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Abstract. We classify all nonnilpotent, solvable Leibniz algebras with the

property that all proper subalgebras are nilpotent. This generalizes the work

of [E. L. Stitzinger, Proc. Amer. Math. Soc., 28(1)(1971), 47-49] and [D. Tow-

ers, Linear Algebra Appl., 32(1980), 61-73] in Lie algebras. We show several

examples which illustrate the differences between the Lie and Leibniz results.
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1. Introduction

Leibniz algebras were defined by Loday in [11]. They are a generalization of

Lie algebras, removing the restriction that the product must be anti-commutative

or that the squares of elements must be zero. One immediate consequence of

this is that while the Lie algebra generated by a single element is necessarily one-

dimensional, the Leibniz algebra generated by a single element (called a cyclic

algebra) could be of any dimension.

Recent work in Leibniz algebra often involves studying certain classes of Leibniz

algebras, such as cyclic algebras [5], algebras with a certain nilradical [3,9], or

algebras of a certain dimension [6,8,10]. Many of these articles involve generalizing

results from Lie algebras to Leibniz algebras. Some of these results only hold over

the field of complex numbers.

An algebra L is called minimal nonnilpotent if L is nonnilpotent, solvable, and

all proper subalgebras of L are nilpotent. Minimal nonnilpotent Lie algebras were

studied by Stitzinger in [12]. Later Towers classified all such Lie algebras in [13]. It

is the goal of this work to generalize these results to Leibniz algebras. Our results

hold over any field.

2. Results

A Leibniz algebra L is a vector space equipped with a bilinear product or bracket

ab = [a, b] which satisfies the Leibniz identity a(bc) = (ab)c+b(ac) for all a, b, c ∈ L.



188 L. BOSKO-DUNBAR, J. D. DUNBAR, J. T. HIRD AND K. S. ROVIRA

For convenience we suppress the bracket notation for the product of individual

elements of the algebra. Note that we follow the notation in [1,7] and use “left”

Leibniz algebras; some authors [9,10] instead use “right” Leibniz algebras.

The following result was proven in [7, Theorem 4.16].

Proposition 2.1. A Leibniz algebra L is nilpotent if and only if every proper

subalgebra of L is properly contained in its normalizer.

Definition 2.2. Let M be a subalgebra of a Leibniz algebra L. Define the core of

M to be the maximal ideal of L contained in M .

Proposition 2.3. Let L be a solvable Leibniz algebra and let M be a self-normalizing

maximal subalgebra of L. Let N be the core of M . Then

(1) L/N contains a unique minimal ideal A/N .

(2) L/N is the semidirect sum of A/N and M/N .

(3) The Frattini ideal, φ(L/N) = 0.

(4) L/N is not nilpotent.

The proof is identical to the Lie case in [12] and makes use of Proposition 2.1.

Theorem 2.4. Let L be a nonnilpotent, solvable Leibniz algebra all of whose

proper subalgebras are nilpotent. Then L = A ⊕ span{x} and A = nilrad(L) =

span{a0, . . . , ak}⊕N , with N an ideal of L and x ∈ L is described by the following

products:

xa0 = a1, xa1 = a2, . . . , xak−1 = ak, xak = c0a0 + · · ·+ ckak

where c0 6= 0. Additionally N = 〈x〉2 + (span{a0, . . . , ak})2, A3 ≤ Leib(L), and

p(λ) = λk+1 − ckλk − · · · − c1λ − c0 is irreducible. Finally, either L is cyclic or

Leib(L) ≤ N .

Proof. L contains a self-normalizing maximal subalgebra M , which is a Cartan

subalgebra of L. Let N be the core of M . By Proposition 2.3, L/N contains a

unique minimal ideal A/N which complements M/N in L/N . So L/A ∼= M/N

and since M is nilpotent, L/A is nilpotent. Since A/N is nilpotent and minimal,

(A/N)2 = 0 so A/N is abelian. Since L/N is not nilpotent, by Engel’s Theorem

[1,4], there exists x ∈ L/N with x /∈ A/N such that left-multiplication by x, denoted

`x, is not nilpotent on L/N . Without loss of generality, we can assume x ∈ M ,

x /∈ N . Since M/N is nilpotent and complements A/N in L/N , this implies that

`x restricted to A/N is not nilpotent. Thus the subalgebra B/N of L/N generated

by A/N and x is not nilpotent, so by the hypothesis of the theorem B/N = L/N .



