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Abstract. Let Fix(X,Y ) be a semigroup of full transformations on a set X

in which elements in a nonempty subset Y of X are fixed. In this paper, we

construct the Cayley digraphs of Fix(X,Y ) and study some structural proper-

ties of such digraphs such as the connectedness and the completeness. Further,

some prominent results of Cayley digraphs of Fix(X,Y ) relative to minimal

idempotents are verified. In addition, the characterization of an equivalence

digraph of the Cayley digraph of Fix(X,Y ) is also investigated.
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1. Introduction

In algebraic graph theory, the structures of algebraic methods are studied and

then applied to problems about graphs. An interesting topic is to study properties of

graphs in connection to algebraic systems. A well-known connection between graphs

and algebraic systems is the construction of Cayley graphs of groups. The Cayley

graph was first introduced for finite groups by Arthur Cayley in 1878. This concept

was considered to explain the structures of abstract groups which are described

by the set of group generators. Furthermore, the construction of Cayley graphs

is also applied to semigroups. As the fact that Cayley graphs of semigroups can

reflect the structural properties of semigroups, such semigroups can be visualized

by constructing their Cayley graphs. For introducing the definition of the Cayley

graph, let S be a semigroup and A a subset of S. The Cayley graph Cay(S,A) of

a semigroup S with respect to A is defined to be a digraph with vertex set S and

arc set consisting of ordered pairs (x, xa) for some a ∈ A and x is an arbitrary

element in S. The set A is called a connection set of Cay(S,A). It is easily visible

that if A is an empty set, then Cay(S,A) is considered to be an empty graph.

Thus throughout this paper, the connection set A will be nonempty. The Cayley
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graphs of semigroups have received serious attention in the literature. A lot of work

has been done on the study of Cayley graphs of semigroups with respect to their

graph theoretical properties. Many results of Cayley graphs of particular types

of semigroups have been investigated. In 2006, Kelarev [9] described all inverse

semigroups with Cayley graphs which are disjoint unions of complete graphs. In

2007, Fan and Zeng [5] obtained a complete description of all vertex-transitive

Cayley graphs of bands. Later in 2010, Hao and Luo [6] investigated the basic

structures and properties of Cayley graphs of left groups and right groups. In

the same year, Khosravi and Mahmoudi [10] characterized the Cayley graphs of

rectangular groups and studied their vertex-transitivity. Further in 2011, Luo,

Hao and Clarke [11] considered Cayley graphs of completely simple semigroups.

In addition, they studied some structural properties such as the completeness and

strongly connected bipartite Cayley graphs. Indeed, it turns out that Cayley graphs

of semigroups are significant not only in semigroup theory, but also in constructions

of various interesting types of graphs with nice combinatorial properties. Several

prominent properties of those graph constructions have been presented in numerous

journals. In 2015, Suksumran and Panma [16] proposed some concepts on connected

Cayley graphs of semigroups. Later in 2016, Afkhami et al. [1] constructed a new

class of Cayley graphs and studied their structural properties similar to the research

presented by Sinha and Sharma [15] in the same year. Furthermore, in 2018, Panda

and Krishna [12] investigated the connectedness of power graphs of finite groups.

For the part of semigroup theory, one of well-known semigroups that plays a

crucial role in the study of semigroups is a transformation semigroup. In group

theory, the well-known theorem called Cayley’s theorem asserts that any group G

is isomorphic to a subgroup of the symmetric group of the set G. Also in semigroup

theory, an analogue of Cayley’s theorem shows that any semigroup can be realized

as a transformation semigroup of certain appropriate set. This would be a general

result why the transformation semigroup is interesting to study. Some prominent

results of Cayley graphs of transformation semigroups have been obtained. For

instance, in 2017, Tisklang and Panma [17] investigated the connectedness of Cay-

ley graphs of finite transformation semigroups with restricted range. Moreover,

Riyas and Geetha [14], in 2018, studied the Cayley graphs of full transformation

semigroups relative to the sets of idempotents. They also provided the existence

of Hamiltonian cycles in such Cayley graphs. Our purpose is to study some struc-

tural properties of Cayley graphs of certain transformation semigroups. Let X be

a set and Y a nonempty subset of X. Further, let T (X) denote the semigroup of
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transformations from X into itself under the composition of maps which is gener-

ally called the full transformation semigroup. Define the transformation semigroup

Fix(X,Y ) with a fixed set Y as follows:

Fix(X,Y ) = {α ∈ T (X) : aα = a for all a ∈ Y }.

Then Fix(X,Y ) is a subsemigroup of T (X). Virtually, whenever Y has only one

element, say a, the semigroup we consider is the set of all self-maps on X having a

as their only common fixed point which is the one of interesting topics studied in

fixed point theory.

