

The Bayes estimator of  under SELF [14] function is defined by 

( ) ( )
2

ˆ ˆ,L    = − . 

The Bayes estimator of  is defined by solving the equation 
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4.2. Quadratic Loss Function 

The QELD [15] is defined by  
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The estimator ̂  is defined by solving the equation 
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Finally, we determined the following result 
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4.3. Weighted Square Loss Function 

The WELF is defined by  
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4.4. Precautionary Loss Function 

The PELF is given by  
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The Bayes estimator ̂ under PELF is defined by the equation   
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Hence, we determined the result 
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5. QUANTILE FUNCTION 

To generate random data from the Lomax distribution, we need to use the quantile function of the Lomax 

distribution. Let X is a Lomax random variable, then, the quantile function is defined by  
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When we solve the above equation for x  , we obtained the result 
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where,U is uniformly distributed over the range [0-1]. 

6. EMPIRICAL ANALYSIS  

In this study, using Monte Carlo simulation method we have generated a sample of size 6000 for each estimator 

in case of uniform and Jeffery prior. We have computed the estimated values of ˆ
SLF ˆ

QL , ˆ
WSEL , ˆ

PLF . For 

comparison, we have considered the mean squared error (MSE) of the estimator which is defined by 

( ) ( ) ( ) ( )
22

ˆ ˆ ˆ ˆvarMSE E Biass     = − = +
 

 

A short algorithm for the Monte Carlo simulation from the Lomax distribution is given below; 

i. Generate samples from the Lomax distribution by using the quantile function
( )

1/
1

x
u




=

−
, where U 

is the standard uniform random variable. 

ii. Obtain Bayes estimator of various loss functions under uniform and Jeffery prior. 

iii. The above steps are repeated 6000 times for each sample size and obtained the estimated values of 

Bayes estimators and their MSE.    

The results of estimated values and MSE of Bayes estimators under uniform and Jeffery prior are given in the 

following tables. 

 

Table 1. Estimated value and MSE of θ under uniform Prior, when n=30 and θ=0.5. 

  criteria BSE BQEL BWEL BPEL 

1 Estimated value 

MSE 

0.2149213 

0.08545983 

0.4370818 

0.008298509 

0.4508266 

0.00687226 

0.3203866 

0.03741835 

1.3 Estimated value 

MSE 

0.2164128 

0.08483227 

0.4376607 

0.008240077 

0.4497425 

0.006887342 

0.3225422 

0.03688659 

1.5 Estimated value 0.2152392 0.435493 0.4522239 0.3218992 
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MSE 0.08525462 0.008274607 0.00681566 0.03709663 

1.7 Estimated value 

MSE 

0.2152392 

0.08525462 

0.4357685 

0.008225762 

0.4516097 

0.006823928 

0.3200244 

0.03746877 

1.9 Estimated value 

MSE 

0.2157496 

0.08507986 

0.4379354 

0.008081702 

0.4519274 

0.006833053 

0.3203169 

0.03735006 

2 Estimated value 

MSE 

0.2151436 

0.08533011 

0.435133 

0.008228344 

0.4514845 

0.006777749 

0.3227669 

0.03664439 

2.3 Estimated value 

MSE 

0.2152008 

0.08533154 

0.435933 

0.008354807 

0.4522258 

0.006675974 

0.3195773 

0.03749064 

2.5 Estimated value 

MSE 

0.2148919 

0.08541602 

0.4358239 

0.008242673 

0.4513706 

0.006867066 

0.3205905 

0.03743278 

 

Table 2. Estimated value and MSE of θ under uniform Prior, when θ=0.5 and λ=0.3 

n criteria BSE BQEL BWEL BPEL 

5 Estimated value 

MSE 

0.3319291 

0.08568496 

0.3999805 

0.03017299 

0.5020937 

0.03040638 

0.4783227 

0.06517857 

10 Estimated value 

MSE 

0.2587462 

0.07672004 

0.4206621 

0.01762761 

0.4704327 

0.01527385 

0.3785812 

0.03501358 

15 Estimated value 

MSE 

0.2390543 

0.07852516 

0.4307223 

0.01267017 

0.4597632 

0.01103127 

0.3500939 

0.03491594 

20 Estimated value 

MSE 

0.2248752 

0.08234094 

0.4335792 

0.01068689 

0.4567135 

0.008875785 

0.3344758 

0.03589976 

25 Estimated value 

MSE 

0.2201417 

0.08353796 

0.4355578 

0.009301464 

0.4539721 

0.007530034 

0.3274998 

0.03631128 

30 Estimated value 

MSE 

0.2155449 

0.08510238 

0.4361713 

0.008307794 

0.4506884 

0.006929624 

0.3216516 

0.03703072 

35 Estimated value 

MSE 

0.2120455 

0.08629403 

0.4386988 

0.007355766 

0.4491208 

0.006427789 

0.3172439 

0.03781508 

                 

