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Abstract. Let GR(pr,m) denote the Galois ring of characteristic pr and

cardinality prm seen as a free module of rank m over the integer ring Zpr . A

general formula for the sum of the homogeneous weights of the pr-ary images

of elements of GR(pr,m) under any basis is derived in terms of the parameters

of GR(pr,m). By using a Vandermonde matrix over GR(pr,m) with respect

to the generalized Frobenius automorphism, a constructive proof that every

basis of GR(pr,m) has a unique dual basis is given. It is shown that a basis

is self-dual if and only if its automorphism matrix is orthogonal, and that a

basis is normal if and only if its automorphism matrix is symmetric.
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1. Introduction

This paper is motivated by the code-theoretic problem of finding the homo-

geneous bounds on the pr-ary image of a linear block code over the Galois ring

GR(pr,m) with respect to any basis over Zpr , as proposed in [9] but which con-

structed distance-optimal Zpr -codes in terms only of the polynomial basis. It is

interesting to consider other bases as well, such as the dual and normal bases, and

observe the changes, if any, in the properties of the image codes. The main purpose

of this paper is to provide the theory for the existence and uniqueness of the dual

basis, and to characterize self-dual basis and normal basis of GR(pr,m), seen as a

unitary module over the integer ring Zpr , respectively in terms of the orthogonal

and symmetric property of a square m × m matrix, the so-called automorphism

matrix, obtained through the action of the generalized Frobenius automorphism on

the given basis of GR(pr,m). Although the code-theoretic implication of a change

in basis of GR(pr,m) is the subject of another paper, we present some preliminary

results in this present work.
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Firstly a general formula for the sum of the homogeneous weights of the pr-

ary images of elements of the Galois ring GR(pr,m) under any basis over Zpr
is derived in terms of the parameters of GR(pr,m). This useful result, which

extends an earlier specific formula for Galois fields, has immediate application in

any linear block code over GR(pr,m). It is shown here that every basis of the

Galois ring GR(pr,m) over Zpr has a unique dual basis following the method in [6]

which constructs the dual using matrix algebra involving the generalized Frobenius

automorphism. It is proved that a basis of GR(pr,m) over Zpr is self-dual if and

only if its automorphism matrix is orthogonal. The notion of normal bases is also

generalized from the classical case for Galois fields. Equivalent conditions for a

basis of GR(pr,m) over Zpr to be normal are given.

The material is organized as follows: Section 2 gives a thorough set of prelim-

inaries and basic definitions while Section 3 discusses the main results. Several

illustrative examples are provided.

2. Preliminaries and definitions

An overview of Galois fields and Galois rings, the Frobenius automorphism and

the trace function, is presented in this section. For further treatment of these topics

the reader is referred to [4], [5], [9] and [10].

2.1. Galois fields and Galois rings. Let p be a prime number and r ≥ 1 an

integer. Consider the ring Zpr of integers modulo pr. When r = 1 the ring Zp
with p elements is a field and is usually denoted by Fp. Let Zpr [x] be the ring of

polynomials in the indeterminate x with coefficients in Zpr .

The Galois field with pm elements, denoted Fpm , is a field extension Fp[α] of Fp
by a root α of an irreducible polynomial π(x) of degree m in Fp[x]. Thus every

element z of Fpm can be expressed uniquely as a polynomial in α of the form

z = a0 + a1α+ a2α
2 + . . .+ am−1α

m−1 (1)

with degree at most m − 1 with the coefficients ai coming from Fp, and hence

can also be written as an m-tuple (a0, a1, . . . , am−1) in Fmp . Elements of Fpm may

also be described as residue classes of the polynomials in x with coefficients in Fp
reduced modulo π(x). When m = 1 we again have the prime field Fp.

The canonical projection homomorphism µ : Zpr → Fp is the mod-p reduction

map, and can be extended naturally as a map from Zpr [x] onto Fp[x]. This extended

map is a ring homomorphism with kernel (p) = Zpr [x]p = {f(x)p | f(x) ∈ Zpr [x]}.
Let g(x) be a monic polynomial of degree m ≥ 1 in Zpr [x]. If µ(g(x)) is ir-

reducible in Fp[x], then g(x) is said to be monic basic irreducible. If µ(g(x)) is
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primitive in Fp[x], then g(x) is said to be monic basic primitive. Clearly, monic

basic primitive polynomials in Zpr [x] are monic basic irreducible.

