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Abstract 

Principal component analysis (PCA) is commonly used technique in data processing and dimensionality reduction. 

However, PCA is very sensitive to outliers. To deal with this problem, the robust principal component analysis (RPCA) 

using Projection-Pursuit (PP) is a very appealing method. On the other hand, combining PCA on explanatory variables 

with least squares regression yields to principal component regression (PCR). Taking into consideration this general 

structure of PCR, we combine (R)PCA with OLS and MM regression estimators and show the performances of 

examined methods on extensive simulation studies and real data examples. 
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Öz 

Temel Bileşen Analizi (TBA) veri işleme ve boyut indirgeme için sıklıkla kullanılan bir tekniktir. Ancak, TBA verideki 
sapan değerlere karşı oldukça duyarlıdır. Bu problemle başa çıkmak için iz düşüm takibini (projection pursuit) temel 

alan dayanıklı TBA kullanımı oldukça dikkat çekici bir yöntem olarak ileri sürülmüştür. Diğer taraftan, Temel Bileşen 

Regresyonu (TBR), TBA ile en küçük kareler regresyonunun birleşimi olarak görülebilmektedir. Bu çalışmada, TBR’nin 

bu genel yapısı dikkate alınarak, sapan değerlere karşı dirençli olan versiyonları üzerinde çalışılmıştır. İncelenen 

yöntemlerin performans karşılaştırmaları detaylı bir benzetim çalışması ve çeşitli gerçek veri kümeleri üzerinde 

gösterilmiştir. 

 

Anahtar Kelimeler: En Küçük Kareler, Temel Bileşen Analizi, Temel Bileşen Regresyonu, Dayanıklılık 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



Kurnaz. / GUFBED 10(3) (2020) 581-591 

582 

1. Introduction 

 
The primary work in science and technology is 

modeling a dependent variable by one or several 

explanatory variables. For such a modeling, the 
ordinary least squares (OLS) regression is the 

most common method performed directly with the 

values of the explanatory variables. However, in 

presence of multicollinearity among explanatory 
variables, the OLS estimator can give wrong 

information, and if the number of variables 

exceeds the number of observations (n≤p) it can 
even not be computed. These problems are quite 

common in many applications such as 

chemometrics, medicine, social sciences, etc. For 

such situations, the principal component 
regression (PCR) is a very useful alternative that 

is the combination of the Principal Component 

Analysis (PCA) and the OLS estimator. The PCR 
solves the problem of data collinearity reducing 

the number of variables. But the obtained 

variables, are no longer the original measured 
variables but linear combinations thereof. The 

linear combinations for PCR are the principal 

component (PC) scores of variables obtained by 

PCA. Furthermore, the PCR also allows solving 
the computational problem of high dimensional 

data. Kendall (1957) proposed the PCR, Hotelling 

(1957) introduced it in an article in the same year, 
and a very famous application was implemented 

by Jeffers (1967), but it still keep to be a 

cornerstone in the literature and are still a hot 

research topic of regression methods. For a short 
overview, see (Varmuza and Filzmoser, 2008).  

 

On the other hand, most real world data sets 
include outliers that follow different pattern when 

compared with others in data set. Outliers may 

cause a negative effect on regression methods 
besides PCA, especially in high dimensional data, 

where the influence of observations is more 

critical because the sample size n is remarkably 

less than the number of explanatory variables p. 
Even one massive outlier can heavily distort the 

results of these methods. In addressing this 

problem, the robust principal component analysis 
(RPCA) methods have been proposed with diverse 

modifications (Maronna, 1976; Campbell, 1980; 

Li and Chen, 1985; Croux and Haesbroeck, 2000; 
Hubert et al., 2002; Hubert et al., 2005; Croux and 

Ruiz-Gazen, 2005; Croux et al., 2007). In this 

paper we consider the RPCA method proposed by 

(Li and Chen, 1985), which is constructed using 
the projection-pursuit (PP) (Huber, 1985). The 

idea is straightforward: a robust measure of 

variance is taken instead of taking the variance as 
a projection index. Theoretical advantages of this 

idea are examined by Li and Chen (1985) and Cui 

(2003), and recently this method is studied in 
detailed by Croux and Ruiz-Gazen (2005). 

