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Abstract. A ring R is Zhou nil-clean if every element in R is the sum of

a nilpotent and two tripotents. Let R be a Zhou nil-clean ring. If R is of

bounded index or 2-primal, we prove that every square matrix over R is the

sum of a nilpotent and a linear combination of two idempotents. This provides

a large class of rings over which every square matrix has such decompositions

by nilpotent and linear combination of idempotent matrices.

Mathematics Subject Classification (2020): 16U40, 47B33

Keywords: Idempotent matrix, nilpotent matrix, linear combination, Zhou

nil-clean ring

1. Introduction

Throughout, all rings are associative with an identity. Very recently, Zhou in-

vestigated a class of rings in which elements are the sum of a nilpotent and two

tripotents that commute (see [7]). We call such ring a Zhou nil-clean ring. Many

elementary properties of such rings are investigated in [4].

Decomposition of a matrix into the sum of simple matrices is of interest. In this

paper, we consider a linear combination of the form

P = N + c1P1 + c2P2,

where N is a nilpotent matrix and P1, P2 are idempotent matrices and c1 and c2

are scalars. Such decomposition of matrices over Zhou nil-clean rings is thereby

determined in this way. A ring R is of bounded index if there exists m ∈ N such

that xm = 0 for all nilpotent x ∈ R. A ring R is 2-primal if its primal radical

coincides with the set of nilpotents in R [3]. For instance, every commutative

(reduced) ring is 2-primal. Let R be Zhou nil-clean. If R is of bounded index or

2-primal, we prove that every square matrix over R is the sum of a nilpotent and

linear combination of two idempotent matrices. This provides a large class of rings

over which every square matrix has such decompositions by nilpotent and linear

combination of idempotent matrices.
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We use N(R) to denote the set of all nilpotent elements in R. N stands for the

set of all natural numbers.

2. Zhou nil-clean rings

Definition 2.1. A ring R is a Zhou ring if every element in R is the sum of two

tripotents that commute.

The structure of Zhou rings was studied in [6]. We now investigate matrices over

Zhou rings. We begin with

Lemma 2.2. Every square matrix over Z3 is the sum of two idempotents and a

nilpotent.

Proof. See [5, Lemma 2.1]. �

Lemma 2.3. Every square matrix over Z5 is the sum of a nilpotent and a linear

combination of two idempotent matrices.

Proof. As every matrix over Z5 is similar to a companion matrix, we may assume

A =



0 c0

1 0 c1

1 0 c2
. . .

...

. . . 0 cn−2

1 cn−1


.

Case I. cn−1 = 0. Choose

W =



0 0

1 0 0

1 0 0

. . .
...

. . . 0 0

1 0


, E1 =



0 c0

0 0 c1

0 0 c2
. . .

...

. . . 0 cn−2

0 1


,

E2 =



0 0

0 0 0

0 0 0

. . .
...

. . . 0 0

0 1


.
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Then E2
1 = E1 and E2

2 = E2, and so A = E1 + (−1)E2 + W .

Case II. cn−1 = 1. Choose

W =



0 0

1 0 0

1 0 0

. . .
...

. . . 0 0

1 0


, E =



0 c0

0 0 c1

0 0 c2
. . .

...

. . . 0 cn−2

0 1


.

Then E2 = E, and so A = E + 0 + W .

Case III. cn−1 = −1. Choose

W =



0 0

1 0 0

1 0 0

. . .
...

. . . 0 0

1 0


, E =



0 c0

0 0 c1

0 0 c2
. . .

...

. . . 0 cn−2

0 1


.

Then E2 = E, and so A = (−1)E + 0 + W .

Case IV. cn−1 = 2. Choose

W =



0 0

1 0 0

1 0 0

. . .
...

. . . 0 0

1 0


, E1 =



0 c0

0 0 c1

0 0 c2
. . .

...

. . . 0 cn−2

0 1


,

E2 =



0 0

0 0 0

0 0 0

. . .
...

. . . 0 0

0 1


.

Then E2
1 = E1 and E2

2 = E2, and so A = E1 + E2 + W .
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Case IV. cn−1 = −2. Choose

W =



0 0

1 0 0

1 0 0

. . .
...

. . . 0 0

1 0


, E1 =



0 c0

0 0 c1

0 0 c2
. . .