The semigroup Fix(X,Y ) was first introduced by Honyam and Sanwong [7] in

2013. They characterized the regularity, Green’s relations and ideals of Fix(X,Y ).

Later in 2016, Chaiya, Honyam and Sanwong [2] presented the characterization of

the natural partial order on Fix(X,Y ).

Here, we shall investigate certain classes of Cayley graphs of Fix(X,Y ) such

as connected digraphs, complete digraphs and equivalence digraphs. Some useful

notations and relevant terminologies related to this paper will be provided in the

next section.

2. Preliminaries and notations

In this section, some basic preliminaries and relevant notations used in what

follows on digraphs, semigroups and Cayley graphs of semigroups are described.

For more information, we refer to [13] on digraphs and to [3,4,8] on semigroups.

All sets mentioned in this paper are assumed to be finite.

A digraph D (directed graph) is a pair (V (D), E(D)) where V (D) is a nonempty

set, called a vertex set, whose elements are called the vertices and E(D) is the

subset of the set of ordered pairs of elements of V (D). In other words, the set

E(D) can be considered as a relation on the set V (D). The elements of E(D) are

called the arcs of D and E(D) is called an arc set. Furthermore, an arc of the form

(u, u) is called a loop of D. If every arc of D is expressed as (u, v) where u 6= v,

then D is said to be a loopless digraph.

A digraph D is called a complete digraph if for each u, v ∈ V (D), (u, v) ∈ E(D).

Moreover, the digraph D is said to be semi-complete if for every u, v ∈ V (D),

(u, v) ∈ E(D) or (v, u) ∈ E(D). Furthermore, D is said to be directed complete

if it is loopless and for every u, v ∈ V (D) with u 6= v, either (u, v) ∈ E(D) or

(v, u) ∈ E(D).

Let D be a digraph. Consider a sequence P of distinct vertices in V (D) as

follows:
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P := v1, v2, . . . , vk for some k ∈ N.

If P satisfies the condition that either (vi, vi+1) ∈ E(D) or (vi+1, vi) ∈ E(D) for

all i = 1, 2, . . . , k − 1, then P is said to be a semidipath from v1 to vk in D.

Moreover, if P satisfies that (vi, vi+1) ∈ E(D) for all i = 1, 2, . . . , k − 1, then P is

said to be a dipath from v1 to vk in D. For convenience, throughout this paper, the

notation [u, v]-semidipath ([u, v]-dipath) stands for the semidipath (dipath) from u

to v. For any two distinct vertices u and v in V (D), a digraph D ia said to be

strongly connected if a [u, v]-dipath exists in D. Moreover, D is said to be weakly

connected if a [u, v]-semidipath exists in D. The digraph D is said to be locally

connected whenever a [u, v]-dipath exists in D, a [v, u]-dipath must exist in D as

well. In addition, D is said to be unilaterally connected if either a [u, v]-dipath or

a [v, u]-dipath exists in D. Furthermore, a maximal weakly connected subdigraph

of D will be called a component of D. A digraph D is called an equivalence digraph

if E(D) is an equivalence relation on the set V (D).

Recall that the Cayley digraph (simply called Cayley graph) Cay(S,A) of a

semigroup S with respect to a connection set A is a digraph with vertex set

V (Cay(S,A)) = S and arc set E(Cay(S,A)) = {(x, y) ∈ S×S : y = xa for some a ∈
A}. The semigroup we study in this paper is Fix(X,Y ), the semigroup of trans-

formations with a fixed set. Further basic information and standard properties of

Fix(X,Y ) are described as follows.

Let X be a set and Y a nonempty subset of X. For convenience, we let Y =

{ai : i ∈ I} throughout this paper, unless otherwise stated. Hence for each α ∈
Fix(X,Y ), we observe that aiα = ai for all i ∈ I. According to the convention

presented in [7], we now give a presentation for the elements of Fix(X,Y ). For each

α ∈ Fix(X,Y ), we write

α =

(
Ai Bj

ai bj

)

and take as understood that the subscripts i and j belong to the index sets I and

J , respectively. Moreover, Xα, the image of α, is the disjoint union of {ai : i ∈ I}
and {bj : j ∈ J} in which aiα

−1 = Ai and bjα
−1 = Bj . Thus Ai ∩ Y = {ai},

Bj ⊆ X\Y . Actually, the index set J can be empty in general. Furthermore, the

notation πα stands for the set {xα−1 : x ∈ Xα}.
Let A and B be families of sets. If for each A ∈ A , there exists B ∈ B in which

A ⊆ B, we say that A refines B. It is not hard to prove the property stated in

the following lemma.
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Lemma 2.1. Let α, β ∈ Fix(X,Y ). Then α = βγ for some γ ∈ Fix(X,Y ) if and

only if πβ refines πα.

