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Abstract. For a given real polynomial f without nonnegative roots we study

monic integer polynomials g such that the product gf has positive (nonneg-

ative, respectively) coefficients. We show that monic integer polynomials g

with these properties can effectively be computed, and we give lower and up-

per bounds for their degrees.
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1. Introduction

For a polynomial f with real coefficients and positive leading coefficient the

quantities

δ(f) = inf {deg(g) : g ∈ R[X], gf has only positive coefficients}

and

δ0(f) = inf {deg(g) : g ∈ R[X] \ {0} , gf has only nonnegative coefficients}

have been introduced by J.-P. Borel [2]. It was shown by E. Meissner [16] and

A. Durand (see [2, Théorème 2]) that δ(f) is finite if and only if f does not have

a real nonnegative root; furthermore, δ0(f) is finite if and only if f does not have

a positive root. Moreover, if f does not have a real nonnegative root, a monic real

polynomial t such that tf has only nonnegative coefficients and deg(g) = δ0(f) can

effectively be computed; such a polynomial t is sometimes called a δ0-multiplier

of f . The analogous statement holds for f without a real positive root (see [6,

Theorem 12]). In [2, Théorème 6] an upper bound for δ(f) is given provided that

f admits only simple non-real roots of modulus one (see also [7, Theorem 20]).

We refer the reader to [2] for the historical roots of these quantities in uniform

distribution theory. De Angelis [10] characterized those polynomials whose suffi-

ciently large powers have all positive coefficients. A generalization of these results
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to multivariate homogeneous polynomials and further references to applications is

provided by C. Tan – W.-K. To [20].

In this short note we consider monic real polynomials f without real nonnegative

roots and extend our results in [4]. We show that for any natural number r a

monic integer polynomial s such that sf has only positive coefficients (nonnegative

coefficients, respectively) and s(0) ≤ rdeg(s) can effectively be computed. Further,

we give lower and upper bounds for their degrees and an application to positively

algebraic numbers. Finally, we illustrate our results by several examples.

2. Integer multipliers of elements of F

We need some notation and auxiliary results to deal with the set of polynomials

F = {f ∈ R[X] : f monic and f does not have a root in [0,∞)} .

For brevity, we denote by R>0 (R≥0, respectively) the set of positive (nonnegative,

respectively) real numbers.

Our main effort is focused on quadratic polynomials. More precisely, we consider

q := X2 − bX + c ∈ R[X]

with b > 0 and b2 < 4c. We know from [6, Lemma 1] that for every positive r the

constant

νq(r) := min {n ∈ N : (X + r)nq ∈ R>0[X]}

can be calculated in finitely many steps. In the sequel the product

(X + r)n · q = rnc+ rn−1(cn− br)X +

n∑
k=2

pkX
k + (nr − b)Xn+1 +Xn+2 (2.1)

with

pk :=

(
n

k − 2

)
rn−k+2 − b

(
n

k − 1

)
rn−k+1 + c

(
n

k

)
rn−k =

(
n

k − 1

)
rn−kf(k) (2.2)

and

f(k) :=
n+ 1− k

k
c− br +

k − 1

n+ 2− k
r2 (2 ≤ k ≤ n) (2.3)

is frequently used. Let us mention in passing that for small b we can easily find a

suitable r such that νq(r) is also small.

Lemma 2.1. Let b, c ∈ R>0 and q := X2 − bX + c.

(i) νq(r) = 1 for some r ∈ R>0 if and only if b2 < c. In this case, we have

r ∈ (b, c/b).



100 H. BRUNOTTE

(ii) νq(r) = 2 for some r ∈ R>0 if and only if c ≤ b2 < 4c/3. In this case, we

have

r ∈
(
c/(2b), 2c/b

)
.

Proof. (i) Clear by (2.1).

