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Abstract

In this paper we establish a large deviation principle for solution of perturbed reflected stochastic differential
equations driven by a fractional Brownian motion B/’ with Hurst index H € (0;1).
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1. Introduction

There are different methods to show that the diffusion process satisfies the principle of large deviations
(LDP), for which several authors have determined the rate function in different spaces. In addition, in the
case of the large deviation principle for a standart Brownian motion, many autors had established the LDP
for perturbed diffusion processes see among others L. Bo and T. Zhang ([3]) , H. Doss and P. Priouret ([§]).
Regarding a fractional Brownian motion, Y. Inahama ([I0]) proved, in the framework of the rough trajectory
theory that the process e B! obeys a large deviation principle for H € (%; %) because the integral only verifies
the Young theorem if H € (%; %) Other authors have established large deviation for local times of fractional
Brownian motion, X. Chen, W. V. Li, J. Rosinski and Q. Shao ([4]), M. M. Meerschaert and E. X. Y. Nane
([11]), and Z. Chen and W. Wang ([I7]). The novelty of our work is to extend the work of R.A. Doney

Email addresses: raphdiatta@gmail.com (Raphael Diatta ), i.sane23180zig.univ.sn (Ibrahima Sané),
adiedhiou@univ-zig.sn (Alassane Diédhiou)

Received July 10, 2020; Accepted: January 15, 2021; Online: January 20, 2021.



R. Diatta, I. Sané, A. Diédhiou, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 127137 128

and T. Zhang ([5]) a new approch via the principle of contraction,in the framework of stochastic differential
equations directed by a fractional Brownian motion (fBm) of Hurst parameter H € (0;1),by determining
the rate function of the dual of Schwartz space. The rest of this paper is organized as follows. Sections 2
contains some definitions and theorems of the fBm and LDP which we need for our results. Section 3 contain
our main results.

2. Preliminaries

Let B = {BH t € [0;T]} be a fractional Brownian motion (fBm) of Hurst parameter H € (0;1) with
covariance function:

1 t s
R(t,) = BB B = (4 + 52~ e~ 5P = [ [ ot wpduar
0 JO

B(t,s) = LR _ F(og — 1))t — 522,

Consider the perturbed reflected stochastic differential equations:

t t
xte =z —|—/ b(XT#)ds + 5/ o(XHE9dBE + o sup (XH#), s,t € [0;T) (1)
0 0 0<r<t
I t t
VS <y [ s+ e [ o(iaBl 1 17, e 7] @)

defined on noise probability space (S'(R),B(S'(R)),P), where

1. a€0;1];
2. z and y € §'(R) are deterministic;

3. band 0 : [0;T] x 8'(R) — S'(R) are measurable functions such that the integrals are defined as white
noise integral (see [2],[1] and [15]) and they are bounded lipschitz continuous;
4. Lf is non-decreasing such that

0ift=0
Lf = (3)
Jo L=y (Y2)dL5 if t € [0 7]

*x S'(R) is a space of tempered distriution, called dual space of Schwartz space.

Consider a white noise space (S’(R), B(S'(R)),P) and denote (.,.) the scalar product and |.| the norm in
S'(R). Tt well know that S(R) C L2(R) C S'(R).

Definition 2.1. For w € §'(R), a process (w, f)¢ = fg f(r)dBH is a gaussian with covariance (see [1)]),
(F.5)o =113 = J Js F()f (r,u)dudr and
L3(R) = {f € S'(R), [y [y f(r)f (w)(r.u)dudr < +oc}.
Definition 2.2. The family (X{)e>0 of probability P is said to satisfy a large deviation principle if there
exists a rate function I defined on Lé(R) and a speed € tending to O such that:

1. 0 < I(x) < 4o0;

2. I is lower semicontinuous that is, for all a € R, {z : I(z) < a} is a closed of LZ(R);

3. foralla e R, {z: I(x) < a} is a compact of Li(R), in which case I is a good rate function;

4. for any closed set C' C Li(R),

lim supelog P*(X; € C) < — inf I(z)
e—0 zeC
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5. for any open set O C Lz(R),

. <l ve > _ i
ilg(l)lnfslogp (X €0)> ;Iel(f) I(x)

Theorem 2.3. (Contraction principle, [J])
Let By, Ey C Li)(R) and g : By — FEy is a continuous function. If the family (X7)eso satisfies a large
deviation principle of a rate function I then the family g((X§)e>0) satisfies the LDP on Es of a rate function
J defined by:

J(y) =inf{l(x) :x € By, y=g(x)} , for each y € Es.
3. Main Results

In this section of our results, we first present the asymptotic behavior study of the solution process YtH’E 1’
and lastly that of XtH o li . Before giving our main theorem for this part, we first present the LDP theorem

for fBm eB}! with probability measure ]P’g’g.
Thus this theorem is as follow:

Theorem 3.1. (see [0])
The family (5B,5H)(5>0) satisfies the large deviation principle of speed €2 with a rate function given by:

1(f) = { LI =4 [0 J5 F0)f()é(r,u)dudr if f € L3(R)

+o00 otherwise .

1. I(f) is lower semicontinuous and {f : I(f) < a} is a compact subset of Lé(]R),
2. For all closed set C C Li(R),

;i_r>r(1)sup€2 long’e(gBtH €eC)< —%]f@
3. For any open set O C L?S(R),
lim inf &2 log]P’f’E(EBfI €0)> —}]f\i .
e—0 2
3.1. Large deviation principle for reflected fractional diffusion process

We will prove the LDP for solution of the perturbed stochastic differential equation (2.
For ¢ € Lé(R), define an operators I : Lé(R) — Li(R) by

F — - f ? e 3 .

sup [Lp1(r) — Tpa(r)| < 2 sup |p1(r) — pa2(r)]
0<r<t 0<r<t

By the reflection principle (see [3] and [5]), the solution of (2] is given by

H, H,
}/; 19 :FZt 13
Li =Y, — 2 =17 - 7;'*

where Z¢ is a solution of the following stochastic differential equation:

t t
zie =y 4 / b(LZ"€)dr + / o(PZ19)dB, st € [0;T] (©)
0 0
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and we denote the probability law of Y;H’a by Qf¢ = IP’f’aoG*1 such that G(f) is the only solution of the
ordinary differential equation:

t

G(fi) =y +/0 b(G(fr))dr +/0 o(G(fr) fro(r, s)dr 4 e, s,t € [0;T] (7)

t . . : . .
where n; = [ X{G(f,)=01d7r is an increasing continuous function.
G(f) can also be written as

{ G(f) = F@(ft) (8)
ne=G(f) —p(ft) =To(fr) — o(ft) -

Where ¢(f) is a solution of the following stochastic equation:
t

o(f) =y + /0 BT (f,))dr + /0 o(To(£2)) fyb(r, s)dr, s,t € [0:T] (9)

and f is the function induced by the LDP of the fBm.

Lemma 3.2.
Let o be a bounded lipschitz function and f be bounded and continuous function. Then there exists K > 0
and N > 0 such that

[f@)o(t,s)| < K
lo(h(t)p(t,s)| < N for all s,t € [0,T).
Proof.
f is a bounded function, so there exists ¢ such that |f| < d. We have for s,t € [0; 7]

[f()o(s, )] = |f()]|o(s, 1)
= |fIHQ2H = 1)|t — s>~
< 6H|(2H —1)|T*" = K.

o is bounded, so there exists M such that |o(h)| < M V h € Li(R), we have for s,t € [0; 7]
|0 (he)p(s, t)] = [o(he)l| (s, 1)

= |o|H(2H — 1)|t — s|*172
< MH|(2H —1)|T?% = N.

Lemma 3.3. G(f) and n are continuous on the compact set
{J(G(f),n) < a,G(f),n € L(R)} for any a >0 .

Proof. Let’s show G(f) and 7 are continuous:
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For G(f), Let G(f1)

G(f1(t) -
sup [G(f1(r)) —

0<r<t

e(f1(t)) —

p(f1(2) =

sup [@(f1(r)) —

0<r<t

o(ft)

G(f2(1))]
G(f2(r))]

o(f2(t))

o(f2(t))]

e(f2(r))]

IN

IN

IA

IN

=T¢(f1) and G(f2) = Tp(f2)

with

y+ / b (f,)dr + / o (Co(f,) o (r, s)dr,
0 0
To(f1(t) — T f2(1))

sup [Co(fi(r
0<r<t

2 sup |p(fi(r
0<r<t

) = Tp(fa(r))]
) = (fa(r))]