In the general sense, a Galois ring is a finite commutative local ring with identity

1 6= 0 such that the set of zero divisors together with the zero element forms the

unique maximal principal ideal (p1) for some prime number p. The residue class

ring Zpr [x]/(h(x)), where h(x) is a monic basic irreducible polynomial of degree m

in Zpr [x], is a Galois ring with characteristic pr and cardinality prm. The elements

of Zpr [x]/(h(x)) are residue classes of the form

a0 + a1x+ . . .+ am−1x
m−1 + (h(x)) (2)

where ai ∈ Zpr . The identity is 1 + (h(x)) and the zero element is (h(x)). The

principal ideal (p[1 + (h(x))]) = (p+ (h(x))) consists of all the zero divisors and the

zero element, and is the only maximal ideal.

If deg h(x) = 1 then Zpr [x]/(h(x)) is the ring Zpr . If r = 1, the canonical

homomorphism µ becomes the identity map and

Zpr [x]/(h(x)) = Fp[x]/(h(x)) ∼= Fpm .

Now let ω = x+ (h(x)), then h(ω) = 0 and every element z of Zpr [x]/(h(x)) can

be expressed uniquely in the form

z = a0 + a1ω + . . .+ am−1ω
m−1 (3)

where ai ∈ Zpr . We can thus think of Zpr [x]/(h(x)) as a Galois extension Zpr [ω]

of Zpr by ω. The elements take the additive representation (3), a generalization of

(1) for Fpm . Since any two Galois rings of the same characteristic and the same

cardinality are isomorphic, we simply use the notation GR(pr,m) for any Galois

ring with characteristic pr and cardinality prm.

The Galois ring R = GR(pr,m) is a finite chain ring of length r, its ideals piR
with p(r−i)m elements are linearly ordered by inclusion,

{0} = prR ⊂ pr−1R ⊂ . . . ⊂ pR ⊂ R (4)

The quotient ring R/pR ∼= Fpm is the residue field of R. There exists a nonzero

element ξ of order pm − 1, which is a root of a unique monic basic primitive poly-

nomial h(x) of degree m over Zpr and dividing xp
m−1 − 1 in Zpr [x]. Consider the

set

T = {0, 1, ξ, ξ2, . . . , ξp
m−2} (5)

of Tëichmuller representatives. In this case, every element z of GR(pr,m) has a

unique mutiplicative or p-adic representation as follows

z = z0 + pz1 + p2z2 + . . .+ pr−1zr−1 (6)
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where zi ∈ T . We have that z is a unit if and only if z0 6= 0, and z is a zero

divisor or 0 if and only if z0 = 0. The units form a multiplicative group of order

(pm − 1)p(r−1)m, which is a direct product 〈ω〉 × E , where 〈ω〉 is a cyclic group of

order pm − 1 that is isomorphic to Zpm−1 and E = {1 + π | π ∈ (p)} is a group of

order p(r−1)m. Let µ(ξ) = α. It can be shown that α is a primitive element in Fpm ,

and thus µ(T ) = Fpm . The p-adic representation in (6) is a generalization of the

power representation of an element of Fpm .

We realize that the Galois ring R = Zpr [ω] is a free module of rank m over Zpr
with the set

Pm(ω) = {1, ω, ω2, . . . , ωm−1} (7)

as a free basis, as seen in (3). The set Pm(ω) is called the standard or polynomial

basis of R. The ring Zpr satisfies the invariant dimension property, hence any other

basis of R, if it exists, will have cardinality m.

Recall that a nonempty subset X of R is linearly independent provided that for

distinct x1, x2, . . . , xn ∈ X and ri ∈ Zpr , r1x1 + r2x2 + . . .+ rnxn = 0 implies that

ri = 0 for every i. If X is linearly independent and spans R, that is, every element

of R can be written as a linear combination of elements of X over Zpr , then X

is called a basis of R over the base ring, in this case, Zpr . It should be remarked

that, in general, a unitary module over a ring with identity does not always possess

a basis. If it does, then the module is called a free module and the basis is called

specifically a free basis. The rank is just the cardinality of the basis.