(ii) Let νq(r) = 2 with some r ∈ R>0, hence b2 ≥ c by (i), and (2.1) yields

r ∈ (b/2, 2c/b) and |r − b| >
√
b2 − c ,

and we are left to show b2 < 4c/3. If r < b then we have√
b2 − c < b− r < b

2

which immediately yields our assertion. If r ≥ b we deduce

r > b+
√
b2 − c ,

which easily shows that the relation b2 ≥ 4c/3 is impossible.

Now suppose c ≤ b2 < 4c/3 and pick r ∈
(
c/(2b), 2c/b

)
. We immediately check

r2 − 2br + c >
c2

4b2
> 0 ,

and our claim drops out by verifying (2.1). �

Our central lemma specifies a seemingly useful upper bound for νq(r) for a qua-

dratic q ∈ F \ R≥0[X] and arbitrary positive r, and its proof describes how νq(r)

can effectively be computed.

Lemma 2.2. Let b, c, r ∈ R>0 with b2 < 4c. For q := X2−bX+c we can effectively

compute νq(r) using the inequalities

max

{
b

r
,
br

c
, δ(q)− 1

}
< νq(r) ≤ min

{
m ∈ N : m > max

{
b

r
,
br

c
, w

}}
,

where we set

w :=
β +

√
β2 +Aγ

Ar
>

r

2
√
c− b

+ 2 · b
2 + b

√
c− 2c

4c− b2

with

A := 4c−b2, β := br2+2(b2−2c)r+bc and γ := r4+4br3+2(2b2−c)r2+4bcr+c2

and

δ(q) =

 π

arcsin
√

1− b2

4c

− 1 .

Further, we can effectively compute

νq,0(r) := min {n ∈ N : (X + r)nq ∈ R≥0[X]}
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using the inequalities

max

{
b

r
,
br

c
, δ0(q)

}
≤ νq,0(r) ≤ νq(r)

with

δ0(q) =

 π

arcsin
√

1− b2

4c

− 2 .

Proof. The values of δ(q) and δ0(q) are well-known [9,17,6]. Thus in view of (2.1)

the left hand side inequalities are clear. The remainder of the proof is essentially

given in [4, Lemma 1], however, for the convenience of the reader we repeat the

details here.

We immediately check

β2 +Aγ = b2r4 + 2
(
2(b2 − 2c)r + bc

)
)br2 +

(
2(b2 − 2c)r + bc

)2
+A
(
r4 + 4br3 + 2(2b2 − c)r2 + 4bcr + c2

)
= 4cr4 + 4(b2 − 2c+A)br3 + 2

(
b2c+ (4c− b2)(2b2 − c)

)
r2

+4(b2 − 2c)2r2 + 4(b2 − 2c)bcr + b2c2 +A
(
4bcr + c2

)
= 4cr4 + 8bcr3 + 2

(
10b2c− 2b4 − 4c2 + 2(b2 − 2c)2

)
r2

+4(b2 − 2c+A)bcr + b2c2 + (4c− b2)c2

= 4cr4 + 8bcr3 + 2
(
10b2c− 2b4 − 4c2 + 2(b4 − 4b2c+ 4c2)

)
r2 + 8bc2r + 4c3

= 4cr4 + 8bcr3 + 4(b2 + 2c)cr2 + 8bc2r + 4c3 > 0 .

Therefore, the largest root of

h(x) := Ar2x2 − 2βrx− γ

equals w, and we have

w >
1

A

(
br + 2(b2 − 2c) + 2

√
c
√

(r + b)2 + 2c
)
>

1

A

(
br + 2(b2 − 2c) + 2

√
c(r + b)

)
=

1

A

(
(b+ 2

√
c)r + 2b

√
c+ 2(b2 − 2c)

)
=

r

2
√
c− b

+ 2 · b
2 + b

√
c− 2c

4c− b2
.