/0 BT (f1(r)) — BT fo(r)))]dr

[ e 160~ [ oot i) o)t )i
/ () — BT (fa(r)dr + | erenemaese
[ om0t + [ aCot i) ot )i
[ ore et sy

t

/0 BT (f1(r) — BT (fo(r)))]dr

/0 (o (Ce(f1()) — o T f2(r)] 1 (r)(r, 5)dr

/ (T (Fo(r)(r, )i (r) — fo(r)dr

/|bF90f1
/|0F90f1
/|0F90f2

— b(Tp(f2(r)))|dr

= a(To(fa(r))I1(r)e(r, s)|dr

¢(r, s)|l f1(r) —

fa(r)ldr

s)dr

/ To(f1(r)) — T (fo(r))|dr + LK / T (f1(r) — Tpl(for))\dr

N/ A

r)|dr

L(1+K) /0 T(f1(r)) — T (fo(r))dr + NOT

L(1+K)/0t
2L(1+K)/0t

2L(1 + K) /Ot

sup [Co(f1(r))

0<r<t

sup [o(f1(r)) —

0<r<t

sup [(f1(r)) —

0<r<t

o(f2
o(f2

—Tp(fa(r))|dr + N6T

(r))|dr + N6T

(r))|dr + N&T
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sup |G(f1(r)) = G(f2(r))] <2 sup [p(fi(r)) — ¢ (fa(r))]

O=rst 0<r<t
t
<42+ K) [ s Ip((r) - plfalr)ldr + NOT
0 0<r<t
IG(f1(t)) — G(f2(t))| < NoTALAFHOT

hence G(f) is continuous.
For 7,

accoding to (8) n: = To(fi) — ¢(fe), so

m(t) —n2(t) = Te(f1(t) - w(f1(t)) —To(fa(t) + w0 (fa(t))
Im(t) = n2(8)] < [To(f1(2)) = Te(f2(D)] + o (f1(1)) — @ (fa(D))]
sup [m(r) —n2(r)| < s Sup |F<P( 1(r)) = Tp(fa(r))] +Oil1{gt|90(f1(?“)) —(fa(r))]

0<r<t
< 2Oiggt|¢<f1<r>> =G + s [o(1(1) - p(fa(r)
< SOiggtI@(fl(T)) — o(fa(r))]
<6L(1+ K) /0 s [p(f1(r)) — plfa(r))ldr + NOT (see )

mu(t) — ma(t)] < NTSLOHET

hence 7 is continuous.

O

Theorem 3.4. The family (YtH’E, L) (¢>0) of the stochastic differential equation (@ satisfies the large devi-
ation principle of the good rate function given by

31071919 — b(9) — Xgg=0y (9)7][5-1 if 9= G(f) € LF(R) n € Li(R)

10
+00 otherwise (10)

J(g,m) = {
(a) J(g,n) is lower semi-continuous and {g,n € Li(R), J(g,m) < a} is a compact subset ofLi(R) ,
(b) For all closed set C subset Li(R),
lim sup e* log Q<((Y;"*, L) € C] < —J(g,m),
E—
(¢) For any open set O C Lé(R),
lim inf > 1og Q"[(Y;", I§) € O] > —J(g,n).

Proof. Now let’s show the upper and the lower bound by the contraction principle. G(f) is continuous and

1
the process eB}! of probability law IP’{;’E has a LDP with a rate function I(f) = 5]]‘@, according to the

contraction principle we have for:
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(b) Any open set O of Li(R), we have,

lim inf £ log Q"<[(Y;""%, Lf) € O] = lim inf £? log P “0(G(f)) (Y%, Lf) € O]
e—0 e—0
= lim inf £ log ]P)g’s (G(f
e—0
= lim inf £ log ]P)g’s [(G(f
e—0

o
=<
I
1 L
~
)
m
S

= lim inf £* log P, *[(G(f
e—0

(
= ;1_{% inf £ log ]P’g’a[EBg{ € (G(
— 21_13% inf £ log ]P’f’a[EBtH € (G(f
= lim inf<? log P “[B/' € (G(£))™'(0

> — inf I
T fEG(H)HO) (7)

e 1
— —G(%{;O{mfl(f) = 5If1G, £ € LE(R), G(£) = g1}

= _J(gv 77)
(¢) Any closed set C' of Li(]R)

lim sup £2 log Q<[(Y;", L§) € O] = lim supe® log P, “o(G(f)) ~'[(V;*, L§) € C]
e—0 e—0

= lim sup £2 log P [(G(f)) "' [(V{"<, L§) € O]
e—0

)
s 2 Her_ pH -1
—il_rf(l)sups logP, " [eBy” € (G(f)) (C)]
_ 1 2 H.e H
—il_rf(l)sups log P, “[eBy" € (G(f )
)

= li 2log P [eBY -
lim supe®log P [e By € (G(f))™(C

<

- inf I
feG(£)~1(0) (F)

= — inf {infI(f) = %|f|i,f € Li(R),G(fr) = gt}

G(f)eC

Let’s show that .J(g,7) = 1Iff‘l(gt)[gt = b(9e) = X{gi=0} (9¢)10e] 5+
G(ft) —y“‘fo G(fr) dr"'fo G(fr)) frd(r, s)dr +n.