Obtaining RPCs with this way, several algorithms 

are introduced such as (Li and Chen, 1985; 
Johnson and Wichern, 1998; Xie et al., 1993), but 

these algorithms are not made publicly available. 

Equivalent to Xie et al. (1993) more stable 

versions are studied by (Hubert et al., 2002) and 
(Croux and Ruiz-Gazen, 2005). The algorithm 

proposed by Xie et al. (1993) is called as CR 

algorithm which is very simple, fast to compute 
and easy to implement. However, disadvantages 

of the CR algorithm for high dimensional 

regression applications are discovered by (Croux 

et al. 2007). Recently, a new algorithm is 
proposed to deal with this problem and it is much 

more precise, while still being computationally 

efficient (Croux et al., 2007). This algorithm is 
called as the GRID algorithm. Both of CR and 

GRID algorithms are freely available R package 

and it can be downloaded from (http://www.R-
project.org) as the library pcaPP. For the other 

proposals of RPCA, besides the PP based 

approach, we suggest to see in (Croux and 

Haesbroeck, 2000; Maronna, 2005). 
 

The aim of this paper is to focus on the estimation 

methods include robustness, taking the pure idea 
of the PCR using PCA and RPCA with some 

regression methods and then compare them with 

each other. Although the proposed methods can be 
seen very straightforward, to the best of our 

knowledge, there is not any performance 

comparison of them in the literature. In order to 

fill this gap, during this paper, we aim to provide 
some practical hints for use of these methods.  

 

The outline of this paper is as follows. In Section 
2 we recall the classical OLS estimator and its 

robust counterpart MM estimator. In Section 3, 

we remind PCA and RPCA. Then, we introduce 

the combination of OLS and MM estimators with 
PCA and RPCA. In Section 4, the comparison 

results and discussion are given throughout 

extended simulation studies. Section 5 shows the 
performances using real data sets, the prostate 

cancer data, the forest fires data, the glass vessels 

data and the NCI data. The final Section 6 
includes conclusion. 

 

2. Classical Regression Methods 

 
Let us take into consideration the classical linear 

regression model  

 

y = Xξ + ϵ,                                                         (1) 
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where 𝐲 = (y1, y2, ⋯ , yn) is dependent variable 

with n observations; 𝐗 = (𝐱𝟏 , 𝐱𝟐, ⋯ 𝐱𝐩) is the 

n × p data matrix which enjoys the information of 
the p explanatory variables and the n 

observations; 𝛏 = (ξ1, ξ2, ⋯ , ξn)is the true 

regression coefficient vector; 𝛜 = (ϵ1, ϵ2, ⋯ , ϵn) 
is the error term with standard normal distribution. 

 

The common method to estimate the true 

regression coefficients is the ordinary least 
squares (OLS) estimator, which is defined by  

 

ξ̂𝑂𝐿𝑆 = (X𝑇X)−1X𝑇y.                                          (2) 

 
Even though the OLS estimator has many 

attractive statistical properties as compared to 

other unbiased linear estimators, it can be affected 

by outliers in the data sets (Maronna et al., 2006). 
In order to deal with this problem, several 

alternative regression estimators are proposed 

such as S-estimator, M estimator and MM 
estimator (Maronna et al., 2006). We use the MM 

estimator that is robust to both types of outliers 

(Yohai, 1987). The MM regression estimator has 

a definition based on the M estimator of 
regression 

 

ξ̂M = argmin
ξ

∑ 𝜌 (
𝑟𝑖(ξ)

�̂�(ξ)
)𝑛

𝑖=1 ,                               (3) 

 

where 𝜌 shows a predefined bounded function 

(Maronna et al., 2006). Here, �̂� stands for the 

scale estimator of the residuals. The M estimator 

is not robust against outliers in the explanatory 

variables (Maronna et al., 2006), so-called 
leverage points, and thus the MM estimator uses 

as a robust residual scale estimator an M estimator 

of scale, which is the solution of the equation 
 

∑ �̃�
𝑟𝑖(ξ)

𝜎(ξ)
𝑛
𝑖=1 = 𝛿,                                                  (4) 

 

with �̃� taken e.g. as the bisquare function 

(Maronna at al., 2006), and the tuning constant 𝛿.  