In this paper, we investigate the properties of the connectedness and the com-

pleteness of Cayley graphs Cay(Fix(X,Y ), A). Further, some structural properties

of Cayley graphs of Fix(X,Y ) related to minimal idempotents are considered in the

next section.

3. Some properties of Cayley graphs of Fix(X,Y ) related to minimal

idempotents

Let S be a semigroup. An element e ∈ S is called an idempotent if e2 = e. The

natural partial order on E(S), the set of all idempotents on S, is defined by

e ≤ f if and only if e = ef = fe.

An idempotent e is said to be minimal if e has the property f ∈ E(S) and f ≤ e

implies f = e.

Generally, it is well known that α ∈ T (X) is an idempotent if and only if xα = x

for all x ∈ Xα. Consequently, we obtain that

α =

(
Ai Bj

ai bj

)
∈ Fix(X,Y )

is an idempotent if and only if bj ∈ Bj for all j ∈ J .

Further, let Em be a set of all minimal idempotents of Fix(X,Y ). We can

conclude from [7] that Em is not empty and it precisely contains all idempotents

whose images coincide with Y , that is,

Em =

{(
Ai

ai

)
: {Ai : i ∈ I} is a partition of X with ai ∈ Ai

}
.

Moreover, we consider the property that how any minimal idempotent plays a role

in the construction of the Cayley graph of Fix(X,Y ) with respect to a connection

set A.

First of all, we note that every minimal idempotent is a left zero element of

Fix(X,Y ) which is shown as follows. Let µ be a minimal idempotent in Fix(X,Y ).

Then µ is written as follows:

µ =

(
Ci

ai

)
where {Ci : i ∈ I} is a partition of X and ai ∈ Ci. Let α ∈ Fix(X,Y ). Thus we

can write

α =

(
Ai Bj

ai bj

)
.
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We observe that µα = µ, as required.

As the above consequence, we directly obtain that Cay(Fix(X,Y ), A) always

contains loops since (µ, µ) ∈ E(Cay(Fix(X,Y ), A)) for all µ ∈ Em.

Let α be any element in Fix(X,Y ). We define

N+(α) = {β ∈ Fix(X,Y ) : β 6= α and (α, β) ∈ E(Cay(Fix(X,Y ), A))}.

As µ ∈ Em is a left zero, all the arcs from µ will form loops and hence we have

the following lemma.

Lemma 3.1. Let A be a nonempty subset of Fix(X,Y ) and µ a vertex of

Cay(Fix(X,Y ), A). If µ ∈ Em, then N+(µ) = ∅.

We now describe the Cayley graph of Fix(X,Y ) whose connection set is a sin-

gleton subset of Em.

Theorem 3.2. Let |Em| = n for some n ∈ N and A be a one-element-subset of

Em. Then Cay(Fix(X,Y ), A) is a disjoint union of n subdigraphs which each of

them contains exactly one minimal idempotent as its vertex.

Proof. Let A = {µ} for some µ ∈ Em. Let C be a component of Cay(Fix(X,Y ), A)

and α a vertex of C. Then we can write

α =

(
Ai Bj

ai bj

)
.

Since µ ∈ Em, µ is also expressed as

µ =

(
Ci

ai

)
.

For each bj ∈ Xα, we have bj ∈ Ckj for some kj ∈ I. Let K = {kj ∈ I : bj ∈
Ckj for some j ∈ J} and I ′ = I\K. Then

αµ =

(
Ai Bj

ai bj

)(
Ci

ai

)
=

(
Ai′ Akj ∪Bj
ai′ akj

)
∈ Em.

Since (α, αµ) ∈ E(Cay(Fix(X,Y ), A)), we obtain that αµ lies in C. Hence C

contains a minimal idempotent αµ as its vertex.

Next, we will show that C contains exactly one minimal idempotent as its vertex.

Suppose that µ1 and µ2 are different minimal idempotents contained in V (C). Thus

there exists a [µ1, µ2]-semidipath in C. Since N+(µ1) = ∅ = N+(µ2) by Lemma

3.1, there exists a vertex α in which (α, α1) and (α, α2) are arcs of the [µ1, µ2]-

semidipath. Hence the semidipath can be expressed as
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α1

µ1, β1, β2, . . . , βs, βs+1, βs+2, βs+3, βs+4, . . . , βt, µ2

α α2

where (β1, µ1), (βt, µ2), (βs+2, βs+1), (βs+2, βs+3) are arcs of the [µ1, µ2]-semidipath

and either (βi, βi+1) or (βi+1, βi) is an arc of the [µ1, µ2]-semidipath for 1 ≤ i ≤ s

and s+ 3 ≤ i ≤ t− 1 for some t ∈ N. By the definition of a semidipath, all vertices

occurred in the above expression of the [µ1, µ2]-semidipath must be distinct. Since

(α, α1), (α, α2) ∈ E(Cay(Fix(X,Y ), A)), we have α1 = αµ and α2 = αµ. It follows

that α1 = α2, this gives a contradiction. Therefore, there is precisely one minimal

idempotent in V (C).