Let’s put G(ft) = 0t

g =y+ [y blgr)dr + [y o(gr) frd(r,s)dr + [y Xig—0y (gr)dny

gt = b(gt) + o (gt) frd(t, 8) + X1g,—0y (9t)7}t
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1 . .
Jt= m[gt — b(gt) — X{g,=0}(9t)7t]. So,we show that
J(g, = inf I
(9:m) reottt o (f)
1 1

B 2’m[9 b(g1) = X{gi=03 (90713

-5/ / sl — ar) — Xy o) (001
X (7)[9 = b(9u) = X{gu=0}(gu)niu]) (7, u)dudr

= / / _1 gT gr — b(g’r) X{gr= 0}(gr)77r]>
X 9u)[Gu — b(gu) — X{gu=0}(9u)7iu]) P~ Y, u)dudr

J(g,m) = 5!0’ (961G — b(gt) = Xqgo=0} (9670t 5

hence, we have

Tom) = Sl (o)l — bon) ~ xtgumop (o)l s

(a) Lower semicontinuous:
Let gc, and 7. € Li(R) such that g — g,m. — n € Li(R).
So we have,

1
gl_ff(l)J(game)

= lim— \U (ga)[ —b(g:) — X{ga=0}(95)ﬁ5]|§5‘1

e—=02

5&13(1) / / (1) = b(ge(r)) — X{ge(r)zo}(gs(T))ﬁE]
(g2 ) () — b= (1)) — (g2 =0 (0=(u) e} (v, w)hudr
> / /0 ;g% (Mg () ~ B(9:() ~ Xggu(ry—op (e (1))

X o gz—: ge(u) — b(g=(u)) — X{ge(u)=0} (gs(u))n.s]qb_l(ra u)dudr (Fatouls lemma)
/ / hma )[95( ) - b(ge(r)) - X{gg(r)ZO}(gs(r))ﬁE]}
X {hma (96( NIge(u) — b(ge(u)) — X{ge(u)=0} (96(“))77€]¢_1(T7U)dUdr}

// “Ha)lg(r) = blg(r)) = Xqg(ry=op (9(r))il}

x o' (9(u)d(w) — b(g(u)) = Xqg@=03(9(w)il¢~ " (r, u))dudr}
= %HU;} (9)[g — b(9) — X{g=0} (@) 51 -

So J(g,m) < 1ir%J(gE,775), hence J(g,n) is lower semicontinuous.
E—

For compactness: J(g,n) < +oc for all g,n € Li(R), so there exists a > 0 such that J(g,7n) < a,
he’s in a closed-off place and we deduces that the set of level: {g,n € Lé(R), J(g,m) < a} is compact
subset of L?b(R). We can finally conclude that J(g,n) is a good rate function.

O
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3.2. Large deviation principle for perturbed fractional diffusion process

Denote uf the probability law of the process solution XtH’E 1} such that pfe = I[”f"eoF*1 where F'is a
determinist function associated with f such that F'(f) = h, the only solution of ordinary differential equation:

t t
h(t) = xg +/ b(h,)dr +/ o(hy) fré(r,s)dr + a sup (hy), s,t € [0;T] (11)
0 0 0<r<t
Lemma 3.5. For a € (0;1), F is a continuous function.