 

In data sets with many explanatory variables and 
lower observations, the classical low dimensional 

methods - OLS and MM estimators - may not be 

applicable because of high multicollinearity 
problem and the large number of explanatory 

variables. In such situations, there exist some 

alternatives providing both regression analysis 
and interpretative analysis, which is very 

attractive property for high dimensional data. A 

first approach can be to use a principal component 

analysis, followed by a (potentially OLS) 
regression, so called PCR. Another one is the 

partial least squares regression (PLSR) (Varmuza 

and Filzmoser, 2008) providing a projection onto 
a few latent components, and it yields a vector of 

regression coefficients based on those latent 

components. The other alternative is to use the 
Lasso regression that is quite attractive in last 

decades which only uses a subset of explanatory 

variables (Zou and Hastie, 2005). In this paper we 

focus on the methods based on PCA because it is 
a mainstay tool and still a hot topic for applied 

sciences. 

 
3. Principal Component Methods 

 

PCA searches a linear combination of explanatory 

variables ensure that the maximum variance is 
extracted from the explanatory variables. Then it 

removes the obtained variance and searches the 

linear combination which explains the maximum 
proportion of the remaining variance, continue to 

computation of the next component until the 

number of components explains at least 80%, 
eventually 90% of the total variance.  

 

Although PCA is very useful tool for high 

dimensional data structure, outliers may have 
severe influence on the results. Similar to the 

classical PCA, PP approach is proposed which 

yields the RPCA finding projections of the data 
which have maximal dispersion. Instead of using 

the variance as a measure of dispersion, a robust 

scale estimator S is used for the maximization 
problem. This approach was introduced by (Li and 

Chen, 1985), who proposed estimators based on 

maximizing (or minimizing) a robust scale. In this 

way, for n observations 𝐱𝟏, 𝐱𝟐, ⋯ 𝐱𝐩  - all of the 

column vectors of dimension p - the first robust 

principal component (RPC) is defined as 

 

a1 = argmax
‖a‖=1

S2(a𝑇x1, ⋯ , a𝑇x𝑛),                      (5) 

 

where S2 shows the variance. A particular feature 

is that the PP-based approach for PCA allows 

sequential estimation of the PCs. The subsequent 
PCs are obtained by imposing orthogonality 

conditions. Clearly, let us have already computed 

the (k-1)th PC at hand. Then the direction of the 

kth component for 1 ≤ 𝑘 ≤ 𝑝 is obtained by the 

unit vector maximizing the index S2 of the data 

projected on it. Each new obtained PC has to be 

orthogonal to all previously obtained components. 
This situation can be written mathematically as 

follows: 

 

a𝑘 = argmax
‖a‖=1,a⊥a1,⋯,a⊥a𝑘−1,

S2(a𝑇x1, ⋯ , a𝑇x𝑛),    (6) 
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Note that if the variance is defined as a projection 

index, then the resulting method is the standard 

PCA. In this case, 𝐚1 is the eigenvector of the 

sample covariance matrix of the data 

corresponding to the largest eigenvalue (Johnson 

and Wichern, 1998). Eq. (1) cannot be solved 
easily for the other choices of S. Some 

approximative algorithms can be used for such a 

case. In this paper, we use the GRID algorithm 
which is quite effective to computation of RPCA 

(Croux et al., 2007) and has the R package 

(Filzmoser et al., 2018).  
 

On the other hand, from the perspective of 

regression, PCR is very common method that 

solves the problem of multicollinearity and 
reduces the number of explanatory variables by 

means of generating linear combinations of 

explanatory variables. The main idea of PCR is 
that instead of regressing the dependent variable 

on the explanatory variables directly, the principal 

components of the explanatory variables are used 
as explanatory variables, which means PCR is a 

combination of PCA and OLS estimator. This idea 

makes the PCR some kind of a regularized 

procedure and it is gained multitasking skills to 
the regression methods such as dimension 

reduction, easy interpretation and the most 

importantly such multitasking skills are available 
when data sets are high dimensional. 

