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Abstract
This paper is devoted to investigating the asymptotic stability of the equilibrium point of
the Lasota-Wazewska model with a piecewise constant argument and it is proved that this
point is an attractor. It is also shown that every oscillatory solution of the corresponding
difference equation has semi-cycles of length at least two.
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1. Introduction
The aim of this paper is to investigate the stability and oscillation properties of the

positive solutions of the Lasota-Wazewska model with a piecewise constant argument

x′ (t) = −αx (t) + βe−γx(⌊t−1⌋), (1.1)
where α, β and γ are positive constants and ⌊.⌋ denotes the floor function which gives the
greatest integer less than or equal to given number. Equation (1.1) is generated from the
delay differential equation

x′ (t) = −αx (t) + βe−γx(t−τ) (1.2)
which was first used as a mathematical model for the survival of red blood cells in an animal
by Wazewska-Czyzewska and Lasota [62]. Here x(t) denotes the number of red blood cells
at time t, α > 0 is the probability of death of a red blood cell, β > 0 is the constant
connected with demand for oxygen, γ is also a positive constant characterizes excitability of
haematopoietic system and τ is the time required to produce a red blood cell. Further, we
refer to [34] for biological models, involving chemotaxis and nonlinear diffusive mechanism,
formulated by the introduction of reactions coupling growth and death impacts. The well
known Lasota-Wazewska model (1.2) was extended and generalized by many authors, see
for example [3, 19, 22, 23, 29, 30, 32, 33, 43, 65] including some recent publications on the
topic [8, 11,14,26,52,54,56,64].

On the other hand, Eq. (1.1) is called a differential equation with a piecewise constant
argument [6], [63]. These type of equations have attracted great deal of attention because
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they combine the properties of both continuous and discrete dynamical systems. In math-
ematical modelling considering both continuous and discrete times makes sense so the use
of piecewise constant arguments come into question, see [2,4,7,13,21,25,42,50,55,61] and
the references therein. To the best of our knowledge the Lasota-Wazewska model with a
piecewise constant argument was considered in [9], [12] and [51]. In [9], it was shown that
Eq. (1.1) has a unique almost automorphic solution, in [12] Eq. (1.1) with generalized
piecewise constant argument was considered and the existence of periodic solutions of this
equation was proved and in [51], the existence and global attractivity condition of almost
periodic solution and quasi-periodic solution of Eq. (1.1) were obtained. Moreover, dis-
crete version of the Lasota-Wazewska model was studied in many papers [5,10,44,53,58].

Besides, global attractivity and stability are also among the most popular subjects in
the study of both difference equations and equations with piecewise constant arguments
[15,17,18,21,24,27,35,41,45–49,59,60]. Another current issue used in the study of difference
equations is the semi-cycle analysis, which was initiated by [28] and then attracted great
attention in different fields of the difference equations [1, 20,36–40,57].

This paper is organized as follows. In Section 2 basic definitions and some useful well
known results are stated. In Section 3, the main results of the paper are given with some
examples.

2. Preliminaries
In this section we will introduce a solution of Eq. (1.1) and give some results that we

will use in the next section.

Definition 2.1. A function x (t) defined on the set {−1} ∪ [0, ∞) is called a solution of
Eq. (1.1) if it satisfies the following conditions:

(1) x (t) is continuous on [0, ∞),
(2) x (t) is differentiable and for any t ∈ [0, ∞) it satisfies Eq. (1.1) with the possible

exception of the points ⌊t⌋ in [0, ∞) where one sided derivatives exist.

Since Eq. (1.1) has a biological meaning, we only take into account the positive solu-
tions. For this purpose we consider Eq. (1.1) with the initial conditions

x (−1) = x−1 > 0, x (0) = x0 > 0. (2.1)
Let I be some interval of real numbers and let f ∈ C1 (I × I, I). Let x∗ ∈ I be an

equilibrium point of the difference equation
xn+1 = f (xn, xn−1) , n = 0, 1, 2, . . . . (2.2)

Let
p = ∂f

∂u
(x∗, x∗) and q = ∂f

∂v
(x∗, x∗)

denote the partial derivatives of f (u, v) evaluated at an equilibrium x∗ of Eq. (2.2). Then
the equation

yn+1 = pyn + qyn−1, n = 0, 1, 2, . . . (2.3)
is called the linearized equation associated with Eq. (2.2) about the equilibrium point x∗.