2.2. Generalized Frobenius automorphism and trace. The generalized Frobe-

nius map f on the Galois ring R = GR(pr,m) is defined by

zf := zp0 + pzp1 + p2zp2 + . . .+ pr−1zpr−1 (8)

where z has the p-adic representation given in (6). The map f satisfies the following

properties.

(i) f is a ring automorphism of R.

(ii) f fixes every element of Zpr .

(iii) f is of order m and generates the cyclic Galois group of R over Zpr .

When r = 1, the automorphism f reduces to the usual Frobenius automorphism

on Fpm defined by z 7→ zp.

The generalized trace map T from R down to Zpr is given by

T (z) := z + zf + zf
2

+ . . .+ zf
m−1

(9)

and satisfies the following properties.

(i) T is surjective and R/ kerT ∼= Zpr .
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(ii) T takes on each value of Zpr equally often pr(m−1) times.

(iii) T (α+ β) = T (α) + T (β) for all α, β ∈ R.

(iv) T (λα) = λT (α) for all λ ∈ Zpr , α ∈ R.

(v) T (αf ) = (T (α))f = T (α) for all α ∈ R.

Again when r = 1 the generalized trace map T reduces to the classical trace map

t : Fpm → Fp defined by

t(β) = β + βp + βp
2

+ . . .+ βp
m−1

. (10)

2.3. Homogeneous weight on GR(pr,m). Let R be a finite ring with identity

1 6= 0, and T be the multiplicative group of unit complex numbers. The group T is a

one-dimensional torus. A character of R (considered as an additive abelian group) is

a group homomorphism χ : R→ T. The set of all characters R̂ (called the character

module of R) is a right (resp. left) R-module whose group operation is pointwise

multiplication of characters and scalar multiplication is given by χr(x) = χ(rx)

(resp. rχ(x) = χ(xr)). A character χ of R is called a right (resp. left) generating

character if the mapping φ : R → R̂ given by φ(r) = χr (resp. φ(r) = rχ) is an

isomorphism of right (resp. left) R-modules. The ring R is called Frobenius if and

only if R admits a right or a left generating character, or alternatively, if and only

if R̂ ∼= R as right or left R-modules. It is known that for finite rings, a character χ

on R is a right generating character if and only if it is a left generating character.

Further χ is a right generating character if and only if kerχ contains no non-zero

right ideals.

Let R be the set of real numbers. We define a homogeneous weight on an

arbitrary finite ring R with identity in the sense of [3]. Let Rx denote the principal

(left) ideal generated by x ∈ R.

Definition 2.1. A weight function w : R → R on a finite ring R is called (left)

homogeneous if w(0) = 0 and the following is true.

(i) If Rx = Ry, then w(x) = w(y) for all x, y ∈ R.

(ii) There exists a real number Γ ≥ 0 such that∑
y∈Rx

w(y) = Γ · |Rx|, for all x ∈ R \ {0} . (11)

Right homogeneous weights are defined accordingly. If a weight is both left

homogeneous and right homogeneous, we call it simply as a homogeneous weight.

The constant Γ in (11) is called the average value of w. A homogeneous weight

is said to be normalized if its average value is 1. We can normalize the weight w

in Definition 2.1 by replacing it with w̃ = Γ−1w [7]. The weight w is extended
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naturally to Rn, the free module of rank n consisting of n-tuples of elements from

R, via w(z) =
∑n−1
i=0 w(zi) for z = (z0, z1, . . . , zn−1) ∈ Rn. The homogeneous

distance metric δ : Rn ×Rn −→ R is defined by δ(x, y) = w(x− y), for x, y ∈ Rn.

It was proved in [4] that, if R is Frobenius with generating character χ, then

every homogeneous weight w on R can be expressed in terms of χ as follows.

w(x) = Γ

[
1− 1

|R×|
∑
u∈R×

χ(xu)

]
(12)

where R× is the group of units of R.

