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Abstract. In this paper, we study invariant submanifolds of a golden Rie-
mannian manifold with the aid of induced structures on them by the golden
structure of the ambient manifold. We demonstrate that any invariant sub-
manifold in a locally decomposable golden Riemannian manifold leaves invari-
ant the locally decomposability of the ambient manifold. We give a necessary
and suffi cient condition for any submanifold in a golden Riemannian manifold
to be invariant. We obtain some necessary conditions for the totally geodes-
icity of invariant submanifolds. Moreover, we find some facts on invariant
submanifolds. Finally, we present an example of an invariant submanifold.

1. Introduction

The differential geometry of submanifolds has occupied an important place in
natural and engineering sciences since some particular types of submanifolds have
been used as a geometric tool to solve many problems concerning these disciplines.
In particular, invariant submanifolds have a key role in applied mathematics and
theoretical physics as a method, such as for determining non-linear normal modes
in non-linear systems [1] and constructing the reduced description for dissipative
systems of reaction kinetics [2]. When considered from this point of view, invariant
submanifolds have a special meaning in differential geometry. Invariant submani-
folds are one of typical classes among all submanifolds of an ambient manifold. It is
well known that in general, an invariant submanifold inherits almost all properties
of the ambient manifold. Therefore, invariant submanifolds are an active and fruit-
ful research field playing a significant role in the development of modern differential
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geometry. Also, the papers related to invariant submanifolds have appeared in vari-
ous ambient manifolds, such as almost contact Riemannian manifolds [3, 4], normal
contact metric manifolds [5], Sasakian manifolds [6], almost product Riemannian
manifolds [7], CR-manifolds [8] etc.
Recently, C∞-differentiable manifolds endowed with golden structures, i.e., golden

manifolds have become a popular topic in differential geometry. In [9], M. C.
Crâşmăreanu and C. E. Hrȩtcanu have shown that there exists a close relationship
between golden and almost product structures. In this sense, F. Etayo, R. San-
tamaría and A. Upadhyay have analyzed almost golden Riemannian manifolds by
use of the corresponding almost product structures in [10], where the concept of
a golden manifold was defined as a C∞-differentiable manifold admitting an in-
tegrable golden structure. In [11], M. Gök, S. Keleş and E. Kılıç have examined
the Schouten and Vrănceanu connections on golden manifolds. The different kind
of classes of submanifolds in a golden Riemannian manifold have been defined ac-
cording to the behaviour of their tangent bundles with respect to the action of
the golden structure of the ambient manifold and studied by several geometers in
[12, 13, 14, 15, 16]. Invariant submanifolds, which are one of important and known
classes of submanifolds, have been investigated in a golden Riemannian manifold for
the first time by C. E. Hrȩtcanu and M. C. Crâşmăreanu with the help of induced
structures on them by the golden structure of the ambient manifold in [17] we can
find their some fundamental properties. The authors have obtained a characteri-
zation for any submanifold in a golden Riemannian manifold to be invariant and
proved that the Nijenhuis tensor of the induced structure vanishes identically on
invariant submanifolds in the case that the ambient manifold is a locally decompos-
able golden Riemannian manifold. Also, an example of an invariant submanifold
regarding a product of two spheres in an Euclidean space has been given in [18].
The main purpose of this paper is to examine invariant submanifolds of a golden

Riemannian manifold by means of induced structures on them by the golden struc-
ture of the ambient manifold.
The paper has three sections and is organized as follows: Section 2 is devoted to

preliminaries containing basic definitions, concepts, formulas, notations and results
for golden Riemannian manifolds and their submanifolds. Section 3 deals with an
investigation of invariant submanifolds of a golden Riemannian manifold. We prove
that any invariant submanifold of a locally decomposable golden Riemannian mani-
fold is also locally decomposable. We obtain a characterization for any submanifold
in a golden Riemannian manifold to be invariant. We find some necessary condi-
tions for any invariant submanifold to be totally geodesic. Also, we get other results
on invariant submanifolds. Lastly, we construct an induced structure on a prod-
uct of hyperspheres in an Euclidean space as an example of a golden Riemannian
structure.