Theoretically, PCA decomposes a data matrix X 

into scores T and loadings P. For a predetermined 

number a of PCs, X is reconstructed by  
 

X = TP𝑇 + E,                                                      (7) 

 
where E is the error term, which would be zero if 

all possible PCs would be used in the model. Note 

that y is not considered in this step. In the linear 

regression model given Eq. (1), data matrix X is 
replaced by scores matrix T and the resulting 

equation is 

 

y = (TP𝑇)β + 𝑒𝑇 = Tθ + 𝑒𝑇,                            (8) 

 

where 𝛉 = 𝐏𝑻𝛃 and 𝒆𝑻 is the error term. This 

indeed solves multicollinearity problem because 
the information of the highly correlated 

explanatory variables is compressed in few score 

vectors that are uncorrelated. OLS estimator can 

now be computed by 
 

θ̂ = (T𝑇T)−1T𝑇y,                                               (9) 

 

where note that the new explanatory variables, so 

called PCs, are no longer the original measured x-

variables and the estimator 𝛉 = 𝐏𝑇𝛃 corresponds 

to space of PCA scores. One could obtain the 

regression coefficients in the original space as 
follows: 

 

θ = P𝑇β.                                                           (10) 

 
Because of PCR still keeps to be cornerstone in 

high dimensional data structure, taking the general 

idea of PCA, RPCA can be used in regression as a 
solution to the problem of outliers in data besides 

the problems of multicollinearity and high 

dimensionality. As in PCR, considering RPCs as 
in inputs for the linear regression, we use OLS 

estimator and called the resulting method as 

rpcaOLS. However, in this part, an obvious 

question emerges, whether the OLS should be 
replaced by any choice of robust estimator in 

order to improve the prediction ability with the 

components selection. Therefore, another 
approach is to construct the MM regression 

estimators regressing on RPCs spaces. The 

obtained estimators with this idea are called as 

pcaMM and rpcaMM estimators. From this 
perspective, one could generally think these 

methods as a kind of regularized procedure by 

means of using only a subset of all RPCs for 
regression. More clearly, the proposed estimators 

have two main stages analogously to PCR. First 

stage is to apply PCA or RPCA on the 
explanatory variables and second stage is to 

perform a regression of response variable on the 

obtained PCs in the first stage.  

 
3.1. Choosing the Optimal Number of 

Components 

 
The classical approach is to determine the number 

of PCs is leave one-out cross-validation (CV) 

based on root mean squared prediction error 
(RMSPE). We take into consideration the similar 

idea to estimate the number of PCs. But rather 

than the classical approach CV, we use 

generalized cross-validation (GCV) which can be 
seen as a rotation-invariant form of the CV.  

 

On the other hand, we would like to draw 
attention that, in the context of PCR, it is popular 

to center the data matrix X at the PCA stage since 

PCR required the use of PCA on data matrix X 

and PCA is sensitive to centering of the data. 
From this perspective, as in PCA, RPCA are 

performed on the centered data matrix X. 

 
4. Simulation Studies 

 

We design 16(= 4 × 2 × 2) different cases for 
each of “low dimensional data” and “high 
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dimensional dat” sets using arguments the sizes (4 

cases), the magnitude of correlations among 
variables (2 cases) and the different level of 

contamination in data - with %0 and %10 (2 

cases). Therefore, in total, we examine the 
performance of the compared methods based on 

32 different scenarios. In each case, the number of 

replications is 100.  

 
4.1. Design of Simulation Schemes for Low 

Dimensional Data 

 
We take into consideration scenarios by means of 

generating low dimensional data sets with (n, p) =
{(100,50), (50,20), (500,20), (500,100)}. The true 

response variable is computed by 
 

𝑦𝑖 = 1 + x𝑖
𝑇𝛽 + ε𝑖,                                           (11) 

 

where the error term ε𝒊 is distributed according to 

a standard normal distribution 𝐍(0,1) for 𝑖 =
1, ⋯ n. Here, the data matrix 𝐗 = (𝐱𝒋) is 

generated using two different ways. Firstly, we 

think the design matrix X from 𝐍p(0, 𝚺) with 𝚺 =

𝝆|𝒋−𝒌|, 1 ≤ 𝑗, 𝑘 ≤ p, where high level of 

correlation is determined by 𝜌 = 0.9. Secondly, 

we take the explanatory variables forming a block 
structure (BS) generating the observations of the 

blocks of design matrix X from 𝐗a ∼ 𝐍pa
(𝟎, 𝚺a) 

with 𝚺a = 𝝆|𝒋−𝒌|, 1 ≤ 𝑗, 𝑘 ≤ pa, and from 𝐗b ∼

𝐍pb
(𝟎, 𝚺b) with  𝚺b = 𝝆|𝒋−𝒌|, 1 ≤ 𝑗, 𝑘 ≤ pb. 