Since each component of Cay(Fix(X,Y ), A) has exactly one minimal idempotent

and a graph is a disjoint union of its components, we have the result. �

According to the result stated in Theorem 3.2, we are interested to consider the

structure of each component. The following results present some structural and

algebraic properties of the component of Cay(Fix(X,Y ), A).

Corollary 3.3. Let A = {µ} for some µ ∈ Em and η ∈ Em be arbitrary. If C

is the component of Cay(Fix(X,Y ), A) containing η, then (α, η) ∈ E(C) for all

α ∈ V (C). Consequently, (α, β) /∈ E(C) for all α, β ∈ V (C)\{η}.

Proof. Assume that C is the component of Cay(Fix(X,Y ), A) containing η. For

each α ∈ V (C), we have that αµ is a minimal idempotent so that αµ = η. Hence

any arc in C is of the form (α, η). �

The following example illustrates more clearly the above results, especially The-

orem 3.2 and Corollary 3.3.

Example 3.4. Let X = {1, 2, 3, 4} and Y = {1, 2}. Then Fix(X,Y ) consists of 16

elements which each of them can be written as

α =

(
1 2 3 4

1 2 p q

)
where p, q ∈ X.

For convenience, we will write α = (pq) in stead of writing α as above. We now let

A = {(21)} where (21) is a minimal idempotent of Fix(X,Y ). Hence the Cayley

graph Cay(Fix(X,Y ), A) is shown in Figure 1.
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Figure 1. Cay(Fix(X,Y ), A)

Proposition 3.5. Let A = {µ} for some µ ∈ Em and α ∈ Fix(X,Y ). Let C

be the component of Cay(Fix(X,Y ), A) containing a minimal idempotent η. Then

α ∈ V (C) if and only if α satisfies the following conditions:

(i) πα refines πη;

(ii) for each y ∈ Xα, (yα−1)η = {yµ}.

Proof. Assume that α ∈ V (C). By Corollary 3.3, we conclude that (α, η) ∈ E(C).

Then η = αµ and so πα refines πη by Lemma 2.1. Next, let y ∈ Xα. We observe

that (yα−1)η = (yα−1)αµ = {yµ}.
Conversely, assume that the conditions hold. It is clear when α = η. We consider

when α 6= η. From πα refines πη, we have by Lemma 2.1 that η = αβ for some

β ∈ Fix(X,Y ). Let x ∈ X. Suppose that xα = y for some y ∈ X. Then x ∈ yα−1

which implies that xη ∈ (yα−1)η = {yµ} by the second condition. We get that

xη = yµ. Hence xαβ = xη = yµ = xαµ, that is, αβ = αµ. Therefore, η = αµ

which leads to (α, η) ∈ E(Cay(Fix(X,Y ), A)). Since η ∈ V (C), we conclude that

α ∈ V (C). �

4. Connectedness of Cay(Fix(X,Y ), A)

In this section, we provide results on connectedness of Cay(Fix(X,Y ), A) con-

sisting of the strongly connectedness, weakly connectedness, locally connectedness,

and unilaterally connectedness.

Theorem 4.1. Let A be a nonempty subset of Fix(X,Y ). Then Cay(Fix(X,Y ), A)

is strongly connected if and only if X = Y .
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Proof. Assume that X = Y . Clearly, Fix(X,Y ) contains exactly one element, say

α, which directly implies that A = {α}. Then Cay(Fix(X,Y ), A) will be as shown

in Figure 2.

b
α

Figure 2. Cay({α}, {α})

Hence Cay(Fix(X,Y ), A) is strongly connected.

Conversely, suppose that Y is a proper subset of X. It is not hard to verify that

|Fix(X,Y )| ≥ 2. For fixed ai0 ∈ Y , let I ′ = I\{i0}. Define

µ =

(
X\Y ∪ {ai0} ai′

ai0 ai′

)
.

Then µ ∈ Em. By Lemma 3.1, we have N+(µ) = ∅. That means there is no arc

joining from µ to any element in Fix(X,Y )\{µ}. Consequently, there is no dipath

from µ to another vertex. Therefore, Cay(Fix(X,Y ), A) is not strongly connected.

This completes the proof. �

Before we present the weakly connectedness of Cay(Fix(X,Y ), A), we need to

prescribe the special notation as follows. Let A be a nonempty subset of Fix(X,Y ),

the notation A1 stands for the set A adjoined the identity idX of Fix(X,Y ), that

is,

A1 =

{
A ∪ {idX} if idX /∈ A;

A if idX ∈ A.