For the Galois ring GR(pr,m) we apply the following homogeneous weight given

in [2] for finite chain rings.

whom(x) =


0 if x = 0

pm(r−1) if x ∈
(
pr−1

)
\ {0}

(pm − 1)pm(r−2) otherwise

(13)

where
(
pr−1

)
is the principal ideal generated by the element pr−1 of GR(pr,m).

Since the Galois ring GR(pr,m) is a commutative Frobenius ring with identity

whose generating character is χ(z) = ξbm−1 , where ξ = exp(2πi/pr) for z =∑m−1
i=0 biω

i, the weight (13) can be derived from (12). The group of units of

GR(pr,m) has cardinality pm(r−1)(pm − 1) and it easy to compute from (11) that

its average value is equal to

Γ = (pm − 1)pm(r−2) (14)

which is its minimum non-zero value. When r = 1, we have Γ = (pm − 1)/pm and

whom is just the usual Hamming weight wHam on Fpm . When m = 1, the average

value is Γ = (p− 1)pr−2 for the integer ring Zpr .

2.4. Codes over GR(pr,m) and homogeneous bounds. A block code C of

length n over an arbitrary finite ring R is a nonempty subset of Rn. The code C

is called right (resp. left) R-linear if C is a right (resp. left) R-submodule of Rn.

If C is both left R-linear and right R-linear, we simply call C a linear block code

over R. A k × n matrix over R is called a generator matrix of a linear block code

C if the rows span C and no proper subset of the rows generates C.

Let the set Bm = {β0, β1, . . . , βm−1} be a basis of the Galois ringR over Zpr , and

C be a linear block code of length n over R. We consider the map τ : R −→ Zmpr
given in [9] and defined by

τ(z) = (a0, a1, . . . , am−1) (15)
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for z = a0β0 + a1β1 + . . .+ am−1βm−1 ∈ R, ai ∈ Zpr . This map is a bijection and

can be extended coordinate-wise to Rn. Thus, if c ∈ C and c = (c0, c1, . . . , cn−1),

ci =
∑m−1
j=0 aijβj , aij ∈ Zpr , then

τ(c) = (a00, . . . , a0,m−1, . . . , an−1,0, . . . an−1,m−1) (16)

in Zmnpr . The image τ(C) of C under τ with respect to Bm is called the pr-ary image

of C, and is obtained by simply substituting each element of R by the m-tuple of

its coordinates over C. It is easy to prove that τ(C) is a linear block code of length

mn over Zpr . For the degenerate case m = 1, the block code C is a code over

Zpr and the map τ is the identity map on C. We equip τ(C) with a homogeneous

distance metric with respect to the weight whom as given in (13).

The following two theorems from [9] show how the minimum Hamming weight

of C provides a bound for the minimum homogeneous distance of the pr-ary image

of C under any chosen basis of the alphabet ring GR(pr,m) over Zpr .

Theorem 2.2 (Solé and Sison, 2007). Let C be a linear block code of length n over

R = GR(pr,m) with minimum Hamming distance d, and τ(C) be the pr-ary image

of C with respect to any basis of R over Zpr with minimum homogeneous distance

δ. Then

Γd ≤ δ ≤ pr−1md . (17)

The image code τ(C) is Type α if δ = pr−1dτ(C), where dτ (C) is the Hamming

distance of τ(C). The upper bound in (17) is further sharpened below.

Theorem 2.3 (Solé and Sison, 2007). Let B be a linear block code of length n over

R = GR(pr,m) with minimum Hamming distance d, Cx the subcode of C generated

by a codeword x with wH(x) = d, and δ the minimum homogeneous distance of the

pr-ary image of C with respect to any basis of R over Zpr . Then

δ ≤
⌊
|Cx|
|Cx| − 1

Γmd

⌋
. (18)

Moreover, if Cx is free, then

δ ≤
⌊

(p− 1)prm+r−2md

prm − 1

⌋
. (19)

The paper [9] has in fact exhibited a Type α linear block code over Z4 that also

meets the upper bound in (19). This quaternary code given in Example 4.3 of [9]

is obtained via τ with respect to the polynomial basis of GR(4, 2) over Z4.

The following lemma from [1] is quite useful in the succeeding discussion.
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Lemma 2.4 (Constantinescu, Heise and Honold, 1996). For any linear block code

C ⊆ Znpr we have

whom(C)

|C|
= Γ · |{i | πi(C) 6= 0}|

where whom(C) is the sum of the homogeneous weights of all codewords of C, and

πi is the projection from Znpr onto the i-th coordinate.