Here, 𝐗 = (𝐗a, 𝐗b) with p = pa + pb. We take 

𝜌a = 0.9 to allow for a high correlation among the 

half of explanatory variables, and 𝜌b = 0.5 for a 
middle correlation among the half of explanatory 

variables.  

 

For the simulation scenarios with outliers, we 
think explanatory variables with BS and the first 

10% of the observations is replaced by values of 

independent normal distributions 𝐍(50,1) for 
each variables, respectively. Therefore, adding 

leverage points to the data is finished. In order to 

add vertical outliers, the error terms for these 

outliers are replaced by values from 𝐍(20�̂�𝑦 , 1) 

instead of 𝐍(0,1), where �̂�𝑦 corresponds to the 

estimated standard deviation of the clean response 

vector. With this way, in total, we consider 16 

scenarios with 8 clean data and 8 contaminated 
data.  

 

4.2. Design of Simulation Studies for High 

Dimensional Data 

 

We take into consideration scenarios by means of 
generating high dimensional data sets with 

(n, p) = {(60,100), (50,1000), (40,200), (80,5000)}. 

The true response variable is computed as in Eq. 

(11), where the error term 𝜀𝑖 is distributed 

according to a standard normal distribution 

𝐍(0,1), for 𝑖 = 1, ⋯ n. Here, the data matrix 𝐗 =
(𝐱𝒋) is obtained forming a block structure (BS) 

generating the observations of the blocks of 

design matrix X from 𝐗a ∼ 𝐍pa
(𝟎, 𝚺a) with 𝚺a =

𝝆|𝒋−𝒌|, 1 ≤ 𝑗, 𝑘 ≤ pa, and from 𝐗b ∼ 𝐍pb
(𝟎, 𝚺b) 

with  𝚺b = 𝝆|𝒋−𝒌|, 1 ≤ 𝑗, 𝑘 ≤ pb. Here, 𝐗 =
(𝐗a, 𝐗b) with p = pa + pb. We take 𝜌b = 0.9 to 
allow for a high correlation among the each of 

blocks. Additionally, we take 𝜌a = 0.9 and 𝜌b =
0.5 to have both high correlation and middle 
correlation among the different blocks. 

 

For the simulation scenarios with outliers, we take 

the same idea as in low dimensional data. That is, 
in order to add leverage points, we replace the 

first 10% of the observations with the values of 

independent normal distributions 𝐍(50,1) for 
each variables, respectively. Then, the error terms 

for these outliers are replaced by values from 

𝐍(20�̂�𝑦 , 1) instead of 𝐍(0,1), where �̂�𝑦 

represents the estimated standard deviation of the 

clean response vector. Therefore, in total, we 
consider 16 scenerios with 8 clean data and 8 

contaminated data.  

 

4.3. Performance Measures 

 

The prediction ability of the discussed methods 

are done using training and test data sets 
generated according to the sampling schemes 

explained in Section 4.1 and 4.2. In order to fit the 

models, we used the training data and to evaluate 
the models, we used the test data. Each test data is 

generated outlier free. 

 

As a performance measure, we consider the root 
mean squared prediction error (RMSPE) given by 

 

RMSPE =
1

m
∑ (√

1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2n

𝑖=1 )𝑚
𝑗=1 ,         (12) 

 

where �̂�𝑖 = x𝑖
𝑇ξ̂ and m is the replication number. 

 

Another performance measure is the accuracy of 

the coefficient estimate as a quality criterion, 
which is called ``bias'' as follows  

 

bias(�̂� ) =
1

m
∑ (√

1

𝑛
∑ (𝜉𝑖 − 𝜉𝑖 )

2n
𝑖=1 )𝑚

𝑗=1 ,        (13) 

 

where m is the replication number.  
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These evaluation measures are calculated for the 

generated data in each of simulation replications 
separately, and then averaged in Tables. The 

replication number m is 100. The smaller the 

value for these criteria, the better the performance 

of the method.  

