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Abstract—This paper deals with a “combination method” in 

which the charge simulation method is combined with finite 

element method, for electric field calculation. The proposed 

method has the advantages of both charge simulation method 

and finite element method, while making up of their 

disadvantages. In the combination method, field is divided into 

two regions, one covered by the charge simulation method and 

the other by the finite element method. These two regions are 

combined using the continuous conditions for potentials and 

dielectric flux densities at the boundary. The new method could 

be applied to non-enclosed multi-dielectrics fields, space charge 

fields, fields with leakage current and so on. Examples of 

calculation have revealed that the method affords satisfactory 

calculation accuracy in application to high voltage power 

transformer apparatuses. 

 
Index Terms—Finite element analysis, Optimization, Charge 

simulation method, Electric field distribution, Power transformer 

apparatus. 

I. INTRODUCTION 

HE ELECTRIC field calculation method has made a 

marked advance with the recent development of the 

computer, providing many fine results in various fields 

including the high voltage technique. As the major numerical 

electric field calculation methods, there are a charge 

simulation method, a finite difference method and a finite 

element method [1-2-3]. Each method has its own advantages 

and disadvantages [4-5]. For efficient calculation, the 

desirable method should be used according to an application 

field. Combining several calculation methods allows their 

advantages to be used and their disadvantages to be removed. 

This combination method can be applied to more extensive 

fields and will contribute to efficient calculation in many 

points such as accuracy and calculation time [6-7]. 

In order to obtain such calculation method, the author has 

developed the so-called combination method where the charge 

simulation method and the finite element method are 

combined. This paper describes its principle and major 

features, and shows that the calculation results are accurately 
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obtained through several examples. The combination method 

enables the calculation of an electric field which could not be 

solved with enough accuracy by individual calculation method 

[8-9]. For example, the combination method can be applied in 

non-enclosed field with multi-dielectrics, a space charge field, 

and a field with leakage current and so on. In addition, 

replacing the part of a field with another calculation method, 

the author can reduce the core memory requirement of 

computer and improve the calculation accuracy. In the 

following chapter, the combination method, and its calculation 

examples are described. 

II. CHARGE SIMULATION METHOD AND FINITE ELEMENT 

METHOD 

Making use of mathematical linearly, in the charge 

simulation method, Laplace equation is expressed as a 

superposition of particular solutions such as point charges and 

ring charges [10]. Giving a boundary conditions, and using a 

concept of a potential coefficient, the author get equation 1.  
 

P Q Ø   (1) 
 

In equation 1, P is a potential coefficient matrix determined 

by coordinates of contour point and charge point. Q is a 

charge vector. Ø is a potential vector of contour points. In 

general, the number of this simultaneous linear equation is 

limited several 100’s, because of computer capacity. P is in 

general an asymmetrical matrix without a zero component. 

The finite element method, which allows to divide the entire 

field into finite elements and to assume a potential 

approximation function valid in each element, gives the 

potentials Øi of the node points of each element so that the 

electrostatic energy of the entire field may become minimum 

[11]. If the dielectric constant of a field is Ɛ, the electrostatic 

energy function F is given by equation 2. From the minimum 

condition boundary is given by equation 3. The author can get 

finally the equation 4 as a simultaneous linear equations. 
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In equation 4, T is a total matrix of element matrices. Ø is an 

unknown node potential vector. B is a constant vector. It is 

known that the T matrix is a band sparse and symmetric 

matrix. In the finite element method, the order of T matrix can 

reach several 1000’s in order to solve the entire field, 

however, its band width is about 5 to 15, in general [12-13]. 

Although the charge simulation method and the finite element 

method are based on different principles, the similar systems 

of equations 1 and 4 are obtained. As shown in Table 1, both 

the field calculations methods have complementary features 

each other [14]. The development of a new field calculation 

method, the combination of both the above methods, allows 

their features to be used and the new method will be applied to 

an extensive technical field. On the basis of this background, 

the combination method has been developed. If the author 

once form the coupling surface between charge simulation 

method and finite element method regions, the author can use 

this surface every time when the author calculate.  
 