In Table 1, for a fixed value of n=30 and different values of the scale parameter, In Table 2, for θ=0.5 and 

λ=0.3,we estimated the shape parameter for different sample sizes. Tables 1 and 2 clearly show that the MSE 

of the Bayes estimator under precautionary loss function is very high among other estimators but as we increase 

the sample size, their MSE decreases continuously and become closer to the MSE of other estimators. However, 

the MSE under BWEL is minimum among other estimators in both Tables 1 and 2. Furthermore, as we increase 

the sample size, the MSE of the shape parameter of Lomax distribution under BQEL and PELF becomes 

identical as shown in Figure 1. 
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Figure 1. Graph of MSE for Different estimators when θ=0.5 and λ=0.3 

 

 

 

Table 3. Estimated value and MSE of θ under Jeffery Prior, when n=30 and θ=0.5 

  criteria BSE BQEL BWEL BPEL 

  1 Estimated value 

MSE 

0.4519052 

0.006923581 

0.4220284 

0.009905471 

0.4362834 

0.008242466 

0.4575921 

0.006305317 

1.3 Estimated value 

MSE 

0.4505209 

0.00686885 

0.4201514 

0.01034187 

0.4361401 

0.00829987 

0.4588445 

0.006142034 

1.5 Estimated value 

MSE 

0.4506821 

0.006883 

0.4219039 

0.009993571 

0.4351151 

0.008376783 

0.4596623 

0.006359995 

1.7 Estimated value 

MSE 

0.4512308 

0.006750326 

0.4220043 

0.009938195 

0.4377546 

0.00814634 

0.4585454 

0.006367157 

1.9 Estimated value 

MSE 

0.4517657 

0.006972674 

0.4203534 

0.01013376 

0.4363578 

0.008316073 

0.4596716 

0.00641334 

2 Estimated value 

MSE 

0.4512041 

0.006810138 

0.4214374 

0.0100154 

0.436754 

0.008255356 

0.4585939 

0.006397397 

2.3 Estimated value 

MSE 

0.4515365 

0.006796453 

0.4219088 

0.009981116 

0.4372719 

0.008193196 

0.4592931 

0.006484479 

2.5 Estimated value 

MSE 

0.4503184 

0.007066036 

0.420306 

0.01031897 

0.4371422 

0.008047473 

0.4589022 

0.006396922 

 

 

Table 4. Estimated value and MSE of θ under Jeffery Prior, when θ=0.5 and λ=2.5 

n criteria BSEL BQEL BWEL BPEL 

20 Estimated value 

MSE 

0.4562568 

0.00880651 

0.4113107 

0.01341047 

0.4335889 

0.01044819 

0.4668433 

0.008288899 

25 Estimated value 

MSE 

0.454191 

0.007522211 

0.4168556 

0.01142017 

0.4366963 

0.009030617 

0.4618986 

0.007038851 

30 Estimated value 

MSE 

0.4507528 

0.007006199 

0.4213435 

0.0101068 

0.4354045 

0.008307336 

0.458959 

0.006257292 

35 Estimated value 

MSE 

0.4508849 

0.006263382 

0.4243753 

0.009060677 

0.4369676 

0.007580084 

0.4577372 

0.00578842 

0
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40 Estimated value 

MSE 

0.4479669 

0.005902645 

0.4277797 

0.008239798 

0.4384899 

0.006990802 

0.4540659 

0.005498376 

45 Estimated value 

MSE 

0.4485961 

0.005642649 

0.4282016 

0.007899972 

0.437944 

0.006676798 

0.4539746 

0.005127907 

50 Estimated value 

MSE 

0.4485166 

0.005642649 

0.4287726 

0.007506829 

0.4383064 

0.006281222 

0.4519187 

0.005018414 

       

 

In Table 3, the shape parameter is estimated using different loss functions with various values of λ. It has been 

observed that for fixed values of n and scale parameter, BPEL provides a better result as compared to others. 