3. Results and discussion

3.1. Sum of weights. Initially we derive a simple formula for the sum of the

homogeneous weights of the pr-ary images of elements of the Galois ring GR(pr,m)

under any basis over Zpr , in terms only of the parameters of GR(pr,m). We denote

by whom(S) the sum of the homogeneous weights of the elements of a non-empty set

S, that is,

whom(S) =
∑
x∈S

whom(x) . (20)

Proposition 3.1. For any basis Bm = {β0, β1, . . . , βm−1} of GR(pr,m) over Zpr
we have ∑

x∈GR(pr,m)

whom(τ(x)) = m(p− 1)prm+r−2 . (21)

Proof. Let S = {x | x ∈ GR(pr,m)}. Then τ(S) is a linear block code over Zpr of

length m and cardinality prm. Applying Lemma 2.4 to τ(S) gives us

whom(τ(S))

|τ(S)|
= Γ · ws(τ(S)) .

Therefore we have whom(τ(S)) = |τ(S)| · Γ · ws(S). The value of Γ is given in (14),

and the support size ws(τ(S)) of τ(S) is m. Using the notation in (20), the result

follows. �

Proposition 3.1 gives the simple corollary below which is used to prove the bound

of Rabizzoni in [8, Theorem 1]. The bound of Rabizzoni is generalized to Galois

ring codes in Theorem 2.3.

Corollary 3.2. For any basis Bm = {β0, β1, . . . , βm−1} of Fpm over Fp we have∑
x∈Fpm

wHam(τ(x)) = m(p− 1)pm−1 .

Proof. The Galois ring GR(p,m) is the Galois field Fpm , and the homogeneous

weight whom given in (13) is the Hamming weight wHam on Fp with Γ = (p−1)/p. �
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3.2. Dual and normal bases. Denote by Matm(R) the ring of m ×m matrices

over the Galois ring R = GR(pr,m). It is known that a matrix A in Matm(R) is

nonsingular (or invertible) if and only if detA is a unit in R. We also use the usual

notation |A| for the determinant of A. The matrix A is symmetric if and only if

A = At, and is orthogonal if and only if AAt = AtA = I, where At is the transpose

of A and I is the identity matrix. We propose the following definition.

Definition 3.3. Two bases {α1, α2, . . . , αm} and {β1, β2, . . . , βm} of GR(pr,m)

over Zpr are said to be dual if T (βiαj) = δij , where δij is the Kronecker delta.

Lemma 3.4. Given the Galois ring R = GR(pr,m) with polynomial basis Pm(ω).

The matrix Ω ∈ Matm(R) given by

Ω =



1 1 1 . . . 1

ω ωf ωf
2

. . . ωf
m−1

ω2 (ω2)f (ω2)f
2

. . . (ω2)f
m−1

...
...

ωm−1 (ωm−1)f (ωm−1)f
2

. . . (ωm−1)f
m−1


is nonsingular.

Proof. By the definition of the generalized Frobenius automorphism (8), it easy

to show that (ωj)f
i

= (ωp
i

)j for i, j = 0, 1, . . . ,m− 1. Hence,

Ω =



1 1 1 . . . 1

ω ωp ωp
2

. . . ωp
m−1

ω2 (ωp)
2

(ωp
2

)2 . . . (ωp
m−1

)2

...
...

ωm−1 (ωp)m−1 (ωp
2

)m−1 . . . (ωp
m−1

)m−1


which is a Vandermonde matrix whose determinant is

det Ω =

m−1∏
j=1

m∏
i=j+1

(ωp
i−1

− ωp
j−1

). (22)

Each factor in this product is a unit of R so that det Ω is a unit in R. �

Lemma 3.5. Let {βj} = {β1, β1, . . . , βm} be a basis of GR(pr,m) over Zpr . The

matrix

B =


β1 βf1 βf

2

1 . . . βf
m−1

1

β2 βf2 βf
2

2 . . . βf
m−1

2

...
...

βm βfm βf
2

m . . . βf
m−1

m

 (23)
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is invertible.