TABLE I 
FIELD CALCULATION BY CHARGE SIMULATION METHOD AND FINITE ELEMENT METHOD 

 

Features Charge Simulation (CS) Method Finite Element (FE) Method 

Partial Field 
The potential of a charge goes to zero at the infinite-point. 
This enables an open space (not enclosed) and a partial field 
to be calculated. 

In general, this method is not appropriate for the calculation of 
a partial field. 

Boundary Shape 
Superposing the equipotential line by charges, essentially, 
this method is appropriate for a curved form rather than a 
straight line form. 

This method, which uses a straight line form so long as 
making use of no isoparametric elements, is not appropriate 
for a curved shape. 

Calculation Accuracy 
Calculation accuracy is very high. Errors on the electrodes 
other than the contour points can become large. 

An error occurs due to approximation by finite elements of the 
entire field. The error is a function of the number of elements. 

Multi-Dielectric Field 
As a rule, this method may be applied to the field with up to 
two dielectrics. The method is not appropriate for the field 
with more than two dielectrics. 

This method is not limited by the number of dielectrics and is 
appropriate for a multi-dielectrics field. 

Thin Electrode Field This method is not appropriate for a thin electrode. Appropriate in a desirable manner. 

Space Charge Field 
A singular point is required to be removed by taking charge 
distribution into consideration. Not easy. 

The solution may be easily obtained. Because of an energy 
problem. 

Others 
Some experience is required concerning charge positions, 
contour point positions, etc. 

This method may be universalized without experience. 
However, an automatical data generation program is necessary 
for input. 

 

III. NUMERICAL COMBINATION METHOD APPROACH 

In the combination method, entire field is separated into a 

“Charge Simulation (CS) method” region and a “Finite 

Element (FE) method” region. Naturally, the equation 1 

applies to the (CS) region, while the equation 4 applies to the 

(FE) region. On the coupling surface of both regions, the 

entire field is combined on condition of the continuity of 

potential and dielectric flux density. On the coupling surface, 

boundary conditions are given to both regions each other. If 

unknowns of the entire field are given as shown in Table 2. 
 

TABLE II 

UNKNOWN PARAMETERS 
 

nL Number of charges in the (CS) region 

nG 
Number of contour points given onto the coupling surface. 
(Number of charges given in the coupling surface) 

nG’ Number of potential nodes given onto the coupling surface 

nF Number of nodes in the (FE) region 

 

The author get the equation 5, since the coupling points 

given onto the coupling surface are common to both regions. 

Then, the total number N of unknowns is shown in equation 6. 
 

'G Gn n  (5) 

(2. )L F GN n n n    (6) 

 

If all N unknowns are determined, the electric field 

concerning the (CS) region, may be calculated by nL charges 

QL and nG charges QG, while the electric field concerning the 

(FE) region may be calculated by nF potentials ϕF and nG 

potentials ϕG. On the other hand the given conditions are; nL 

from contour point conditions in the (CS) region, nF from the 

equations of energy minimal conditions in the (FE) region, 

and (2 x nG) from potential continuity and normal component 

continuity of dielectric flux density on the coupling points 

arrayed on the coupling surface. Then the number of given 

conditions is N and the equations may be solved. Fig. 1 shows 

the coupling surface, coupling points arranged on the coupling 

surface and coupling charges corresponding to each coupling 

point. 

 
Fig.1. Coupling points and coupling charges 

Let’s consider the conditions which apply to coupling 

points. First, from the potential continuity, the author get the 

following equation 7. Using the potential coefficient P(i, j) and 

the unknown charge Qj, ϕi(CS) may be expressed as follows 

equation 8. 
 

( ) ( )
( 1 )Gİ CS İ FE
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ϕi(FE) is unknown itself. From the condition that the normal 
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components of dielectric flux density have continuity at the 

coupling points. The author get the equation 9. Further, the 

equation 10 is valid if the dielectric boundary is used as the 

coupling surface, while the equation 11 is valid if the inside of 

the same dielectrics is used as the coupling surface. Eni(CS) and 

Eni(FE) may be expressed as follows by equations 12 and 13. 
 