INVARIANT SUBMANIFOLDS IN GOLDEN RIEMANNIAN MANIFOLDS 1121

2. Preliminaries

In this section, we recall some basic facts on golden Riemannian manifolds and
their submanifolds.
A non-trivial C∞-tensor field f of type (1, 1) on a C∞-differentiable manifold

M is called a polynomial structure of degree n if it satisfies the algebraic equation

Q (x) = xn + anx
n−1 + · · ·+ a2x+ a1I = 0, (1)

where I is the identity (1, 1)-tensor field on M and fn−1 (p) , fn−2 (p) , . . . , f (p) , I
are linearly independent for every point p ∈M . Also, the monic polynomial Q (x)
is named the structure polynomial [19].
A polynomial structure Φ of degree 2 with the structure polynomial Q (x) =

x2 − x − 1 on a C∞-differentiable real manifold M is called a golden structure.
That is, the golden structure Φ is a tensor field of type (1, 1) satisfying the algebraic
equation

Φ
2

= Φ + I. (2)

In this case, we say that M is a golden manifold. We denote by Γ
(
TM

)
the Lie

algebra of differentiable vector fields on M . If there exists a Riemannian metric g
on M endowed with a golden structure Φ such that g and Φ verify the relation

g
(
ΦX,Y

)
= g

(
X,ΦY

)
(3)

for any vector fields X,Y ∈ Γ
(
TM

)
, then the pair

(
g,Φ

)
is said to be a golden

Riemannian structure and the triple
(
M, g,Φ

)
is called a golden Riemannian man-

ifold. The eigenvalues of the golden structure Φ are φ = 1+
√
5

2 and 1 − φ = 1−
√
5

2

being the roots of the algebraic equation x2 − x − 1 = 0, where the former is the
golden ratio [9, 17, 18].
Let M be an n-dimensional submanifold of codimension r, isometrically im-

mersed in an m-dimensional golden Riemannian manifold
(
M, g,Φ

)
. We denote

by TpM and TpM⊥ its tangent and normal spaces at a point p ∈ M , respectively.
Then the tangent space TpM admits the decomposition

TpM = TpM ⊕ TpM⊥

for each point p ∈M . The induced Riemannian metric on M is given by

g (X,Y ) = g (i∗X, i∗Y ) (4)

for any vector fields X,Y ∈ Γ(TM), where i∗ is the differential of the immersion
i : M −→ M . We consider a local orthonormal frame {N1, . . . , Nr} of the normal
bundle TM⊥. For every tangent vector field X ∈ Γ(TM), the vector fields Φ (i∗X)
and Φ (Nα) on the ambient manifold M can be decomposed into tangential and
normal components as follows:

Φ (i∗X) = i∗ (Φ (X)) +

r∑
α=1

uα (X)Nα (5)
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and

Φ (Nα) = εi∗ (ξα) +

r∑
β=1

aαβNβ , ε = ±1, (6)

respectively, where Φ is a tensor field of type (1, 1) on M , ξα’s are tangent vector
fields on M , uα’s are differential 1-forms on M and (aαβ) is a matrix of type
r× r of real functions on M for any α, β ∈ {1, . . . , r}. Thus, we obtain a structure(

Φ, g, uα, εξα, (aαβ)r×r

)
induced onM by the golden Riemannian structure

(
g,Φ

)
.

We denote by∇ and∇ the Levi-Civita connections onM andM , respectively. Then
the Gauss and Weingarten formulas of M in M are given, respectively, by

∇i∗X i∗Y = i∗∇XY +

r∑
α=1

hα (X,Y )Nα (7)

and

∇i∗XNα = −i∗AαX +

r∑
β=1

lαβ (X)Nβ (8)

for any vector fields X,Y ∈ Γ(TM), where hα’s are the second fundamental tensors
corresponding to Nα’s, Aα’s are the shape operators in the direction of Nα’s and
lαβ’s are the 1-forms on M corresponding to the normal connection ∇⊥ for any
α, β ∈ {1, . . . , r}. Also, the following relations hold:

h (X,Y ) =

r∑
α=1

hα (X,Y )Nα, (9)

hα (X,Y ) = hα (Y,X) , (10)

hα (X,Y ) = g (AαX,Y ) , (11)

∇⊥XNα =

r∑
β=1

lαβ (X)Nβ (12)

and
lαβ = −lβα (13)

for any vector fields X,Y ∈ Γ(TM) [17].
As it is well known, the submanifold M is called totally geodesic if h = 0.