...

. . . 0 cn−2

0 1


,

E2 =



0 0

0 0 0

0 0 0

. . .
...

. . . 0 0

0 1


.

Then E2
1 = E1 and E2

2 = E2, and so A = (−1)E1 + (−1)E2 + W .

Therefore we complete the proof. �

Recall that a ring R is a Yaqub ring if it is the subdirect product of Z3’s. A ring

R is a Bell ring if it is the subdirect product of Z5’s. We have

Lemma 2.4. Every Zhou ring is isomorphic to a strongly nil-clean ring of bounded

index, a Yaqub ring, a Bell ring or products of such rings.

Proof. See [5, Lemma 2.3]. �

Lemma 2.5. (See [2, Lemma 6.6]) Let R be of bounded index. If J(R) is nil, then

J(Mn(R)) is nil for all n ∈ N.

We are ready to prove the following.

Theorem 2.6. Let R be a Zhou nil-clean ring of bounded index. Then every square

matrix over R is the sum of a nilpotent and linear combination of two idempotent

matrices.

Proof. In view of Lemma 2.3, R is isomorphic to R1, R2, R3 or the products of

these rings, where R1 is a strongly nil-clean ring of bounded index, R2 is a Yaqub

ring and R3 is a Bell ring.

Step 1. Let A ∈Mn(R1). In view of [2, Corollary 6.8], there exist an idempotent

E ∈Mn(R1) and W ∈ N(Mn(R1)) such that A = E + W .
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Step 2. Let A ∈Mn(R2), and let S be the subring of R2 generated by the entries

of A. That is, S is formed by finite sums of monomials of the form: a1a2 · · · am,

where a1, . . . , am are entries of A. Since R2 is a commutative ring in which 3 = 0,

S is a finite ring in which x = x3 for all x ∈ S. Thus, S is isomorphic to finite

direct product of Z3. As A ∈Mn(S), it follows by Lemma 2.1 that A is the sum of

two idempotents and a nilpotent matrix over S.

Step 3. Let A ∈Mn(R3), and let S be the subring of R3 generated by the entries

of A. Analogously, S is isomorphic to finite direct product of Z5. As A ∈Mn(S), it

follows by Lemma 2.2 that A is the sum of a linear combination of two idempotents

and a nilpotent matrix over S.

Let A ∈Mn(R). We may write A = (A1, A2, A3) in Mn(R1)×Mn(R2)×Mn(R3),

where A1 ∈ Mn(R1), A2 ∈ Mn(R2), A3 ∈ Mn(R3). According to the preceding

discussion, we obtain the result. �

Example 2.7. Let n ≥ 2 be an integer, if n = 2k3l5m, then every square matrix

over R = Zn is a linear combination of two idempotents and a nilpotent.

Proof. It is obvious by [5, Example 3.5] that R is a Zhou nil-clean ring, also it is

clear that R is of bounded index. Then the result follows from Theorem 2.5. �

3. 2-Primal rings

An element w in a ring R is called strongly nilpotent if any chain x1 = x, x2, x3, . . .

with xn+1 ∈ xnRxn forces xm = 0 for some m ∈ N. Let P (R) be the primal radical

of R, i.e., the intersection of all prime ideals of R. Then P (R) is exactly the set of

all strongly nilpotents in R [1, Remark 2.8]. We derive

Theorem 3.1. Let R be a ring. Then the following are equivalent:

(1) R is 2-primal and Zhou nil-clean.

(2) a− a5 ∈ R is strongly nilpotent for all a ∈ R.

(3) R/P (R) has the identity x = x5.

(4) Every element in R is the sum of two tripotents and a strongly nilpotent

that commute.

Proof. (1)⇒ (2) This is obvious, as every nilpotent in R is strongly nilpotent.

(2) ⇒ (3) Since every strongly nilpotent in R is contained in P (R), we are

through.

(3)⇒ (4) Let a ∈ R. Then a = a5; hence, a− a5 ∈ P (R) is nilpotent. Thus, R

is Zhou nil-clean. In view of [7, Theorem 2.11], every element in R is the sum of
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two tripotents u, v and a nilpotent w that commute. Write wn = 0(n ∈ N). Then

w = w5n ∈ R/P (R). Hence, w ∈ P (R), i.e., w is strongly nilpotent, as desired.