Thus for

n := min

{
m ∈ N : m > max

{
b

r
,
br

c
, w

}}
we have

h(n) > 0 . (2.4)

Using (2.3) we observe

k(n− k + 2)f(k) = g(k)



102 H. BRUNOTTE

for 2 ≤ k ≤ n, where we set

g(x) := δx2 − ((2c+ br)n+ σ)x+ c(n2 + 3n+ 2)

with

δ := r2 + br + c and σ := r2 + 2br + 3c .

In view of (2.4) we immediately check that the discriminant of g is negative, where

we use the equalities

4δc− (2c+ br)2 = Ar2

and

((2c+ br)n+ σ)2 − 4δc(n2 + 3n+ 2) = −h(n) .

Thus g(x) > 0 for x ∈ R, hence for k ∈ {2, . . . , n} we have f(k) > 0 by (2.3) and

then pk > 0 by (2.2). In view of (2.1) we conclude p ∈ R>0[X]. If

(X + r)n−1q /∈ R>0[X]

we have found

νq(r) = n .

Otherwise, successively decreasing n we determine

m := max
{
k ∈ {1, . . . , n− δ(q)} : (X + r)n−kq ∈ R>0[X]

}
,

and thus we find

νq(r) = n−m.

Finally, similarly as above we determine

νq,0(r) = νq(r)−max
{
k ∈ {0, . . . , νq(r)− δ0(q)} : (X + r)νq(r)−kq ∈ R≥0[X]

}
.

�

Let us note an immediate consequence of the result above.

Corollary 2.3. Let b, c ∈ R with b2 < 4c and b ≥ c. For r ∈ N we have

νX2−bX+c(r) ≥ r + 1 .

Proof. In view of (br)/c ≥ r clear by Lemma 2.2. �

Now we turn to quadratic polynomials without a real root. For brevity we denote

by N0 the set of nonnegative rational integers.
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Corollary 2.4. Let r ∈ N, ω ∈ C \ R and set

q := (X − ω)(X − ω̄).

Further, set d0(ω) := d(ω) := 0 if <(ω) ≤ 0, otherwise d0(ω) := δ0(q) and d(ω) :=

δ(q).

(i) We can effectively compute a constant K0(r, ω) ∈ N0 and a monic integer

polynomial t with

d0(ω) ≤ deg(t) ≤ K0(r, ω), t · q ∈ R≥0[X] and t(0) = rdeg(t) . (2.5)

(ii) We can effectively compute a constant K(r, ω) ∈ N0 and a monic integer

polynomial s with

d(ω) ≤ deg(s) ≤ K(r, ω), s · q ∈ R>0[X] and s(0) = rdeg(s) .

Proof. For <(ω) ≤ 0 we set K(r, ω) = K0(r, ω) := 0 and s = t = 1, and for

<(ω) > 0 we apply Lemma 2.2 with K(r, ω) := νq(r) and K0(r, ω) := νq,0(r). �

We have shown in [4, Lemma 3] that for f ∈ F and any non-constant t ∈ R>0[X]

there exists some m ∈ N bounded by an effectively computable constant such that

tmf has only positive coefficients. Our main result here gives an explicit bound

for the degree and the constant coefficient of a monic integer polynomial t such

that tf has only nonnegative coefficients. The bound for the degree of t is given

explicitly in terms of the nonreal roots of f . To this end we need the (possibly

empty) multiset Zf,+ of roots α of f with positive real and imaginary parts.

Theorem 2.5. Let f be a monic real polynomial without real nonnegative roots

and r a natural number.

(i) There exists an effectively computable monic integer polynomial t with 1 ≤
t(0) ≤ rdeg(t) and∑

α∈Zf,+

d0(α) ≤ deg(t) ≤
∑

α∈Zf,+

K0(r, α)

such that the product tf has only nonnegative coefficients.