Proof. Express the polynomial basis Pm(ω) in (7) in terms of the basis {βj} as

follows. 

1

ω

ω2

...

ωm−1


=



a11 a12 . . . a1m

a21 a22 . . . a2m

a31 a32 . . . a3m
...

...

am1 am2 . . . amm





β1

β2

β3
...

βm


where A = (aij) is a nonsingular matrix over Zpr . We compute the matrix prod-

uct AB. The fact that the Frobenius automorphism f fixes each aij implies that

AB is the Vandermonde matrix Ω. Hence by Lemma 3.4, detAB is a unit in R.

Consequently, detB is a unit in R. �

We shall call the matrix B the automorphism matrix of GR(pr,m) relative to

the basis {βj}.

Corollary 3.6. (detB)2 is a unit in Zpr .

Proof. It can be shown that

BBt =


T (β2

1) T (β1β2) . . . T (β1βm)

T (β2β1) T (β2
2) . . . T (β2βm)

...
...

T (βmβ1) T (βmβ2) . . . T (β2
m)

 (24)

which is a matrix over Zpr . It follows that (detB)2 is an element of Zpr . By

Lemma 3.5, we get the result. �

Of course, detB is not necessarily a unit in the base ring Zpr , although it is a

unit in GR(pr,m) according to Lemma 3.5. Please see Example 3.8.

Theorem 3.7. Every basis of GR(pr,m) over Zpr has a unique dual.

Proof. We show the proof for m = 3 without loss of essential generality. Let

{β1, β2, β3} be a basis, and consider the automorphism matrix

B =


β1 βf1 βf

2

1

β2 βf2 βf
2

2

β3 βf3 βf
2

3
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which is nonsingular by Lemma 3.5. Let adj B = (bij) where bij = (−1)i+j |Bji|.
Then

adj B =

 λ1 λ2 λ3

λf1 λf2 λf3

λf
2

1 λf
2

2 λf
2

3


where λ1 = βf2 β

f2

3 −β
f2

2 βf3 , λ2 = βf
2

1 βf3 −β
f
1 β

f2

3 , and λ3 = βf1 β
f2

2 −β
f2

1 βf2 so that

B−1 = |B|−1 adj B. Note that

BB−1 = |B|−1

 T (β1λ1) T (β1λ2) T (β1λ3)

T (β2λ1) T (β2λ2) T (β2λ3)

T (β3λ1) T (β3λ2) T (β3λ3)

 . (25)

We claim that the set {|B|−1λ1, |B|−1λ2, |B|−1λ3} is the unique dual of {βj}. To

prove this, it is sufficient to show that {λ1, λ2, λ3} is linearly independent. Let∑3
i=1 riλi = 0, where ri ∈ Zpr . For βk, k = 1, 2, 3, we get

∑3
i=1 riβkλi = 0. Then

applying the generalized trace gives
∑3
i=1 riT (βkλi) = 0. It follows from (25) that

0 = rk · T (βkλk) = rk · 1 = rk. �

Example 3.8. The polynomial basis of GR(4, 2) over Z4 is the set {1, ω} where

1 + ω + ω2 = 0. The automorphism matrix is

B =

(
1 1

ω 3 + 3ω

)
with determinant 3 + 2ω which is a unit in GR(4, 2). Observe that (3 + 2ω)2 = 1

is a unit in Z4. The inverse

B−1 =

(
3 + ω 1 + 2ω

2 + 3ω 3 + 2ω

)
gives {3 + ω, 1 + 2ω} as the dual of the polynomial basis.

Example 3.9. The polynomial basis of GR(4, 3) over Z4 is the set {1, ω, ω2} where

ω is the root of the basic primitive polynomial x3 + 2x2 + x − 1 over Z4. The

automorphism matrix is given by

B =

 1 1 1

ω ω2 ω4

ω2 ω4 ω


with determinant 3. The inverse is given by

B−1 =

 ω + 3ω3 w + 3ω4 w2 + 3ω4

ω2 + 3ω6 3ω + ω2 3ω + ω4

ω4 + 3ω5 3ω2 + ω4 ω + 3ω2
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so that {3 + 2ω + 2ω2, 2 + 2ω + ω2, 2 + ω + 2ω2} is the dual basis.