Besides, the mean curvature vector H of M is defined by

H =

n∑
i=1

h (ei, ei) ,

where {e1, . . . , en} is orthonormal basis of the tangent space TpM at a point p ∈M .
If the mean curvature vector H vanishes identically, thenM is said to be a minimal
submanifold. If h (X,Y ) = g (X,Y )H for any vector fields X,Y ∈ Γ(TM), then
M is named a totally umbilical submanifold [20].
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The triple
(
M, g,Φ

)
is called a locally decomposable golden Riemannian mani-

fold if the golden structure Φ is parallel with respect to the Levi-Civita connection
∇, i.e., the covariant derivative ∇Φ is identically zero. Also, under the assumption
that the induced structure is a golden structure, the same definition can be applied
to the submanifold (M, g,Φ) in terms of the Levi-Civita connection ∇ of M .

3. Invariant Submanifolds of Golden Riemannian Manifolds

This section is mainly concerned with invariant submanifolds in golden Riemann-
ian manifolds. We show that any invariant submanifold in a locally decomposable
golden Riemannian manifold preserves the locally decomposability of the ambient
manifold. We get an equivalent expression to the invariance of any submanifold in
a golden Riemannian manifold. We give some necessary conditions for the totally
geodesicity of invariant submanifolds. Besides, we obtain some results on invariant
submanifolds.
As a beginning, we remember that the notion of an invariant submanifold in

golden Riemannian manifolds. Any invariant submanifoldM of a golden Riemann-
ian manifold

(
M, g,Φ

)
is submanifold such that the golden structure Φ of the

ambient manifold M carries each tangent vector of the submanifold M into its
corresponding tangent space in the ambient manifold M , in other words,

Φ (TpM) ⊆ TpM
for any point p ∈M .
LetM be an n-dimensional invariant submanifold of codimension r, isometrically

immersed in an m-dimensional golden Riemannian manifold
(
M, g,Φ

)
. Then we

have ξα = 0 and uα = 0 for any α ∈ {1, . . . , r}. Hence, (5) and (6) can be expressed
in the following forms:

Φ (i∗X) = i∗ (Φ (X)) (14)

and

Φ (Nα) =

r∑
β=1

aαβNβ , (15)

respectively.

Theorem 1. [18, Remark 3.1] Let M be an n-dimensional invariant submanifold
of codimension r, isometrically immersed in an m-dimensional golden Riemannian

manifold
(
M, g,Φ

)
. Then the induced structure

(
Φ, g, uα = 0, εξα = 0, (aαβ)r×r

)
on M by the golden Riemannian structure

(
g,Φ

)
satisfies the following relations:

Φ2 (X) = Φ (X) +X, (16)

aαβ = aβα, (17)
r∑

γ=1

aαγaβγ = δαβ + aαβ, (18)
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g (Φ (X) , Y ) = g (X,Φ (Y )) (19)

and

g (Φ (X) ,Φ (Y )) = g (Φ (X) , Y ) + g (X,Y ) (20)

for any vector fields X,Y ∈ Γ(TM).

Theorem 2. [18, Theorem 3.2] Let M be an n-dimensional submanifold of codi-
mension r, isometrically immersed in an m-dimensional golden Riemannian man-
ifold

(
M, g,Φ

)
. Then M is an invariant submanifold if and only if the induced

structure (Φ, g) on M is a golden Riemannian structure whenever Φ is non-trivial.