(ii) There exists an effectively computable monic integer polynomial s with

s(0) ≤ rdeg(s) and∑
α∈Zf,+

d(α) ≤ deg(s) ≤
∑

α∈Zf,+

K(r, α)

such that the product sf has only positive coefficients.
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Proof. We only show the first part and leave the proof of the second part to the

reader. Let us proceed by induction on the cardinality cf of Zf,+. If cf = 0 then

every monic irreducible factor of f has the form

X + r (r > 0) or X2 + bX + c (b ≥ 0, c > 0),

and we may choose t = 1; note that in this case the right hand side equals 0.

Now let cf > 0, pick α ∈ Zf,+ and set

q := (X − α)(X − ᾱ)

and g := f/q. Clearly, g ∈ F and cg < cf . By induction hypothesis there exists a

monic polynomial s ∈ Z[X] with∑
β∈Zg,+

d0(β) ≤ deg(s) ≤
∑

β∈Zg,+

K0(r, β)

and

s · g ∈ R≥0[X] and s(0) = rdeg(s) .

Corollary 2.4 yields a monic polynomial t ∈ Z[X] with (2.5), and we observe

(st)f = (tq)(sg) ∈ R≥0[X] and (st)(0) = rdeg(s)+deg(t) = rdeg(st)

and ∑
γ∈Zf,+

d0(γ) = d0(α) +
∑

β∈Zg,+

d0(β) ≤ deg(t) + deg(s)

= deg(st) ≤ K0(r, α) +
∑

β∈Zg,+

K0(r, β) =
∑

γ∈Zf,+

K0(r, γ) .

�

Recall that the algebraic number α is positively algebraic if neither α nor any of

its conjugates over Q is a nonnegative real number [14, Section 2]. These numbers

were characterized by A. Dubickas [12], and T. Zäımi [21] gave an upper bound for

the degree (in terms of the degree, the discriminant and the Mahler measure of α)

of a polynomial with positive rational coefficients which nullifies α (see also [3,15]).

Our result immediately yields the following.

Corollary 2.6. Let f be the minimal polynomial of the algebraic number α 6= 0.

Then α is positively algebraic if and only if there exists a monic integer polynomial

t with t(0) = 1 and

deg(t) ≤
∑

ω∈Zf,+

K0(1, ω)

such that the product tf has only nonnegative coefficients.
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Some simple numerical examples illustrate our statements.

Example 2.7. (i) Let b > 0 and c ≥ b2. Then there exists some r ∈ N with

p := (X + r) · (X2 − bX + c) ∈ R>0[X] if and only if
(
b, c

b

)
∩ N 6= ∅ .

Similarly,

p ∈ R≥0[X] ⇐⇒
[
b,
c

b

]
∩ N 6= ∅ .

For instance, for

q := X2 − 2X + 6 ∈ Z[X]

Lemma 2.1 tells us νq(r) > 1 for every natural r, but

p := (X +
5

2
) · q = X3 +

1

2
X2 +X + 15 ∈ R>0[X].

(ii) Certainly, powers of linear integer polynomials cannot be expected to yield

multipliers of smallest degree. For instance, for

q := X2 − 4X + 12 ∈ Z[X]

we have

δ(q) = δ0(q) = νq,0(2) = 2, νq(2) = 4,

and

(X3 + 5X2 + 9X + 2) · q = X5 +X4 +X3 + 26X2 + 100X + 24 ∈ N[X].

Another interesting example is given in [7, Lemma 18].

(iii) It should be pointed out that a multiplier of f can have negative coefficients

if the degree of f is larger than two (e.g., see by [1, Example pp. 247-249]).

(iv) By [14, Section 2] the number (4 + 3i)/5 ∈ C is positively algebraic, and

its minimal polynomial is q = X2 − (8/5)X + 1 with δ(q) = δ0(q) = 3.