Theorem 2.2 (Linearized stability, Theorem A in [16]).

(1) If both roots of the quadratic equation
λ2 − pλ − q = 0 (2.4)

lie in the open disk |λ| < 1, then the equilibrium x∗ of Eq. (2.2) is locally asymp-
totically stable.

(2) If at least one of the roots of Eq. (2.4) has absolute value greater than one, then
the equilibrium x∗ of Eq. (2.2) is unstable.
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(3) A necessary and sufficient condition for both roots of Eq. (2.4) to lie in the open
unit disk |λ| < 1, is

|p| < 1 − q < 2, (2.5)
in this case the locally asymptotically stable equilibrium x∗ is also called a sink.

Semi-cycle analysis of the solutions of the scalar difference equation is thought to be a
powerful tool for a thorough understanding of the entire character of solutions. Now let’s
give the definitions of positive and negative semi-cycle of a solution of Eq. (2.2) relative
to an equilibrium point x∗.

Definition 2.3 ([31, pages 24-25]). A positive semi-cycle of a solution {xn} of Eq. (2.2)
consists of a "string" of terms {xl, xl+1, . . . , xm}, all greater than or equal to equilibrium
x∗, with l ≥ −1 and m ≤ ∞ such that

either l = −1 or l > −1 and xl−1 < x∗

and
either m = ∞ or m < ∞ and xm+1 < x∗.

A negative semi-cycle of a solution {xn} of Eq. (2.2) consists of a "string" of terms
{xl, xl+1, . . . , xm}, all less than the equilibrium x∗, with l ≥ −1 and m ≤ ∞ such that

either l = −1 or l > −1 and xl−1 ≥ x∗

and
either m = ∞ or m < ∞ and xm+1 ≥ x∗.

Theorem 2.4 ([31, Theorem 1.7.4]). Assume that f ∈ C [(0, ∞) × (0, ∞) , (0, ∞)] is such
that f (x, y) is increasing in x for each fixed y and f (x, y) is decreasing in y for each
fixed x. Let x∗ be a positive equilibrium of Eq. (2.2). Then except possibly for the first
semi-cycle, every oscillatory solution of Eq. (2.2) has semi-cycles of length at least two.

Theorem 2.5 ([28, Theorem 2.4.1]). Consider the difference equation

xn+1 = axn + F (xn−k) , n = 0, 1, . . . (2.6)

where
a ∈ [0, 1) , k ∈ {1, 2, . . .} and F ∈ C [[0, ∞) , (0, ∞)] . (2.7)

Assume that (2.7) holds. F (u) is decreasing in u, and that the system

U = F (L)
1 − a

and L = F (U)
1 − a

(2.8)

has exactly one solution {L, U} in the positive quadrant (0, ∞) × (0, ∞). Then Eq. (2.6)
has a unique positive equilibrium x∗. Furthermore U = L = x∗ and every solution {xn}
of Eq. (2.6) with positive initial conditions

xn > 0 for n = −k, . . . , 0

is attracted to x∗, that is,
lim

n→∞
xn = x∗.

3. Main results
This section devoted to find the solution of Eq. (1.1) in terms of the corresponding

difference equation and to study the behaviour of these solutions.

Theorem 3.1. Eq. (1.1) with the initial conditions (2.1) has a unique solution on {−1}∪
[0, ∞).
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Proof. Let xn (t) ≡ x (t) be a solution of Eq. (1.1) for t ∈ [n, n + 1). Then Eq. (1.1)
reduces to a linear differential equation

x′ (t) + αx (t) = βe−γx(n−1), n ≤ t < n + 1. (3.1)
The solution of Eq. (3.1) is obtained as

xn (t) = β

α
e−γxn−1 +

(
xn − β

α
e−γxn−1

)
e−α(t−n), n ≤ t < n + 1. (3.2)

On the other hand, the solution of Eq. (1.1) on the interval [n − 1, n), say xn−1 (t), can
be also obtained from (3.2) by considering n − 1 in place of n. Then, using the continuity
of the solutions leads us the nonlinear difference equation

xn+1 = e−αxn + β

α

(
1 − e−α)

e−γxn−1 , n = 0, 1, 2, . . . . (3.3)

Considering the initial conditions (2.1), the unique solution of Eq. (3.3) can be obtained.
Hence, it is proved that the initial value problem (1.1), (2.1) has a unique solution. �

Clearly, the dynamic behaviour of the model (1.1) can be determined by the difference
model (3.3) because the model (3.3) is the difference solution of the model (1.1). Next we
will focus on the behaviour of the difference model (3.3). For this reason first we need to
find the positive equilibrium of (3.3):
Computations give us that the positive equilibrium (3.3) satisfies the equation

x∗ = β

α
e−γx∗ (3.4)

which is also the critical point of Eq. (1.1).
The change of variables zn = xn − x∗ in Eq. (3.3) gives us the difference equation

zn+1 = e−αzn + β

α

(
1 − e−α)

e−γx∗
e−γzn−1 − x∗ + x∗e−α, n = 0, 1, 2, . . . (3.5)

whose equilibrium point z∗ = 0 corresponds to x∗ .

Theorem 3.2. The equilibrium x∗ given by (3.4) is a sink if and only if
αe−α < α + βγ

(
1 − e−α)

e−γx∗
< 2α. (3.6)

Proof. The corresponding linearized equation of Eq. (3.5) about z∗ = 0 is
yn+1 = pyn + qyn−1, n = 0, 1, 2, . . . (3.7)

where
p = e−α and q = βγ

α

(
e−α − 1

)
e−γx∗

. (3.8)

By applying Theorem 2.2, it is obtained that z∗ = 0, that is, x∗ is a sink if and only if the
condition (3.6) is true. �
Theorem 3.3. Every oscillatory solution of Eq. (3.3) has semi-cycles of length at least
two.

Proof. We re-write the right hand side of Eq. (3.3) as

f (x, y) = e−αx + β

α

(
1 − e−α)

e−γy. (3.9)

The first derivatives of (3.9) with respect to x and y are
∂f

∂x
= e−α and

∂f

∂y
= βγ

α

(
e−α − 1

)
e−γy

which are positive and negative, respectively for each α, β, γ. So, we conclude that f is
increasing in x and decreasing in y and by Theorem 2.4, every oscillatory solution of Eq.
(3.3) has semi-cycles of length at least two. �
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Theorem 3.4. Every solution of Eq. (3.3) is attracted to the equilibrium x∗.

Proof. Let us apply Theorem 2.5 in our equation (3.3) under the conditions (2.1).
For k = 1 Eq. (3.3) is in the form of Eq. (2.6) with

a = e−α ∈ [0, 1) and F (u) = β

α

(
1 − e−α)

e−γu.

Since

Fu = βγ

α

(
e−α − 1

)
e−γu

is negative for all positive constants α, β and γ, the function F (u) is decreasing. Besides,
the system (2.8) can be written as

U =

β

α
(1 − e−α) e−γL

1 − e−α
, (3.10)

L =

β

α
(1 − e−α) e−γU

1 − e−α
. (3.11)

It is easily seen that this system has exactly one solution {L, U}. So every solution of Eq.
(3.3) is attracted to x∗. �

Now let us give an example to illustrate our results:

Example 3.5. Let us consider equation

x′ (t) = −0.1x (t) + 0.3e6−2x(⌊t−1⌋), (3.12)

with the initial conditions
x (−1) = 1, x (0) = 1. (3.13)

The corresponding difference equation’s linearized form is

yn+1 = 0.904837yn − 0.570995yn−1, n = 0, 1, 2, . . . . (3.14)

Here, it can be obtained that (3.6) is true. Therefore, from Theorem 3.2, we conclude that
the equilibrium point 0 of the given equation is a sink. This can be seen in Figure 1.

Figure 1. The behaviour of the equilibrium zero.
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4. Conclusions
Differential equations are very useful in understanding the real life problems since they

give the mathematical expression of the real phenomena. On the other hand, modelling
with ordinary differential equations is often not enough. Because while problems are math-
ematically established by ignoring discontinuous effects, the results of the models are far
from reality. This necessity provided the introduction and development of the theory of
differential equations with discontinuities. One type of equation developed as a result
of this requirement is the differential equations with piecewise constant arguments. In
this paper, we study the Lasota-Wazewska model to an equation with piecewise constant
arguments. We investigate some qualitative properties of the corresponding difference
equation which is non-linear and contains interesting properties. The method constructed
in this paper can be applied to different models with piecewise constant arguments such
as Nicholson blowflies, Gilpin Ayala model, predatorprey like model, Tumor-Immune in-
teraction, tumor growth model, epidemic model, neural networks and some Volterra type
models.
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considerably.
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