( ) ( )
( 1 )Gni CS ni FE

D D i n   (9) 
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In the equations 9 through 13, n indicates a normal 

direction, while Fn (i,j) in the equation 12 is the field coefficient 

of the direction n. di is the distance to a potential difference 

approximation point in the i-th coupling point, which is shown 

in Fig. 1. In Fig.1, the distance t from a coupling point to a 

coupling charge is generally expressed as a function of the 

distance ℓ between coupling points. Thus, the author get the 

equation 14. In equation 14, k is a constant. 
 

.i it k  (14) 

 

Fig. 2 shows the combination matrix constructed in such 

manner and the configuration of simultaneous linear 

equations. In the matrix of Fig. 2, the portions indicated by 

oblique lines are asymmetrical matrices without zero 

component. The entire combination matrix is asymmetric and 

a bad-status matrix with many zero elements. 

 
Fig.2. Combination matrix and configuration of simultaneous linear 

equations 

IV. DISCUSSION 

The combination method is applied to the two dimensional 

two-dielectric field where a cylinder and a grounded plane are 

used as electrodes as shown in Fig. 3 and calculation results 

are examined. The cylinder potential is to be 100% and the 

plane potential is to be 0% [15]. First, the dielectric field 

boundary is considered to be a coupling surface for both the 

calculation method regions and the dielectric field constant 

ratio is to be 1.0 - 3.0 [16]. Nine (nL) infinite line charges were 

arranged in the high voltage power transformer apparatus 

cylinder electrode and calculation was made by setting the 

coupling point conditions as a parameter. A program is 

available so that, in each element in the (FE) region, first and 

second polynomials may be used as a potential approximation 

function. To make the element in (FE) region, an 

automatically grid generation program was introduced. 

 
Fig.3. Calculation example of 2D-dimensional and 2D-dielectric field 

Table 3 shows calculation results of the potential and 

electric field strength of the point A and electric field strength 

of the point B in high voltage power transformer apparatus. 

Calculation results using charge simulation method by 330 

charges on the same electrode configuration are shown in this 

table for comparison. Calculation results of the potential and 

electric field strength of the point A (in Fig. 3) and of the 

electric field strength of the point B when k in the equation 14 

is equal to 1 and ℓi/ℓi+1 is equal to 1.0 in Fig. 1. 
 

TABLE III 
CALCULATION RESULTS USING CHARGE SIMULATION METHOD 

 

nG 
Potential at 

point A 
Electric field 

strength at point A 
Electric field 

strength at point B 

8 29.60264 (pu) 2.57639 (pu) 5.89505 (pu) 

12 28.60814 (pu) 2.62808 (pu) 5.98226 (pu) 

16 28.19811 (pu) 2.65422 (pu) 5.95752 (pu) 

20 27.97338 (pu) 2.66892 (pu) 5.99580 (pu) 

24 27.83155 (pu) 2.67823 (pu) 6.00434 (pu) 

28 27.73378 (pu) 2.68464 (pu) 6.01023 (pu) 

32 27.66252 (pu) 2.68931 (pu) 6.01452 (pu) 

36 27.60785 (pu) 2.69288 (pu) 6.01782 (pu) 

40 27.56525 (pu) 2.69566 (pu) 6.02038 (pu) 

44 27.53046 (pu) 2.69793 (pu) 6.02249 (pu) 

48 27.50130 (pu) 2.69981 (pu) 6.02426 (pu) 

52 27.47723 (pu) 2.70137 (pu) 6.02572 (pu) 

56 27.45629 (pu) 2.70272 (pu) 6.02700 (pu) 

60 27.43821 (pu) 2.70388 (pu) 6.02810 (pu) 

64 27.42243 (pu) 2.70489 (pu) 6.02906 (pu) 

By (CS) 
method 

330 
charges 

27.23134 (pu) 2.71510 (pu) 6.04001 (pu) 

 

Error of potential at point A is shown in Fig. 4. Error of 

field strength at point A is shown in Fig. 5. Figs. 4 and 5 show 

calculation errors indicated as a function of the number nG of 
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coupling points. As the number of coupling points increase, 

calculation errors decrease. 