Theorem 3. [17, Theorem 2.1] Let M be an n-dimensional invariant subman-
ifold of codimension r, isometrically immersed in an m-dimensional locally de-
composable golden Riemannian manifold

(
M, g,Φ

)
. Then the induced structure(

Φ, g, uα = 0, εξα = 0, (aαβ)r×r

)
on M by the golden Riemannian structure

(
g,Φ

)
verifies the following relations:

(∇XΦ)Y = 0, (21)

hα (X,ΦY ) =

r∑
β=1

hβ (X,Y ) aβα, (22)

Φ (AαX) =

r∑
β=1

aαβAβX (23)

and

X (aαβ) =

r∑
γ=1

lαγ (X) aγβ +

r∑
γ=1

lβγ (X) aαγ (24)

for any vector fields X,Y ∈ Γ(TM).

Theorem 4. Let M be an n-dimensional invariant submanifold of codimension r,
isometrically immersed in an m-dimensional locally decomposable golden Riemann-
ian manifold

(
M, g,Φ

)
. Then M is a locally decomposable golden Riemannian

manifold whenever Φ is non-trivial.

Proof. Taking into consideration Theorem 2, the proof is obvious from (21). �

Theorem 5. Let M be an n-dimensional submanifold of codimension r, isometri-
cally immersed in an m-dimensional golden Riemannian manifold

(
M, g,Φ

)
. Then

M is an invariant submanifold if and only if there exists a local orthonormal frame
of the normal bundle TM⊥ such that it consists of eigenvectors of the golden struc-
ture Φ.
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Proof. At first, we recall that it is possible to transform the local orthonormal
frame {N1, . . . , Nr} of the normal bundle TM⊥ into another local orthonormal

frame {N ′1, . . . , N ′r} such that ξ′α =
r∑

γ=1
kγαξγ and a

′
αβ = λαδαβ , where (kγα) is an

orthogonal matrix of type r× r and λa’s are the eigenvalues of the matrix (aαβ)r×r
for any α, β ∈ {1, . . . , r}. IfM is an invariant submanifold, then the tangent vector
fields ξ′α’s are zero. Hence, we obtain from (15) that

Φ (N ′α) = λαN
′
α, α = 1, . . . , r,

which shows that the normal vector fields N ′α’s are eigenvectors of the golden struc-
ture Φ. Conversely, we assume that Φ (N ′α) = λαN

′
α for any α ∈ {1, . . . , r}. Then

it follows from (15) that
ξ′α = 0, α = 1, . . . , r,

from which we conclude that the submanifold M is invariant. �

Theorem 6. Let M be an n-dimensional submanifold of codimension r, isometri-
cally immersed in an m-dimensional golden Riemannian manifold

(
M, g,Φ

)
. Then

M is a totally geodesic invariant submanifold if the following relations are satisfied:

Φi∗ = φi∗ (25)

and
ΦNα = (1− φ)Nα, α = 1, . . . , r. (26)

Proof. Using (25) and (26) in (5) and (6), respectively, we get

Φ = φI (27)

and
aαβ = (1− φ) δαβ (28)

for any α, β ∈ {1, . . . , r}. On the other hand, (25) and (26) mean that M is an
invariant submanifold. Thus, in virtue of (27) and (28), it results by a simple
computation from (23) that

√
5Aα = 0, α = 1, . . . , r,

which proves that the submanifoldM is totally geodesic. As a result, the proof has
been completed. �

Theorem 7. Let M be an n-dimensional submanifold of codimension r, isometri-
cally immersed in an m-dimensional golden Riemannian manifold

(
M, g,Φ

)
. Then

M is a totally geodesic invariant submanifold if the following relations are verified:

Φi∗ = (1− φ) i∗ (29)

and
ΦNα = φNα, α = 1, . . . , r. (30)
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Proof. Applying (29) and (30) to (5) and (6), respectively, we deduce

Φ = (1− φ) I (31)

and
aαβ = φδαβ (32)

for any α, β ∈ {1, . . . , r}. On the other hand, it is clear from (29) and (30) that M
is an invariant submanifold. Hence, taking into account (31) and (32), we obtain
by a straightforward computation from (23) that