Proof. Denote F(f1) = h1 and F(f2) = he Wlth
F(f) = h(t) = w0 + [y o(he) frd(r, s)dr + [g b(he)dr + o sup (X;)

0<r<t
ha(t) — hi(t) = /0 (0(ha(r)) fo(r) — oy (1)) f2 (7)o, 8)er + /O [b(ha(r)) — b(ha (r)dr
+a( sup (ha(r)) — sup (ha(r)))

0<r<t 0<r<t
2/0 [o(ha(r)) = o(ha(r))] fa(r)é(r, S)dTJr/O [fa(r) = fr(r)]o(ha(r))o(r, s)dr
—i—/o [b(ha(r)) — b(hi(r)]dr + a( sup (ha(r)) — sup (hi(r)))

0<r<t 0<r<t

|ha(t) — ha ()] < L/O |ha(r) = ha(r)]] f2(r)o(r, S)Idr+/0 [f2(r) = fr(r)llo(ha(r)o(r, s)|dr
t
L/ ha(r) = ha(r)|dr + af sup (ha(r)) — sup (hi(r))|
0

0<r<t 0<r<t

<LK/ |ho(r) — hi(r ]dr—l—éNT—i—L/ |ha(r) — hi(r)|ds + a sup |ha(r) — hy(r)]
0<r<t

=L(K+1) /Ot |ha(s) — hi(s)|ds + « sup |ha(r) — hi(r)| + ONT

0<r<t

sup |ho(r) — hi(r)| < L(K + 1)/O sup |ha(r) — hi(r)|dr + a sup |ha(r) — hi(r)|+ ONT

0<r<t 0<r<t 0<r<t

(1—a) sup [ha(r) — ha(r)] < L(K + 1)/0 sup [ha(r) — ha(r)|dr + GNT

0<r<t 0<r<t

L(K+1) [ SNT
sup |ho(r) — hi(r)] < (1)/ sup |ho(r) — hi(r)|dr + ——
0<r<t —a  Jo o<r<t -«
snp (ZEHD
[F(f2) = F(f)l = |he = M| < ——e 1—a
hence F is continuous if « € (0;1). O

Theorem 3.6. For all a € (0;1) then the family (XtH’E)(DO) satisfies the large deviation principle of speed
€2 with a rate function given by:

J(h) = { inf{inf I(f), f € L3(R), F(f) = h}

12
+o00 otherwise (12)
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(1) J(h) is lower semicontinuous and {h : J(h) < a} is a compact subsetl of Li(R),

(i) for any open set O C Li(R) and h € O,

lim inf £ log 15 (X[ € 0) > —J(h).
e—0

(ii7) for any closed set C' C LZ(R) and h € C,

lir%sup5log,uH’€(XtH’E e C) < —J(h).
E—r

Proof. For the lower semicontinuous of J(h) we have the same reasoning that theorem for lower
semicontinuous .

For compactness: J(h) < 4oo for all h € Li(R), so there exists a € R such that J(h) < a, he’s in a
closed-off place and we deduces that the set of level: {h € Li(R), J(h) < a} is compact subset of Lé(R).

For the upper bounded: C C Li(R), eB}! of probability measure Pg’s has LDP with good rate function

1
I(f) = §| f@ for f € L(Qﬁ(]R) and F' is a contnuous function. So by contraction principle, we have

lim supe” log ™[ X" € C] = lim supe® log P "“oF [ X" € C]
e—0 e—0
—1; 2 Herm—1 He
_il_r%supg logIP’q5 [F7(X,; " e )]
= lim sup 2 long’E[F_l(Xf’E) e F1(O)]
e—0

— i 210g PHEcBH ¢ F1 <— inf I
lim supe”log Py [eBY € F7(C)] < fegguc)(f)

s . 2 o _
= F(I;;fec{mfl(f),f € Ly(R), F(f) = h} = —J(h) .
So lim sup e” log pHelxte e o)< —Jn) = - inf {inf I(f), f € L2(R), F(f) = h}.

1
For the lower bounded: O C Li(IR{) and I(f) = 5]]‘@ is a good rate function of the law Pg’a. Then by

the contraction principle,
lim inf &> log " X eco]= lim inf ¢ log PR~ x1e € 0]
= lim inf ¢* log P, “[F~ (X" € 0)]
= lim inf £* log P, *[F~1(X["%) € F~1(0)]

= ;ig(l)infs%ogpfﬁ[sB{feF—l(O)]> inf  I(f)

~feF-1(0)
= —F(i}l)feo{infl(f),f €SMR), F(f)=h}=—J(h).
So lim inf ¢? log <[ X5 € O] > —J(h) = —jnf {inf I(f), f € L3(R),F(f) =h} . 0

Conclusion 3.7. In the present paper, we have established a large deviation principle for reflected diffusion
process driwven by a fBm for any Hurst parameter H € (0;1). This construction is carried out in the tempered
distribution space S'(R) using the method of Freidlin-Wenizell ([9]). So it would be very interesting to do
this in a space larger than that considered here.
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