Table 4 shows that by increasing the sample size; the MSE are decreases and it is found that the MSE of BPEL 

is minimum among others. Moreover, Table 4 clearly shows that as we increase the sample size, BSE and 

BPEL rapidly becomes identical as shown in Figure 2.  

 

 

      Figure 2. Graph of MSE of different estimators of when θ=0.5 and λ=2.5  

 

 

7. APPLICATION 

For the purpose of illustration, Arset data has been considered which has been cited by Almalki and Nadarajah 

in 2014 [21]. The data set represent the failure times of 50 electronic devices in weeks. This data set has also 

been cited by El-Morshedy et.al [22]. The values are as follows 

1.7,2.2,14.4,1.1,0.4,20.6,5.3,0.7,1.9,13.0,12.0,9.3,1.4,18.7,8.5,25.5,11.6,14.1,22.1,1.1,2.5,14.4,1.7,37.6,0.6,2.

2,39.0,0.3,15.0,11.0,7.3,22.9,1.7,0.1,1.1,0.6,9.0,1.7,7.0,20.1,0.4,2.8,14.1,9.9,10.4,10.7,30.0,3.6,5.6,30.8,13.3,

4.2,5.5,3.4,11.9,21.5,27.6,36.4,2.7,64.0,1.5,2.5,27.4,1.0,27.1,20.2,16.8,53,9.7,27.5,2.5,27.0. 

Figure 3 demonstrates the histogram and theoretical density of the Aarset data. The graph clearly indicates that 

the data is stretched out to the right and follows a positively skewed distribution.  
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                        Figure 3. Histogram and Theoretical Density of Electronic Devices Data 

 

Table 5. Estimated value and MSE of θ under Uniform Prior, when θ=0.5 and λ=0.3 

   n criteria BSE BQEL BWEL BPEL 

  10 Estimated value 

MSE 

0.1183661 

0.1465849 

0.1465849 

0.04452286 

0.3233719 

0.03279822 

0.2142106 

0.08338582 

  20 Estimated value 

MSE 

0.1094385 

0.1528419 

0.3057583 

0.0383101 

0.3213516 

0.03256214 

0.1961859 

0.09284459 

  30 Estimated value 

MSE 

0.1062077 

0.1552159 

0.3097262 

0.03651601 

0.3203286 

0.03260884 

0.1907615 

0.09589744 

  40 Estimated value 

MSE 

0.1051924 

0.1559533 

0.3119378 

0.03554341 

0.3200947 

0.03256003 

0.1878566 

0.09757849 

 

Table 6. Estimated value and MSE of θ under Jeffery Prior, when θ=0.5 and λ=0.5 

   n criteria BSE BQEL BWEL BPEL 

  10 Estimated value 

MSE 

0.3789634 

0.01747537 

0.3033679 

0.04036066 

0.3426587 

0.0271017 

0.3991778 

0.01319617 

  20 Estimated value 

MSE 

0.3760454 

0.0164588 

0.3384607 

0.02699666 

0.3566594 

0.0215152 

0.3848476 

0.01437308 

  30 Estimated value 

MSE 

0.3742253 

0.0163705 

0.3491387 

0.0232366 

0.3623125 

0.01948252 

0.3810743 

0.01470958 

  40 Estimated value 

MSE 

0.3741812 

0.01615611 

0.3550246 

0.02128928 

0.3646122 

0.01862929 

0.3784653 

0.01510511 

 

Again by using real data set, it has been observed that BWEL perform better than other loss functions under a 

uniform prior, the result is given in Table 5. Moreover, Table 6 reflects Bayesian estimation under Jeffery prior 

and it is declared that BPEL leads to a better result than other loss functions.  
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8. CONCLUSION 

The paper presents a Bayes estimation of parameter θ using a Uniform and Jeffery prior under Square error 

loss function (BSEL), quadratic error loss function (BQEL), weighted error loss function (BWEL), and 

precautionary error loss function (BPEL). Based on the numerical analysis and graphical representation, it has 

been determined that under uniform prior, Bayes estimator under weighted error loss function (BWEL) 

provides a better result than others.  Under Jeffery prior, precautionary error loss function (BPEL) leads to a 

better result than others.  
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