−
√

5Aα = 0, α = 1, . . . , r,

which implies that the submanifold M is totally geodesic. Consequently, the proof
has been shown. �

Theorem 8. Let M be an n-dimensional submanifold of codimension r, isometri-
cally immersed in an m-dimensional golden Riemannian manifold

(
M, g,Φ

)
. Then

the second fundamental tensors hθ’s are zero for any θ ∈ {1, . . . , t < r} if the fol-
lowing relations are satisfied:

Φi∗ = φi∗, (33)

ΦNθ = (1− φ)Nθ, θ = 1, . . . , t (34)

and
ΦNµ = φNµ, µ = t+ 1, . . . , r. (35)

Proof. Taking account of (33), (34) and (35), in view of (5) and (6), we obtain

Φ = φI, (36)

aθϑ = (1− φ) δθϑ, θ, ϑ = 1, . . . , t (37)

and
aµν = φδµν , µ, ν = t+ 1, . . . , r. (38)

On the other hand, it follows from (33), (34) and (35) that the submanifold M is
invariant. Hence, by means of (36), (37) and (38), (23) takes the form

√
5Aθ = 0, θ = 1, . . . , t < r,

from which we have
hθ = 0, θ = 1, . . . , t < r.

�

Theorem 9. Let M be an n-dimensional submanifold of codimension r, isometri-
cally immersed in an m-dimensional golden Riemannian manifold

(
M, g,Φ

)
. Then

the second fundamental tensors hθ’s are zero for any θ ∈ {1, . . . , t < r} if the fol-
lowing relations are verified:

Φi∗ = (1− φ) i∗, (39)

ΦNθ = φNθ, θ = 1, . . . , t, (40)
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and
ΦNµ = (1− φ)Nµ, µ = t+ 1, . . . , r. (41)

Proof. By reason of (39), (40) and (41), we infer from (5) and (6) that

Φ = (1− φ) I, (42)

aθϑ = φδθϑ, θ, ϑ = 1, . . . , t (43)

and
aµν = (1− φ) δµν , µ, ν = t+ 1, . . . , r. (44)

On the other hand, it is obvious from (39), (40) and (41) that the submanifold M
is invariant. Thus, using (42), (43) and (44), (23) is reduced to

−
√

5Aθ = 0, θ = 1, . . . , t < r,

which implies
hθ = 0, θ = 1, . . . , t < r.

�

Theorem 10. Let M be an n-dimensional totally umbilical invariant submanifold
of codimension r, isometrically immersed in an m-dimensional golden Riemannian
manifold

(
M, g,Φ

)
. If

{tr(Φ)}2 6= n {n+ tr(Φ)} ,
or equivalently

{tr(Φ)}2 6= λ2n2,

then M is a totally geodesic submanifold, where λ is one of the eigenvalues of the
golden structure Φ.

Proof. We denote by {e1, . . . , en} an orthonormal basis of the tangent space TpM
at a point p ∈M . Since the submanifoldM is totally umbilical, there are constants
σα’s such that hα = σαg for any α ∈ {1, . . . , r}. Then (22) is given by

σαg (X,ΦY ) =

r∑
β=1

aβασβg (X,Y ) (45)

for any vector fields X,Y ∈ Γ (TM). Putting Xp = Yp = ei for any i ∈ {1, . . . , n}
at the point p ∈M in (45), we have

σαg (ei,Φei) = g (ei, ei)

r∑
β=1

aβασβ . (46)

Summing over i in (46), we get
n∑
i=1

σαg (ei,Φei) = n

r∑
β=1

aβασβ ,
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which implies

tr(Φ)σα = n

r∑
β=1

aβασβ . (47)

Multiplying (47) by the matrix element aβα and then summing over α, we obtain

tr(Φ)

r∑
α=1

aβασα = n

r∑
γ=1

r∑
α=1

aβαaαγσγ . (48)