MINIMAL NONNILPOTENT LEIBNIZ ALGEBRAS 189

Since A/N is an ideal, L = 〈x〉 + A. We claim that x2 ∈ N ⊆ A. Since

M is nilpotent, xn+1 = 0 for some n. Let N1 = span{x2, . . . , xn} + N , so that

N ≤ N1 � M . Since N E L and left-multiplication by xi is zero for i > 1,

[N1, L] ≤ N ≤ N1. Since A/N is a minimal ideal of L/N , by Lemma 1.9 of

[1], [A/N,L/N ] is 0 or anticommutative. But since [xi, A] = 0 for all i > 1,

[A, xi] is contained in N . From this, using the decompositions L = 〈x〉 + A and

N1 = span{x2, . . . , xn}+N it follows that [L,N1] ≤ N1. Thus N1 is an ideal of L

and by the maximality of N , N1 = N . Therefore x2 ∈ N and L = span{x} ⊕ A.

Thus dimL = 1 + dimA, and 1 = dimL/A = dimM/N . Define F to be the one-

dimensional subspace F = span{x}. Then we have L = 〈x〉 + A and L = F ⊕ A,

but unless x2 = 0 the first sum is not direct and F is not a subalgebra.

Let L = M ⊕ L1 be the Fitting decomposition of L with respect to left-

multiplication by M . Then M/N is a Cartan subalgebra of L/N and (L1 +N)/N

is the Fitting one-component of L/N with respect to left-multiplication by M/N .

Since L/N = A/N + M/N , L/N is not nilpotent and A/N is a minimal ideal, we

have that M/N acts nontrivially and irreducibly on A/N . Since [M/N,A/N ] =

A/N , the Fitting one-component of L/N with respect to left-multiplication by

M/N is A/N . Therefore A/N = (L1 + N)/N and A = L1 ⊕ N . In addition,

[N,L1] ⊆ [M,L1] = L1, so [N,L1] ⊆ N ∩ L1 = 0.

Let T be the subalgebra of L generated by L1. Since left-multiplication by M

acts irreducibly on L1 and N is nilpotent, [F,L1] = L1. This implies [F, T ] = T and

further that [〈x〉, T ] = T . Thus 〈x〉 + T is a nonnilpotent subalgebra of L, hence

〈x〉 + T = L. Notice x2 ∈ N ≤ A and L1 ≤ A imply that 〈x〉2 + T ≤ A. However

〈x〉2 + T is a codimension 1 subalgebra of L, so A = 〈x〉2 + T = 〈x〉2 + 〈L1〉.
Recalling that A/N is abelian, we know that A2 ≤ N , so it follows that (L1)2 +

〈x〉2 ≤ N . However, (L1)2 + 〈x〉2 and N have the same dimension, so (L1)2 +

〈x〉2 = N . Hence, N2 = [N,N ] ≤ Leib(L). Because A = L1 ⊕ N , we know

[N,A] ≤ Leib(L). By definition of Leib(L), this implies [A,N ] ≤ Leib(L). Thus,

A3 = [A,A2] ≤ [A,N ] ≤ Leib(L).

Since `x|L1
is not nilpotent, there exists an a ∈ L1 such that `x is not nilpotent on

a. Then span{a, xa, x(xa), . . . , (`x)k(a)} ⊆ L1, where we choose the largest k such

that this set is linearly independent. Since M/N acts irreducibly on A/N , it follows

that F 'M/N acts irreducibly on L1 ' A/N , so span{a, xa, x(xa), . . . , (`x)k(a)} =

L1. Because L1 is the Fitting one-component, (`x)k+1(a) = c0a + c1xa + · · · +
ck(`x)k(a), and c0 6= 0. Note that the matrix for `x acting on L1 is in rational

canonical form, and therefore the characteristic polynomial is the minimal polyno-

mial p(λ), as given in the theorem.
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If Leib(L/N) = 0, then Leib(L) ≤ N . Now suppose that Leib(L/N) 6= 0.

Then there exists a minimal ideal inside of Leib(L/N), and so A/N ≤ Leib(L/N).