 
Fig.4. Error of potential at point A 

 
Fig.5. Error of field strength at point A 

Fig. 6 shows that the electric field strength at the point A is 

indicated as a function of the number of elements in the finite 

element method region. The calculation results by using first 

and second order polynomials in (FE) region is shown for 

comparison. 

 
Fig.6. Field strength as function of (NE) 

Fig. 7 shows the electric field strength of the point A as a 

function of k in equation 14, where nG is kept constant. If nG is 

to be 64 and the coupling points are distributed in geometrical 

progression, it is revealed that calculation errors are not more 

than 0.2% for the potential and 0.1% for the electric field 

strength at the point A. The above calculation results reveal 

that calculation accuracy is a function of the number nG of 

coupling points and if the author apply this method to high 

voltage technique, the author can get satisfactory calculation 

results. The point C in Fig. 3 is a singular point and it is 

assumed that calculation errors increase in the vicinity of the 

point C. 

 
Fig.7. Field strength as function of (d/ℓ) 

Fig. 8 shows an example of equipotential lines of 2D 

dimensional electric field. The solid lines are obtained by 

using the coupling surface X, while the dotted lines are 

obtained by using the dielectric boundary as the coupling 

surface. The dotted lines show discontinuity at the 

equipotential line at point P. 

 
Fig.8. Equipotential lines of 2D dimensional electric field 

Fig. 9 shows a mesh in (FE) region. Fig. 10 shows a 

dielectric two flat plate field. 

 
Fig.9. Mesh of elements in FE method 
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Fig.10. Calculation example dielectric flat-plate field 

It is obviously shown that once formed the coupling surface 

between (CS) and (FE) region may be applied to various kinds 

of fields. Even if there are space charges or surface charges, 

namely the Poisson field, the combination method can be 

easily applied. As shown in Fig. 11, the equipotential lines are 

evidently distorted if space charges are distributed in the thin 

space on the dielectric plate. 

 
Fig.11. Calculation example of space charge field 

In that case, F’ is used as an energy functional that is valid 

in the (FE) region. F’ may be expressed as follows by equation 

15. In equation 15, ρ is the charge gratuity. The combination 

method may be also applied to a field with surface or volume 

leakage current. 
 

21
' .( )

2
F grad dv  

 
  

 
  

(15) 

Finally, Fig. 12 shows calculation results of equipotential 

lines when the combination method is applied to an 

axisymmetric three (3D) dimensional electric field. The 

principles of the coupling surface are the same as those in the 

two (2D) dimensional electric field. Ring charges are used in 

the (CS) region. The calculation of three (3D) dimensional 

axisymmetric multi dielectric field in the high voltage power 

transformer apparatus as shown in Fig. 12. The Fig. 12 

consists of four dielectric fields of air, glass, insulating oil and 

oil-impregnated paper and is non-enclosed field in the high 

voltage power transformer. Therefore, it is difficult to solve 

the electric field by the optimization theory based on charge 

simulation method or the finite element method, if they are 

used individually.  

 
Fig.12. Calculation of 3D dimensional axisymmetric multi dielectric field 

V. CONCLUSION 

As described above, the so-called combination method that 

combines the optimization theory based on charge simulation 

method and the finite element method has the following 

features. Calculation accuracy required to the high voltage 

power transformer apparatuses is fully met. Calculation 

accuracy depends on the relationship of the number of 

coupling points placed on the coupling surface between the 

(CS) and (FE) region. Using a high order polynomials allows 

high accuracy to be obtained in less coupling points. The 

coupling surface is proper to not only a dielectric boundary 

but also any other space. If a dielectric boundary is 

complicated, it is recommended for easier calculation that any 

other space should be used as the coupling surface. This 

method may be applied to non-enclosed field, a complicated 

dielectric field, a space-charge field, etc. If the coupling 

surface is once formed, the combination method can be 

applied easily to any other field to be calculated. 
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