Using (18), (48) takes the form

tr(Φ)

r∑
α=1

aβασα = nσβ + n

r∑
γ=1

aβγσγ ,

from which we have

σβ =
1

n
(tr(Φ)− n)

r∑
α=1

aβασα. (49)

Hence, substituting (49) into (47), we find{
tr(Φ) (tr(Φ)− n)− n2

} r∑
β=1

aαβσβ = 0. (50)

On the other hand, on account of the fact that {tr(Φ)}2 6= n {n+ tr(Φ)}, or equiv-
alently {tr(Φ)}2 6= λ2n2 in the hypothesis, it follows from (50) that

r∑
β=1

aαβσβ = 0.

Therefore, we infer from (49) that

σβ = 0, β = 1, . . . , r,

which demonstrates that the submanifold M is totally geodesic. �

Now, we give an example.

Example 11. Let
(
E2(p+q), 〈, 〉

)
be the 2(p+q)-dimensional Euclidean space, where

p and q are two positive natural numbers. Hereafter we use the following abbrevia-
tions for a point and a tangent vector in the Euclidean space E2(p+q), respectively:(

xi, yi, zj , wj
)

=
(
x1, . . . , xp, y1, . . . , yp, z1, . . . , zq, w1, . . . , wq

)
and (

Xi, Y i, Zj ,W j
)

=
(
X1, . . . , Xp, Y 1, . . . , Y p, Z1, . . . , Zq,W 1, . . . ,W q

)
.

We consider a tensor field Φ of type (1, 1) defined by

Φ
(
Xi, Y i, Zj ,W j

)
=
(
φXi, φY i, (1− φ)Zj , (1− φ)W j

)
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for any tangent vector
(
Xi, Y i, Zj ,W j

)
∈ T(xi,yi,zj ,wj)E2(p+q), where φ and 1− φ

are the roots of the algebraic equation x2 − x− 1 = 0, i.e., φ = 1+
√
5

2 and 1− φ =
1−
√
5

2 . In this case, it is easy to show that
(
〈, 〉 ,Φ

)
is a golden Riemannian structure

and
(
E2(p+q), 〈, 〉 ,Φ

)
is a golden Riemannian manifold.

Because of the fact that E2(p+q) = Ep × Ep × Eq × Eq, we have the following
four hyperspheres:

Sp−1 (r1) =

{(
x1, . . . , xp

)
:

p∑
i=1

(
xi
)2

= r21

}
,

Sp−1 (r2) =

{(
y1, . . . , yp

)
:

p∑
i=1

(
yi
)2

= r22

}
,

Sq−1 (r3) =

(z1, . . . , zq) :

q∑
j=1

(
zj
)2

= r23


and

Sq−1 (r4) =

(w1, . . . , wq) :

q∑
j=1

(
wj
)2

= r24

 .
We construct the product manifold Sp−1 (r1)× Sp−1 (r2)× Sq−1 (r3)× Sq−1 (r4)

in a similar way as in [18]. We denote it by M for simplicity. Its every point has
the coordinates

(
xi, yi, zj , wj

)
satisfying the equation

p∑
i=1

(
xi
)2

+

p∑
i=1

(
yi
)2

+

q∑
j=1

(
zj
)2

+

q∑
j=1

(
wj
)2

= R2,

where R2 = r21 + r22 + r23 + r24. Then M is a submanifold of codimension 4 in the
Euclidean space E2(p+q) and M is a submanifold of codimension 3 in the sphere
S2(p+q)−1 (R). Hence, there exist successive embeddings such that

M ↪→ S2(p+q)−1 (R) ↪→ E2(p+q).

Also, its tangent space T(xi,yi,zj ,wj)M at a point
(
xi, yi, zj , wj

)
is as follows:

T(xi,0i,0j,0j)S
p−1(r1)⊕T(0i,yi,0j,0j)Sp−1(r2)⊕T(0i,0i,zj,0j)Sq−1(r3)⊕T(0i,0i,0j,wj)Sq−1(r4) .