(4) ⇒ (1) As every strongly nilpotent in R is nilpotent, R is Zhou nil-clean,

by [7, Theorem 2.11]. In view of [7, Theorem 2.11], 2 × 3 × 5 ∈ N(R). Write

2n × 3n × 5n = 0(n ∈ N). Since (2, 3, 5) = 1, by the Chinese Remainder Theorem,

R ∼= R1 × R2 × R3, where R1 = R/2nR,R2 = R/3nR and R3 = R/5nR. Step

1. Let a ∈ N(R1). Then a = e + w with e3 = e, w ∈ P (R) and ae = ea. As

2 ∈ N(R1), we see that 2 ∈ P (R1), as it is central. Hence, a2 − a4 ∈ P (R), and

so a(a − a3) ∈ P (R). As P (R) is an ideal, we see that (a − a3)2 ∈ P (R). Hence,

(a3 − a5)2 ∈ P (R). It follows that (a− a5)2 ∈ P (R). This implies that a2 ∈ P (R).

This implies that e2 ∈ P (R), and so e = e3 ∈ P (R). Therefore a ∈ P (R). Thus,

N(R) ⊆ P (R); hence, R1 is 2-primal.

Step 2. Let a ∈ N(R2). Then a = e+w with e3 = e, w ∈ P (R) and ae = ea. As

3 ∈ N(R1), we see that 3 ∈ P (R1), as it is central. Hence, a− a3 ∈ P (R). Hence,

a3 − a5 = a2(a− a3) ∈ P (R). It follows that a− a5 = (a− a3) + (a3 − a5) ∈ P (R).

This implies that a ∈ P (R), and so N(R) ⊆ P (R); hence, R2 is 2-primal.

Step 3. Let a ∈ N(R3). Then there exist two tripotent e, f ∈ R and a strongly

nilpotent w ∈ R that commute such that a = e + f + w. As 5 ∈ N(R3), we easily

see that 5 ∈ P (R3), as it is central. Hence, a5 ≡ e5 + f5(mod P (R)). Hence,

a5 ≡ e + f = a, and so a ∈ P (R). This shows that R3 is 2-primal.

Therefore R is 2-primal, as asserted. �

Corollary 3.2. Let R be a ring. Then the following are equivalent:

(1) R is 2-primal and Zhou nil-clean.

(2) Every element in R is the sum of four idempotents and a strongly nilpotent

that commute.

Proof. (1)⇒ (2) This is obvious, by [4, Theorem 2.5]. (2)⇒ (1) Let a ∈ R. Then

there exist idempotents e, f, g, h ∈ R and a strongly nilpotent w ∈ R that commute

such that 2 − a = e + f + g + h + w. Hence, a = (1 − e) − f + (1 − g) − h − w.

Obviously, (1− e)− f, (1− g)− h ∈ R are both tripotents. Therefore a is the sum

of two tripotents and a strongly nilpotent that commute. According to Theorem

3.1, R is 2-primal and Zhou nil-clean. �

Theorem 3.3. Every subring of 2-primal Zhou nil-clean rings is 2-primal Zhou

nil-clean.

Proof. Let S be a subring of a 2-primal Zhou nil-clean R. For any a ∈ S, we have

a ∈ R. By virtue of Theorem 3.1, a− a5 ∈ P (R).
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Given any chain x1 = a−a5, x2, x3, . . . in S with xn+1 ∈ xnSxn, we see that this

chain is a chain in R with xn+1 ∈ xnRxn. Thus, we can find some m ∈ N such that

xm = 0. This implies that a− a5 ∈ S is strongly nilpotent. Hence, a− a5 ∈ P (S).

By using Theorem 3.1 again, S is a 2-primal Zhou nil-clean ring. �

Consequently the center of a 2-primal Zhou nil-clean ring is 2-primal Zhou nil-

clean. Every corner of 2-primal Zhou nil-clean rings is 2-primal Zhou nil-clean.

Corollary 3.4. Every finite subdirect product of 2-primal Zhou nil-clean rings is

2-primal Zhou nil-clean ring.

Proof. Let R be the subdirect product of 2-primal Zhou nil-clean rings R1, . . . , Rn.