4.4. Simulation Results 

4.4.1. Simulation Results for Low Dimensional 

Data 

Table 1 lists the results of RMSPE and bias for 

clean low dimensional data with different data 

structures explained in Subsect. 4.1. These results 

are sorted in ascending order to see changes 

according to the rate of p n⁄ . For the lowest rate 2 

with both multicollinearity levels, the pcaOLS has 

the best RMSPE and bias values. The good 

performance of the pcaOLS continues for the rate 

2.5 with BS. The rpcaOLS outperforms with the 

same rate but multicollinearity level is highest. 

With the higher rate 5 and 25, OLS is better than 
the other competitors. Most of the results of the 

bias for compared methods are quite close to each 

other. 

 
 

Table 1. The Root Mean Squared Prediction Error (RMSPE) and bias results for clean low dimensional data, 

averaged over m = 100 runs.  

 
The results of RMSPE and bias   

OLS MM pcaOLS pcaMM rpcaOLS rpcaMM 

(100,50) 

(BS)       

RMSPE 2.08 2.71 1.83 1.90 1.89 1.99 

bias 0.12 0.15 0.11 0.12 0.11 0.12 

(𝜌 = 0.9)  

1.99 

 

2.61 

 

1.49 

 

1.52 

 

1.51 

 

1.54 RMSPE 

bias 0.11 0.15 0.11 0.11 0.11 0.11 

(50,20) 

(BS)  
1.70 

 
2.02 

 

1.52 

 
1.58 

 
1.54 

 
1.60 RMSPE 

bias 0.14 0.16 0.14 0.15 0.15 0.16 

(𝜌 = 0.9)  

1.75 

 

2.01 

 

1.25 

 

1.26 

 

1.24 

 

1.25 RMSPE 

bias 0.15 0.18 0.13 0.13 0.13 0.13 

(500,10
0) 

(BS)  

1.25 

 

1.28 

 

1.42 

 

1.44 

 

1.44 

 

1.45 RMSPE 

bias 0.04 0.04 0.04 0.04 0.04 0.04 

(𝜌 = 0.9)  

1.25 

 
1.29 

 
1.53 

 
1.54 

 
1.54 

 
1.55 RMSPE 

bias 0.04 0.05 0.05 0.05 0.05 0.05 

(500,20) 

(BS)  

1.05 

 

1.05 

 

10.8 

 

1.08 

 

1.08 

 

1.08 RMSPE 

bias 0.04 0.04 0.04 0.04 0.04 0.04 

(𝜌 = 0.9)  

1.03 

 

1.04 

 

1.09 

 

1.09 

 

1.09 

 

1.09 RMSPE 

bias 0.04 0.04 0.04 0.05 0.04 0.05 

 

 

Table 2 shows the results of RMSPE and bias for 
contaminated low dimensional data with different 

structures explained in Subsect. 4.1 We sort the 

results in ascending order of the rate p n⁄ . First 

three level of p n⁄ ., which are 2, 2.5 and 5, gives 

the best performance with pcaMM for both BS 
and highest level of multicollinearity. The last 

scenario with the highest rate shows different 

results. In this case, classical MM estimator 
performs better than other competitors. 
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Table 2. The Root Mean Squared Prediction Error (RMSPE) and bias results for contaminated low 

dimensional data, averaged over m = 100 runs. 

 
The results of RMSPE and bias   

OLS MM pcaOLS pcaMM rpcaOLS rpcaMM 

(100,50) 

(BS)       

RMSPE 14.08 14.14 9.60 1.83 9.71 1.87 
bias 0.35 0.35 0.29 0.10 0.32 0.11 

(𝜌 = 0.9)   
66.02 

 
53.83 

 

1.61 
 
54.19 

 
1.61 RMSPE 61.92 

bias 0.57 0.63 0.60 0.10 0.62 0.11 

(50,20) 

(BS)   
1.93 

 
5.18 

 

1.54 
 
5.26 

 
1.56 RMSPE 7.09 

bias 0.31 0.18 0.29 0.16 0.30 0.17 

(𝜌 = 0.9)   
2.01 

 
13.25 

 

1.33 
 
13.35 

 
1.35 RMSPE 16.40 

bias 0.53 0.18 0.50 0.15 0.50 0.15 

(500,100) 

(BS)   
1.96 

 
5.36 

 