Theorem 4.2. Let A be a nonempty subset of Fix(X,Y ). Then Cay(Fix(X,Y ), A)

is weakly connected if and only if one of the following conditions holds:

(i) X = Y ;

(ii) for each α, β ∈ Fix(X,Y ) where α 6= β, there exist distinct elements

α0, α1, α2, . . . , αk+1 ∈ Fix(X,Y ) such that αiA
1 ∩ αi+1A

1 6= ∅ for all

i = 0, 1, 2, . . . , k where α0 = α and αk+1 = β.

Proof. Assume that Cay(Fix(X,Y ), A) is weakly connected. We now suppose that

Y is a proper subset of X. Then |Fix(X,Y )| ≥ 2. Next, let α, β ∈ Fix(X,Y ) be

such that α 6= β. By the weakly connectedness of Cay(Fix(X,Y ), A), there exists

a sequence of vertices α1, α2, . . . , αk of Cay(Fix(X,Y ), A) in which
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α = α0, α1, α2, . . . , αk, αk+1 = β

is a semidipath in Cay(Fix(X,Y ), A) and then those vertices together with α and

β are all distinct. Let i ∈ {0, 1, 2, . . . , k}. By the property of the [α, β]-semidipath

expressed above, we obtain that (αi, αi+1) ∈ E(Cay(Fix(X,Y ), A)) or (αi+1, αi) ∈
E(Cay(Fix(X,Y ), A)). Thus αi+1 = αiλ or αi = αi+1δ for some λ, δ ∈ A. Hence

αi+1 ∈ αi+1A
1 ∩ αiA1 or αi ∈ αiA1 ∩ αi+1A

1, as required.

Conversely, if X = Y , then Cay(Fix(X,Y ), A) is weakly connected since it is

strongly connected as shown in Theorem 4.1. Next, we assume that the second

condition holds. Let α, β ∈ Fix(X,Y ) be such that α 6= β. Then there exist

distinct elements α0, α1, α2, . . . , αk+1 ∈ Fix(X,Y ) such that αiA
1 ∩ αi+1A

1 6= ∅
for all i = 0, 1, 2, . . . , k where α0 = α and αk+1 = β. Thus for each i, there exists

λ ∈ αiA1 ∩ αi+1A
1 which implies that αiδ = λ = αi+1σ for some δ, σ ∈ A1. We

now have two possibilities to investigate.

Case 1: either δ or σ is an identity. It is easily seen that there exists a directed

edge joining between αi and αi+1.

Case 2: neither δ nor σ is an identity. Then (αi, λ), (αi+1, λ) ∈ E(Cay(Fix(X,Y ), A)).

Therefore, an [αi, αi+1]-semidipath exists in Cay(Fix(X,Y ), A).

From the above two cases, we can find an [α, β]-semidipath in Cay(Fix(X,Y ), A),

certainly. This completes the proof of the weakly connectedness of Cay(Fix(X,Y ), A).

�

The above theorem provides some necessary and sufficient conditions for

Cay(Fix(X,Y ), A) being weakly connected which are quite general. To illustrate

more clearly, we present another characterization of the weakly connectedness of

Cay(Fix(X,Y ), A) where X\Y contains exactly one element as follows.

Theorem 4.3. Let A be a nonempty subset of Fix(X,Y ) where |X\Y | = 1. The

following conditions are equivalent:

(i) Cay(Fix(X,Y ), A) is weakly connected;

(ii) Y ⊆
⋃
α∈A

(X\Y )α;

(iii) Em ⊆ A.

Proof. Let A be a nonempty subset of Fix(X,Y ) where |X\Y | = 1. Assume that

X\Y = {b}.
(i) ⇒ (ii) Let Cay(Fix(X,Y ), A) be weakly connected. Further, let ai ∈ Y and

I ′ = I\{i}. Define µ ∈ Fix(X,Y ) by

µ =

(
{ai, b} ai′

ai ai′

)
.
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Then µ ∈ Em. It follows that N+(µ) = ∅ by Lemma 3.1. Since Cay(Fix(X,Y ), A) is

weakly connected, there exists β ∈ Fix(X,Y )\{µ} such that (β, µ) ∈
E(Cay(Fix(X,Y ), A)). That means µ = βγ for some γ ∈ A and so µ ∈ N+(β). By

the contraposition of Lemma 3.1, we conclude that β is not a minimal idempotent.

It follows that bβ /∈ Y , that is, bβ = b. Therefore, ai = bµ = bβγ = bγ ∈ (X\Y )γ ⊆⋃
α∈A

(X\Y )α. Thus Y ⊆
⋃
α∈A

(X\Y )α.

(ii) ⇒ (iii) Assume that Y ⊆
⋃
α∈A

(X\Y )α. Let µ ∈ Em. Then bµ ∈ Y ⊆⋃
α∈A

(X\Y )α which implies that bµ ∈ (X\Y )β for some β ∈ A. Hence bµ = bβ.