As it is seen, any tangent vector
(
Xi, Y i, Zj ,W j

)
∈ T(xi,yi,zj ,wj)E2(p+q) belongs

to T(xi,yi,zj ,wj)M for every point
(
xi, yi, zj , wj

)
∈M if and only if

p∑
i=1

xiXi =

p∑
i=1

yiY i =

q∑
j=1

zjZj =

q∑
j=1

wjW j = 0.

In addition, since
(
Xi, Y i, Zj ,W j

)
is a tangent vector on the sphere S2(p+q)−1 (R),

we have
T(xi,yi,zj ,wj)M ⊂ T(xi,yi,zj ,wj)S2(p+q)−1 (R)
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for every point
(
xi, yi, zj , wj

)
∈M .

Let us consider a local orthonormal basis {N1, N2, N3, N4} for the normal space
T(xi,yi,zj ,wj)M

⊥ at a point
(
xi, yi, zj , wj

)
. Then we can choose the normal vectors

N1, N2, N3 and N4 such that

N1 =
1

R

(
xi, yi, zj , wj

)
,

N2 =
1

R

(
r2
r1
xi,−r1

r2
yi,

r4
r3
zj ,−r3

r4
wj
)
,

N3 =
1

R

(
r3
r1
xi,−r4

r2
yi,−r1

r3
zj ,

r2
r4
wj
)

and

N4 =
1

R

(
r4
r1
xi,

r3
r2
yi,−r2

r3
zj ,−r1

r4
wj
)
.

We identify i∗X with X for any tangent vector X ∈ T(xi,yi,zj ,wj)M . From (6), we
have

ΦNα = ξα +

4∑
β=1

aαβNβ (51)

for any α ∈ {1, 2, 3, 4}. Also, we remark that
aαβ =

〈
ΦNα, Nβ

〉
for any α, β ∈ {1, 2, 3, 4}. Then by straightforward computations, we obtain the
elements of the matrix A = (aαβ)4×4 as follows:

a11 = a22 =
1

2R2

(
R2 +

√
5
(
r21 + r22 − r23 − r24

))
,

a12 = a21 = a34 = a43 = 0,

a13 = a31 = −a24 = −a42 =

√
5

R2
(r1r3 − r2r4) ,

a14 = a41 = a23 = a32 =

√
5

R2
(r1r4 + r2r3) ,

a33 = a44 =
1

2R2

(
R2 −

√
5
(
r21 + r22 − r23 − r24

))
.

Hence, using the matrix elements aαβ’s given above, it follows from (51) that

ξ1 = ξ2 = ξ3 = ξ4 = 02(p+q). (52)

In this case, we have

Φ
(
T(xi,yi,zj ,wj)M

⊥) ⊆ T(xi,yi,zj ,wj)M⊥.
From (5), we can write the following relation:

Φ
(
Xi, Y i, Zj ,W j

)
= Φ

(
Xi, Y i, Zj ,W j

)
+

4∑
α=1

uα
(
Xi, Y i, Zj ,W j

)
Nα. (53)
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We recall that

uα
(
Xi, Y i, Zj ,W j

)
= ε

〈(
Xi, Y i, Zj ,W j

)
, ξα
〉

for any α ∈ {1, 2, 3, 4}, where ε = ±1. Then we get from (52) that

u1 = u2 = u3 = u4 = 0. (54)

Thus, we infer from (53) and (54) that

Φ
(
Xi, Y i, Zj ,W j

)
= Φ

(
Xi, Y i, Zj ,W j

)
.

In the circumstances, we have

Φ
(
T(xi,yi,zj ,wj)M

)
⊆ T(xi,yi,zj ,wj)M

and
Φ2 = Φ + I.

Consequently, we establish an induced structure
(
Φ, 〈, 〉 , εξα = 02(p+q), uα = 0,A

)
on the product of hyperspheres M by the golden Riemannian structure

(
〈, 〉 ,Φ

)
on

the Euclidean space E2(p+q). Moreover, (Φ, 〈, 〉) is a golden Riemannian structure
and M is an invariant submanifold in the Euclidean space E2(p+q).
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