1.62 
 
5.43 

 
1.60 RMSPE 7.31 

bias 0.29 0.17 0.27 0.16 0.28 0.16 

(𝜌 = 0.9)   
67.71 

 
123.78 

 

4.19 
 
123.77 

 
4.24 RMSPE 74.51 

bias 0.33 0.31 0.42 0.04 0.43 0.05 

(500,20) 

(BS)   

10.5 

 
4.16 

 
1.08 

 
4.16 

 
1.08 RMSPE 4.16 

bias 8.76 0.04 0.08 0.04 0.08 0.04 

(𝜌 = 0.9)   

1.05 

 
10.02 

 
1.09 

 
10.03 

 
1.09 RMSPE 8.76 

bias 0.10 0.04 0.11 0.04 0.11 0.04 

 

4.4.2. Simulation Results for High Dimensional 

Data 

Table 3 summaries the results of RMSPE and bias 
belong to clean high dimensional data with 

different structures explained in Subsect. 4.2. 

These results are sorted in descending order for 

the rate of p n⁄ . Because of the computational 

problems, we exclude the classical methods OLS 

and MM estimators for high dimensional data in 
this part. Table 3 shows that the pcaOLS 

outperforms in all cases. 

 

Table 3. The Root Mean Squared Prediction Error (RMSPE) and bias results for clean high dimensional 

data, averaged over m = 100 runs.  

 
The results of RMSPE and bias 

pcaOLS pcaMM rpcaOLS rpcaMM 

(60,100) 

(BS)     

RMSPE 5.05 5.15 13.75 18.93 

bias 0.54 0.55 1.12 2.08 

(BS 𝜌 = 0.9)   
1.91 

 
9.68 

 
13.69 RMSPE 1.84 

bias 0.17 0.18 0.88 1.58 

(40,200) 

(BS)   
20.12 

 
32.39 

 
43.95 RMSPE 19.09 

bias 2.55 2.63 3.91 8.42 

(BS 𝜌 = 0.9)   
9.39 

 
25.39 

 
42.89 RMSPE 9.14 

bias 1.35 1.44 3.90 6.89 

(50,1000) 

(BS)   
96.87 

 
100.80 

 
105.82 RMSPE 96.66 

bias 10.79 10.82 11.44 15.82 

(BS 𝜌 = 0.9)   
128.26 

 
131.30 

 
136.71 RMSPE 128.12 

bias 16.25 16.47 16.74 20.40 

(80,5000) 

(BS)   
234.84 

 
235.87 

 
241.27 RMSPE 234.76 

bias 20.29 20.75 20.20 28.09 

(BS 𝜌 = 0.9)   
305.72 

 
306.12 

 
312.25 RMSPE 305.29 

bias 28.34 30.15 28.63 32.29 
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Table 4 shows the results of RMSPE and bias for 
contaminated high dimensional data with different 

structures explained in Subsect. 4.2. With the rate 

of p n⁄ = 0.6, 0.2 ve 0.05, the pcaMM performs 

better than other alternatives. In the last situation, 
which corresponds to quite high number of 

variables and low sample size with the rate 0.016, 

the pcaMM outperforms under the RMSPE. 

 
 

Table 4. The Root Mean Squared Prediction Error (RMSPE) and bias results for contaminated high 

dimensional data, averaged over m = 100 runs.  

 
The results of RMSPE and bias 

pcaOLS pcaMM rpcaOLS rpcaMM 

(60,100) 

(BS)     

RMSPE 3.71 2.21 11.89 13.69 
bias 0.36 0.23 2.94 2.78 

(BS 𝜌 = 0.9)  
7.44 

   

RMSPE 1.69 11.31 9.49 
bias 0.78 0.18 2.24 1.92 

(40,200) 

(BS)  
4.78 

   

RMSPE 3.81 60.69 60.71 
bias 0.74 0.56 12.01 12.94 

(BS 𝜌 = 0.9)  
8.72 

   

RMSPE 2.78 22.07 39.14 
bias 1.25 0.36 7.43 8.80 

(50,1000) 

(BS)  
9.74 

   

RMSPE 9.23 355.16 126.16 
bias 1.21 1.11 66.71 34.51 

(BS 𝜌 = 0.9)     

RMSPE 11.66 8.94 162.81 185.32 

bias 1.42 1.01 50.45 55.89 

(80,5000) 

(BS)     