Since aµ = a = aβ for all a ∈ Y and we have bµ = bβ, it follows that µ = β ∈ A
which leads to Em ⊆ A.

(iii) ⇒ (i) Let Em be a subset of A and α, β ∈ Fix(X,Y ). It is obvious that

αµ1 = η1 and βµ2 = η2 for some µ1, µ2, η1, η2 ∈ Em ⊆ A. Hence (α, η1), (β, η2) ∈
E(Cay(Fix(X,Y ), A)). Moreover, we have (idX , η1), (idX , η2) ∈ E(Cay(Fix(X,Y ), A)).

Therefore, we can find an [α, β]-semidipath in Cay(Fix(X,Y ), A) which implies that

Cay(Fix(X,Y ), A) is weakly connected. �

For characterizing the locally connectedness of Cay(Fix(X,Y ), A), we need the

following lemma.

Lemma 4.4. Let A be a nonempty subset of Fix(X,Y ) and α, β ∈ Fix(X,Y ). If

there exists a dipath joining from α to β in Cay(Fix(X,Y ), A), then πα refines πβ.

Proof. Assume that there exists a dipath P joining from α to β in Cay(Fix(X,Y ), A).

Thus P can be expressed as a sequence α, γ1, γ2, . . . , γk, β of some vertices of

Cay(Fix(X,Y ), A). Hence β = γkλ1 = (γk−1λ2)λ1 = . . . = (γ1λk)λk−1 · · ·λ2λ1 =

αλk+1λk · · ·λ2λ1 where λi ∈ A for all i = 1, 2, . . . , k + 1. Since λk+1λk · · ·λ2λ1 ∈
Fix(X,Y ), we obtain that πα refines πβ by Lemma 2.1. This completes the proof.

�

Further, the notation HidX means an equivalence H-class containing idX and

elements in Fix(X,Y ) which H-relate to idX where H is one of Green’s relations

(see [8]). Moreover, it is well known that HidX is a group of all bijections, exactly.

Theorem 4.5. Let A be a nonempty subset of Fix(X,Y ). Then Cay(Fix(X,Y ), A)

is locally connected if and only if A ⊆ HidX .

Proof. Assume that Cay(Fix(X,Y ), A) is locally connected. We first let α ∈ A.

Then (idX , α) ∈ E(Cay(Fix(X,Y ), A)). By the locally connectedness of Cay(Fix(X,Y ), A),

it follows that there must be an [α, idX ]-dipath in Cay(Fix(X,Y ), A). By Lemma
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4.4, we can conclude that πα refines πidX and so α is injective. Since X is finite,

we obtain that α is a bijection, that is, α ∈ HidX . Hence A ⊆ HidX , as required.

Conversely, assume thatA ⊆ HidX . Let α, β ∈ Fix(X,Y ) be such that Cay(Fix(X,Y ), A)

contains an [α, β]-dipath. Then there exist bijections λ1, λ2, . . . , λk ∈ A ⊆ HidX for

some k ∈ N in which β = αλ1λ2 · · ·λk. Without loss of generality, we may assume

that such λi is not an identity of Fix(X,Y ) for all i = 1, 2, . . . , k. Since HidX is a

finite group, we can define the order of λi as ri where ri > 1 for all i = 1, 2, . . . , k,

that is, λrii is an identity of HidX which coincides with the identity of Fix(X,Y ).

Hence

α = βλrk−1k · · ·λr2−12 λr1−11 where λ1, λ2, . . . , λk ∈ A.

This ensures that there exists a dipath from β to α. So Cay(Fix(X,Y ), A) is locally

connected. �

Theorem 4.6. Let A be a nonempty subset of Fix(X,Y ). Then Cay(Fix(X,Y ), A)

is unilaterally connected if and only if one of the following conditions holds:

(i) X = Y ;

(ii) |X| = 2, |Y | = 1 and A contains a minimal idempotent.

Proof. Let Cay(Fix(X,Y ), A) be unilaterally connected. Suppose that Y is a

proper subset of X. We first prove that |Y | = 1 by supposing that this is false,

so |Y | ≥ 2. Clearly, Fix(X,Y ) contains at least two minimal idempotents. Let

µ1, µ2 ∈ Em. Then by Lemma 3.1, we conclude that N+(µ1) = ∅ = N+(µ2).

We consequently obtain that there is no dipath joining between µ1 and µ2 which

contradicts to the unilaterally connectedness of Cay(Fix(X,Y ), A). Thus |Y | = 1.

Next, we suppose that |X| ≥ 3. Let Y = {a}. Choose b1, b2 ∈ X\Y in which

b1 6= b2. Define

α =

(
{a, b1} X\{a, b1}
a b1

)
and β =

(
{a, b2} X\{a, b2}
a b1

)
.