Since A/N is a codimension 1 subalgebra of L/N , then A/N = Leib(L/N). Thus,

Leib(L/N) has codimension 1 in L/N , which implies that L/N is cyclic: L/N = 〈z̄〉.
Since 〈z̄〉 is nonnilpotent, then 〈z〉 is nonnilpotent, and L = 〈z〉 is cyclic. �

Note that the products listed in this theorem are not necessarily the only nonzero

products in L. However we know that x2 ∈ 〈x〉2 ≤ N , nx ∈ N for any n ∈ N ,

and aix = −xai + Leib(L), and in the noncyclic case Leib(L) ≤ N . Also, A/N

abelian means that aiaj ∈ N . Thus the description in the proof shows all nontrivial

products in L/N .

Using the notation from the proof, the theorem can be restated in the following

way.

Corollary 2.5. Let L be a minimal nonnilpotent Leibniz algebra. Let M be a

self-normalizing maximal subalgebra of L with core N , and L = M ⊕ L1 be the

Fitting decomposition of L with respect to M . Then L is the vector space direct

sum of N , L1, and F where F is a one-dimensional subspace of L and M = N⊕F .

Furthermore, A = N ⊕ L1 is an ideal of L with A3 ≤ Leib(L).

In Lie algebras [12,13] prove that A3 = 0. We recover this result for the case

where L is a Lie algebra and generalize to A3 ≤ Leib(L) in the non-Lie case. This

is due to the fact that, A2 = N in Lie algebras but in Leibniz algebras we have

that A2 ≤ N , since N = (L1)2 + 〈x〉2 = A2 + 〈x〉2. If x2 = 0, then we would have

A2 = N and A3 = 0.

Note that many nonnilpotent, cyclic Leibniz algebras have all proper subalgebras

nilpotent (see Example 3.1). However there also exist nonnilpotent, cyclic Leibniz

algebras with nonnilpotent subalgebras. One example is L = span{z, z2, z3} with

zz3 = z2+2iz3 over C, which has a nonnilpotent subalgebra M = span{ia−a2, a2+

ia3}. Our theorem shows the structure required for minimal nonnilpotent, cyclic

Leibniz algebras. For a more exhaustive study of cyclic Leibniz algebras, see [2,5].

3. Examples

For the following examples we adopt the convention that when we list products of

a Leibniz algebra, those not mentioned are assumed to be zero. Note that whenever

L is cyclic, its generator will never be an element of either M or A. In Example

3.1, neither x nor a is a generator, but z = x+ a is a generator.
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Example 3.1. Let L be the cyclic Leibniz algebra L = span{z, z2} with zz2 = z2.

This is a minimal nonnilpotent Leibniz algebra. Then x = z − z2, a = z2, N = 0,

M = span{x}, and A = span{a}.

In Lie algebras F = span{x} is a subalgebra, however in Leibniz algebras this

only guaranteed to be a subspace of L. See Example 3.2. In Lie algebras, either

A is a minimal ideal or A2 = Z(A). Either case would imply A3 = 0, but this is

clearly not the case in Example 3.2 when k ≥ 3.

Example 3.2. Let L = span{x, x2, . . . , xj , a, a2, . . . , ak} for some j, k ∈ N with

xj+1 = 0, ak+1 = 0, xa = a = −ax, and xai = iai. This is a minimal nonnilpotent

Leibniz algebra. Then N = Leib(L) = span{x2, . . . , xj , a2, . . . , ak}, F = span{x},
M = F ⊕ N , and A = span{a} ⊕ N . In this example c0 = 1 and p(λ) = λ − 1,

which is irreducible over any field. Here A3 = span{a3, . . . , ak} 6= 0 for k ≥ 3.

Over an algebraically closed field every irreducible polynomial has degree one, so

the dimension of A/N is one and A = span{a}⊕N . Over the field of real numbers

every irreducible polynomial is linear or quadratic, so either A = span{a} ⊕ N or

A = span{a0, a1} ⊕ N . Over the rational numbers, we can construct a Leibniz

algebra of this type with A/N having any dimension:

Example 3.3. Over the field of rational numbers there is an irreducible poly-

nomial of form p(λ) = λk+1 − ckλ
k − · · · − c1λ − c0 for any k. Define L =

span{x, a0, a1, . . . , ak} with xai = ai+1 for 0 ≤ i < k and xak = c0a0 + c1a1 +

· · · + ckak. This is a minimal nonnilpotent Leibniz algebra. Then N = Leib(L) =

span{a1, . . . , ak}, M = span{x} ⊕N , A = span{a0} ⊕N .
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