Following the proof of Lemma 2.2, for a few natural integers r we compute

lower and upper bounds L(r) and U(r) for νq(r) and then the constants

νq(r) and νq,0(r). The results are listed in Table 1.

r L(r) U(r) νq(r) νq,0(r)

1 4 9 9 7

2 4 10 9 9

3 5 12 12 11

4 7 14 14 14

5 9 17 17 16

Table 1
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Further, we exhibit the polynomials

pr := (X + r)νq,0(r) · q :

p1 = X9 +
27

5
X8 +

54

5
X7 +

42

5
X6 +

42

5
X3 +

54

5
X2 +

27

5
X + 1 ,

p2 = X11 +
82

5
X10 +

581

5
X9 +

2298

5
X8 +

5424

5
X7 +

7392

5
X6 +

4704

5
X5

+
192

5
X4 +

1536

5
X3 +

7168

5
X2 +

7424

5
X + 512

p3 = X13+
157

5
X12+

2216

5
X11+3696X10+20097X9+73953X8+

919512

5
X7+

1475496

5
X6

+264627X5 + 72171X4 +
1102248

5
X2 +

1830519

5
X + 177147

p4 = X16+
272

5
X15+

6837

5
X14+

105112

5
X13+

1102192

5
X12+

8316672

5
X11+

46382336

5
X10

+
192997376

5
X9 +

595685376

5
X8 +

1330774016

5
X7 +

2033647616

5
X6 +

1860698112

5
X5

+
667942912

5
X4 +

117440512

5
X3 +

1459617792

5
X2 +

2550136832

5
X + 268435456

p5 = X18+
392

5
X17+2873X16+65280X15+1028500X14+11900000X13+104422500X12

+707200000X11 + 3722468750X10 + 15193750000X9 + 47480468750X8

+110500000000X7 + 181289062500X6 + 185937500000X5 + 83007812500X4

+103759765625X2 + 244140625000X + 152587890625

(v) Certainly, strict inequality on the left hand side in Lemma 2.2 is possible.

E. g., for

q := X2 − 11

5
X +

7

2

we have δ(q) = 2 and

(X2 + 4X + 6) · q = X4 +
9

5
X3 +

7

10
X2 +

4

5
X + 21 ∈ R>0[X] .

Thus we have a monic integer multiplier of degree less than νq(r) for every

r ∈ R>0 (see Lemma 2.1).
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3. Concluding remarks

The proof of Lemma 2.2 allows to formulate an algorithm for the computation

of the bounds and the multipliers given in Theorem 2.5. The examples in Table 1

seem to suggest that for quadratic polynomials the ν-values always lie close to the

upper bounds given by Lemma 2.2. It might be an interesting problem to quantify

this observation.

Let p be a CNS polynomial1. S. Akiyama [8] predicted that the leading coefficient

of the canonical representative of −1 with respect to p equals 1. Since p belongs to

F Theorem 2.5 shows that there is a monic polynomial t ∈ Z[X] with the properties

t · p ∈ N0[X] and t(0) = 1 .

To prove Akiyama’s Conjecture it suffices to show that apart from the leading and

the constant terms all coefficients of tp belong {0, . . . , p(0)− 1} (see [8, Lemma 4.6]).

Unfortunately, our approach here does not provide a further progress in this direc-

tion.

Using convolutions H. G. Diamond and M. Essen [11, Theorem 5.1] determined

analogues of the quantities defined above under the additional assumption that all

coefficients of a multiplier of f are nonnegative.

The study of the class of polynomials without nonnegative roots naturally leads

to polynomials with positive coefficients which admit irreducible factors with neg-

ative coefficients (e.g., the irreducible quadratic polynomial X2 − X + 4 admits

the linear polynomial X + 2 as a multiplier, and this yields the factorization

X3 + X2 + 2X + 8 = (X2 −X + 4) · (X + 2)). Thus there might be a connection

of our problem here with the factorization of real polynomials with nonnegative

coefficients (e.g., see [18] and the literature cited therein).

Finally, we should remark that Theorem 2.5 corrects the proof of [5, Theorem 21]:

In its proof it was not shown that an integer multiplier can be found with leading

coefficient 1.

Acknowledgement. Some calculations have been performed by CoCalc [19].
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