Then α, β ∈ Fix(X,Y ). Moreover, πα = {{a, b1}, X\{a, b1}} and πβ = {{a, b2},
X\{a, b2}} such that they do not mutually refine. By Lemma 4.4, there is no

dipath joining them which again contradicts to the unilaterally connectedness of

Cay(Fix(X,Y ), A). Therefore, |X| = 2. For convenience, we may assume that

X = {a, b} and Y = {a}. Then Fix(X,Y ) contains exactly two elements

γ =

(
a b

a a

)
and idX =

(
a b

a b

)
where γ is the unique minimal idempotent of Fix(X,Y ).
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Suppose that A does not contain a minimal idempotent. So A = {idX} and

Cay(Fix(X,Y ), A) is shown in Figure 3. We observe that Cay(Fix(X,Y ), A) is

not unilaterally connected which is impossible. Hence the connection set A of

Cay(Fix(X,Y ), A) must contain a minimal idempotent. Therefore, the necessity is

completely proved.

bb
γ idX

Figure 3. Cay(Fix(X,Y ), A)

Conversely, assume that Cay(Fix(X,Y ), A) satisfies one of such sufficient con-

ditions. If the first condition holds for Cay(Fix(X,Y ), A), then Cay(Fix(X,Y ), A)

is strongly connected by Theorem 4.1 which consequently leads to the unilaterally

connectedness of Cay(Fix(X,Y ), A). Hence we suffice to consider the case when

Cay(Fix(X,Y ), A) satisfies the second condition. Conveniently, we take X = {a, b}
and Y = {a}. Thus Fix(X,Y ) contains exactly two elements γ and idX defined in

the proof of the necessity. As the connection set A contains a minimal idempotent,

we conclude that there are two possibilities for such a connection set, that is, A can

be {γ} or {γ, idX}. To illustrate more explicit, let A1 = {γ} and A2 = {γ, idX}.
Then Cayley graphs of Fix(X,Y ) with respect to connection sets A1 and A2 are

shown in Figures 4 and 5, respectively.

bb
γ idX

Figure 4. Cay(Fix(X,Y ), A1)

bb
γ idX

Figure 5. Cay(Fix(X,Y ), A2)

Clearly, both Cayley graphs are unilaterally connected. �

5. Completeness of Cay(Fix(X,Y ), A)

In this section, we study characterizations of the completeness of Cay(Fix(X,Y ), A).

Besides the completeness of Cay(Fix(X,Y ), A), the concept of an equivalence di-

graph is also considered for Cay(Fix(X,Y ), A). We now present the following re-

sults.
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Theorem 5.1. Let A be a nonempty subset of Fix(X,Y ). Then Cay(Fix(X,Y ), A)

is complete if and only if X = Y .

Proof. It is obvious that Cay(Fix(X,Y ), A) is complete whenever X = Y since it

contains exactly one vertex and a loop attached to the vertex.

To prove the converse, assume that Cay(Fix(X,Y ), A) is complete. Suppose to

the contrary that there exists b ∈ X\Y . Choose ai0 ∈ Y and let I ′ = I\{i0}. Define

α, β ∈ Fix(X,Y ) by

α =

(
X\Y ∪ {ai0} ai′

ai0 ai′

)
and β =

(
ai X\Y
ai b

)
.

Clearly, α ∈ Em and β /∈ Em. By the completeness of Cay(Fix(X,Y ), A), we have

(α, β), (β, α) ∈ E(Cay(Fix(X,Y ), A)). The edge (α, β) implies that there exists

λ ∈ A in which β = αλ = α since α ∈ Em. This gives a contradiction. So we can

conclude that X = Y . �

Theorem 5.2. Let A be a nonempty subset of Fix(X,Y ). Then Cay(Fix(X,Y ), A)

is semi-complete if and only if one of the following conditions holds:

(i) X = Y ;

(ii) |X| = 2, |Y | = 1 and A = Fix(X,Y ).

Proof. Let Cay(Fix(X,Y ), A) be semi-complete. Suppose that Y is a proper

subset of X. Similarly, we can apply the proof of the necessity of Theorem 4.6

to conclude that |X| = 2 and |Y | = 1. Consequently, Fix(X,Y ) = {idX , γ}
and γ ∈ Em. If idX /∈ A, then (idX , idX) /∈ E(Cay(Fix(X,Y ), A)) or if γ /∈
A, then (γ, idX), (idX , γ) /∈ E(Cay(Fix(X,Y ), A)), which contradicts the semi-

completeness of Cay(Fix(X,Y ), A). Hence both of idX and γ must belong to A

which implies that A = Fix(X,Y ).

Conversely, assume that the second condition holds. Thus Cay(Fix(X,Y ), A) can

be drawn as Figure 5 which is shown in the proof of the sufficiency of Theorem 4.6.