Then R is isomorphic to the subring of R1 × · · · × Rn. In view of Theorem 5.3, R

is a 2-primal Zhou nil-clean ring. �

Example 3.5. Let R be a ring. Set S = {(x, y) ∈ R×R | x− y ∈ J(R)}, which is

a subring of R×R. Then R is 2-primal Zhou nil-clean if and only if S is 2-primal

Zhou nil-clean.

Proof. ⇒ Clearly, S is a subring of R×R. Thus, S is 2-primal Zhou nil-clean.

⇐ Since R is a homomorphic image of S, we easily obtain the result. �

Example 3.6. Let V be a countably-infinite-dimensional vector space over Z5,

with {v1, v2, . . . } a basis, let

A = {f ∈ End(V ) | rank(f) <∞, f(vi) ∈
i∑

k=1

vkZ5 for all i ∈ N};

and let R be the Z5-algebra of End(V ) generated by A and the identity endomor-

phism. Then R is 2-primal Zhou nil-clean.

Proof. In view of [3, Example 4.2.20],

P (R) = {f ∈ A | f(vi) ∈
i−1∑
k=1

vkZ5 for all i ∈ N},

and then R/P (R) is isomorphic to the ring of all eventually-constant sequences

in the direct product of Z′5s; hence, R/P (R) has the identity x = x5. Therefore

a− a5 ∈ P (R) for all a ∈ R. By using Theorem 3.1, R is a 2-primal Zhou nil-clean

ring, as asserted. �

Proposition 3.7. Let R be a ring. Then the following are equivalent:

(1) R is 2-primal Zhou nil-clean.
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(2) Tn(R) is 2-primal Zhou nil-clean for some n ∈ N.

(3) Tn(R) is 2-primal Zhou nil-clean for all n ∈ N.

Proof. (1)⇒ (3) Let I = {


0 a12 · · · a1n

0 0 · · · a2n
...

...
. . .

...

0 0 · · · 0

 ∈ Tn(R) | each aii = 0}. Then

I is a nilpotent ideal of Tn(R). Since Tn(R)/I ∼=
n⊕

i=1

Ri with each Ri = R, the finite

direct product
n⊕

i=1

Ri is Zhou nil-clean. It is obvious that Tn(R) is Zhou nil-clean.

Let x ∈ N(Tn(R)). Then x ∈ N(Tn(R)/I). Given any chain x1 = x, x2, x3, . . .

in Tn(R) with xm+1 ∈ xmTm(R)xm, we get a chain x1 = x, x2, x3, . . . in Tm(R)/I

with xm+1 ∈ xm(Tm(R)/I)xm. As x ∈ Tn(R)/I is strongly nilpotent, we see that

xk = 0 for some k ∈ N, i.e., xk ∈ I. Since In = 0, we see that xk+n ∈ In = 0, and

so x ∈ Tn(R) is strongly nilpotent. Hence, Tn(R) is 2-primal, as asserted.

(3)⇒ (2) This is obvious.

(2) ⇒ (1) Clearly, R is isomorphic to a subring of Tn(R), thus we obtain the

result by Theorem 3.3. �

Theorem 3.8. Let R be a 2-primal Zhou nil-clean ring. Then every square matrix

over R is the sum of a nilpotent and linear combination of two idempotent matrices.

Proof. Since R is a Zhou nil-clean ring, it follows by [7, Theorem 2.11] that J(R)

is nil and R/J(R) has the identity x = x5. Hence, R/J(R) is Zhou nil-clean of

bounded index 5. By virtue of Theorem 2.5, every matrix in Mn(R/J(R)) is the

sum of a nilpotent and linear combination of two idempotent matrices. Clearly,

J(R) ⊆ N(R) = P (R) ⊆ J(R), we have J(R) = P (R). Therefore Mn(J(R)) =

Mn(P (R)) = P (Mn(R)) is nil. It follows from Mn

(
R/J(R)

) ∼= Mn(R)/Mn(J(R))

that every matrix in Mn(R) is the sum of a nilpotent and linear combination of

two idempotent matrices. �

Corollary 3.9. Let R be a commutative Zhou nil-clean ring. Then every square

matrix over R is the sum of a nilpotent and linear combination of two idempotent

matrices.

Proof. Since every commutative ring is 2-primal, we obtain the result by Theorem

3.8. �
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