Example 3.10. The dual of the polynomial basis of Z8[ω], where ω is the root of

the basic primitive polynomial 7 + 5x+ 6x2 + x3 over Z8, is the set {3 + 6ω+ 6ω2,

6 + 2ω + 5ω2, 6 + 5ω + 2ω2}.

3.3. Automorphism matrix. We apply Definition 3.3 for the notion of a self-

dual basis.

Definition 3.11. A basis {β1, β2, . . . , βm} of GR(pr,m) over Zpr is self-dual if

T (βiβj) = δij .

Definition 3.12. A normal basis of GR(pr,m) over Zpr is a basis of the form

{α, αf , αf
2

, . . . , αf
m−1

}

where α ∈ GR(pr,m) and f is the generalized Frobenius automorphism given in

(8). In this case we say that α generates the basis.

We have the following immediate results.

Theorem 3.13. Let {βj} be a basis of GR(pr,m) over Zpr with automorphism

matrix B. Then B is orthogonal if and only if {βj} is self-dual.

Proof. From (24) we get BBt = I ⇔ T (βiβj) = δij . �

Theorem 3.14. Let {βj} be a basis of GR(pr,m) over Zpr with automorphism

matrix B. Then the following statements are equivalent.

(i) The basis {βj} is a normal basis.

(ii) The automorphism matrix B is a symmetric matrix.

(iii) The Frobenius automorphism f is the m-cycle given by

β1 7→ β2, β2 7→ β3, . . . , βm 7→ β1.

Proof. This equivalence is evident from the construction of the automorphism

matrix in (23). The basis Bm = {βj} is normal ⇔ β1 generates Bm, that is,

β2 = βf1 , β3 = βf2 = βf
2

1 , β3 = βf2 = βf
3

1 , . . . , βm−1 = βfm−2 = βf
m−1

1 , βm = βfm−1 =

βf
m−1

1 , βfm = βf
m

1 = β1 ⇔ B is symmetric ⇔ f is the m-cycle β1 7→ β2, β2 7→
β3, . . . , βm 7→ β1. �

Example 3.15. The set B2 = {ω, ω2 = 3+3ω} is a normal basis Z4[x]/(x2 +x+1)

over Z4. The automorphism matrix relative to this basis is given by(
ω 3 + 3ω

3 + 3ω ω

)
which is not orthogonal, hence B2 is not self-dual. However B is symmetric.
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Example 3.16. The set B3 = {1+ω, 1+ω2, 3+3ω+3ω2} of GR(4, 3) = Z4[x]/(x3+

2x2 + x + 3) is a self-dual normal basis since the automorphism matrix is both

orthogonal and symmetric.

3.4. Image codes under various bases. Using the above results, we are able to

write MAGMA algorithms to generate the dual and normal bases of GR(pr,m) at

bounded values of the parameters p, r and m, to derive the automorphism matrix

and test whether it is orthogonal or symmetric.

If G is the generator matrix of a rate-k/n linear block code C over GR(pr,m), it

can be shown that the generator matrix of the pr-ary image of C with respect to the

basis {βi}mi=1 is an mk×mn matrix over Zpr that is formed row-wise by the τ -images

of βiG. It is not always the case that the pr-ary images under different bases are the

same, and certain conditions in which the pr-ary images are distance-invariant are

investigated. Consequently, new Zpr -codes endowed with a homogeneous metric

that are optimal with respect to the bounds (17) or (19) can be constructed.

For instance, let us consider the code C in Example 4.3 of [9]. Let P be the

polynomial basis and D the dual basis of GR(4, 2). Although τD(C) is derived

from the same code C, the quaternary image τD(C) is not equal to τP (C) and is

an entirely new rate-4/12 linear block code over Z4 with 256 codewords. However,

the distances are preserved. The Lee distance is dL = 8 and the Hamming distance

is dτD(C) = 4, making this new quaternary code a Type α and a Rabizzoni-optimal

code as well. Therefore, a suitable change in basis of GR(pr,m) over Zpr can give

rise to another distance-optimal code over Zpr derived from the same linear block

code over GR(pr,m). The relation between the image codes can be studied further.
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