So Cay(Fix(X,Y ), A) is semi-complete. Moreover, the assertion is clear whenever

X = Y . �

Note that Fix(X,Y ) always contains minimal idempotents. Since they are left

zeros of Fix(X,Y ), the digraph Cay(Fix(X,Y ), A) always contains loops attached

to the minimal idempotents. Consequently, Cay(Fix(X,Y ), A) is not a loopless

digraph. Hence, we have the following theorem.

Theorem 5.3. Let A be a nonempty subset of Fix(X,Y ). Then Cay(Fix(X,Y ), A)

is never a directed complete digraph.
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We now present the following results on an equivalence digraph for Cay(Fix(X,Y ), A).

Lemma 5.4. Let A be a nonempty subset of Fix(X,Y ). Then E(Cay(Fix(X,Y ), A))

is reflexive if and only if idX ∈ A.

Proof. Let E(Cay(Fix(X,Y ), A)) be a reflexive relation. Since Fix(X,Y ) contains

the identity idX , we obtain that (idX , idX) ∈ E(Cay(Fix(X,Y ), A)). Thus there

exists α ∈ A such that idX = idXα = α ∈ A.

For the converse, it is easy to verify that (α, α) ∈ E(Cay(Fix(X,Y ), A)) for

all α ∈ Fix(X,Y ) whenever A contains an identity of Fix(X,Y ). We obtain that

E(Cay(Fix(X,Y ), A)) is reflexive, as required. �

Recall that HidX is a group with identity idX . For a nonempty subset B of

HidX , the notation B−1 stands for the set {δ−1 : δ ∈ B} which is useful for proving

the symmetry of E(Cay(Fix(X,Y ), A)) stated in the following lemma.

Lemma 5.5. Let A be a nonempty subset of Fix(X,Y ). Then E(Cay(Fix(X,Y ), A))

is symmetric if and only if A ⊆ HidX and A = A−1.

Proof. Assume that E(Cay(Fix(X,Y ), A)) is symmetric. Clearly, Cay(Fix(X,Y ), A)

is locally connected. By Theorem 4.5, we have A ⊆ HidX . Further, let α ∈ A.

Then (idX , α) ∈ E(Cay(Fix(X,Y ), A)). By the assumption, we get that (α, idX) ∈
E(Cay(Fix(X,Y ), A)), that is, idX = αβ for some β ∈ A. Therefore, β ∈ HidX

and α = β−1 ∈ A−1. On the other hand, let γ−1 ∈ A−1. Thus γ ∈ A. By the

same argument, we conclude that γ ∈ A−1. This directly implies that γ−1 ∈ A.

Consequently, we have A = A−1.

Conversely, assume that A ⊆ HidX and A = A−1. Let α, β ∈ Fix(X,Y ) be

such that (α, β) ∈ E(Cay(Fix(X,Y ), A)). Then β = αγ for some γ ∈ A. Since

A ⊆ HidX , we obtain that γ−1 exists in HidX and γ−1 ∈ A−1 = A. As the fact

that α = βγ−1 where γ−1 ∈ A, we conclude that (β, α) ∈ E(Cay(Fix(X,Y ), A)).

This implies that E(Cay(Fix(X,Y ), A)) is symmetric. �

Lemma 5.6. Let A be a nonempty subset of Fix(X,Y ). Then E(Cay(Fix(X,Y ), A))

is transitive if and only if A is a subsemigroup of Fix(X,Y ).

Proof. Assume that E(Cay(Fix(X,Y ), A)) is transitive. Let α, β ∈ A. Clearly,

we have (idX , α), (α, αβ) ∈ E(Cay(Fix(X,Y ), A)). Since E(Cay(Fix(X,Y ), A)) is

transitive, we obtain that (idX , αβ) ∈ E(Cay(Fix(X,Y ), A)) which leads to αβ =

idXγ = γ for some γ ∈ A. Hence αβ ∈ A. Consequently, A is a subsemigroup of

Fix(X,Y ).
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Conversely, letA be a subsemigroup of Fix(X,Y ). Further, let α, β, γ ∈ Fix(X,Y )

in which (α, β), (β, γ) ∈ E(Cay(Fix(X,Y ), A)). Thus there exist λ, µ ∈ A such

that β = αλ and γ = βµ, respectively. It follows that γ = βµ = αλµ. Since

A is a subsemigroup of Fix(X,Y ), we have λµ ∈ A. This implies that (α, γ) ∈
E(Cay(Fix(X,Y ), A)). Therefore, E(Cay(Fix(X,Y ), A)) is transitive. �

From Lemmas 5.4, 5.5 and 5.6, we directly have the following theorem.

Theorem 5.7. Let A be a nonempty subset of Fix(X,Y ). Then Cay(Fix(X,Y ), A)

is an equivalence digraph if and only if A is a subgroup of HidX .
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