RMSPE 305.29 305.72 306.12 312.25 
bias 28.34 30.15 28.63 32.29 

(BS 𝜌 = 0.9)     

RMSPE 21.50 21.00 3075.10 326.60 
bias 2.22 2.37 572.25 46.79 

 

 

Note that the evaluation measures of compared 

methods are inflating with increasing rate of p n⁄ . 
Moreover, the results of rpcaOLS and rpcaMM 

are inflating more than the other competitors 

pcaOLS and pcaMM. Although RPCA based 
methods mostly yield such poor results, PCA 

based results do as well. For example, the RMSPE 

results with p n⁄ = 0.016 (BS), the pcaOLS 

outperforms with 305.29. The reason can be the 

poor results of the PCA and RPCA spaces for 

these specific data structures. 

 
5. Real Data Applications 

 

Although PCA based regression methods are of 
great use for high dimensionality problems, they 

can already be useful when applied to low 

dimensional problems. Therefore, the first and 

second examples are dedicated to show the 
performances of the discussed methods on low 

dimensional data sets. The third and fourth real 

data examples focus on the high dimensional data 
sets. In the matter of prediction performance for 

each real data example, the trimmed root mean 
squared prediction error (trimmed RMSPE) is 

computed using leave-one-out cross-validation 

(CV). At the beginning of the analysis for each 

data set, the number of component is determined 
by GCV as described in Subsection 3.1. 

 

5.1. Prostate Cancer Data 

 

Firstly, we consider the Prostate Cancer data set in 

order to show the performances of the discussed 

methods on a real data example. This data set is 
studied by (Stamey et al., 1989), analyized by 

(Friedman et al., 2001) for prediction and 

available in R (R Foundation for Statistical 

Computing, 2010) It includes 𝑛 = 97 

observations and 9 variables. We determine the 

lbph, which corresponds to 4th variable, as a 

response variable and it represents the log of the 
amount of benign prostatic hyperplasia. 

Therefore, the number of explanatory variables is 

8.  
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Table 5. Prostate Cancer data: number of 

components is determined as 𝑘 = 2 by GCV, and 
trimmed root mean squared prediction error from 

leave-one-out cross validation of the optimal 

models.  

 

Method Trimmed RMSPE 

OLS 0.8538 

MM 0.7399 

pcaOLS 1.3189 
pcaMM 1.3081 

rpcaOLS 1.2978 

rpcaMM 1.2855 

 

 

Note that the prostate cancer data set has quite 

low number of explanatory variables, and the 

determined number of PCs by GCV is 2. Table 5 

displays trimmed RMSPE values for each method. 

To the best of our knowledge, there is no evidence 
that the prostate cancer data has any outliers. 

Table 5 shows that the classical MM estimator 

performs better than other competitors, and the 
classical OLS estimator follows it.   

 

5.2. Forest Fires Data 

 
For an illustration on a real data example with low 

dimensionality we consider the Forest Fires data 

with the number of observations n = 517 and the 

number of variables p = 13. This data set is 

recently gathered from the northeast region of 

Portugal and includes spatial, temporal, 

components from the Canadian Fire Weather 
Index (FWI) and four weather conditions. This 

problem was modeled as a regression problem 

aiming to estimate the burned area. Therefore, 
13th variable, area, is determined as a response 

variable. This data set is available in webpage 

http://archive.ics.uci.edu/ml/datasets/\\Forest+Fire

s.  
 

 

Table 6. Forest Fires data: number of components 

is determined as 𝑘 = 2 by GCV, and trimmed root 

mean squared prediction error from leave-one-out 

cross validation of the optimal models.  
 

Method Trimmed RMSPE 

OLS 120.9887 

MM 3.2184 

pcaOLS 103.5546 
pcaMM 3.3139 

rpcaOLS 109.9360 

rpcaMM 3.3150 

Table 6 represents the results of trimmed RMSPE 

of compared methods based on leave-one-out CV. 

The number of PCs is computed by GCV as 2. 

The OLS, pcaOLS and rpcaOLS perform quite 

poor. One can say because of the affect of the 

outliers in data set, they yield such violated 
results. On the other hand, the classical MM 

estimator outperform, followed by pcaMM and 

rpcaMM. 
 

5.3. Glass Spectra Data 

 
First example for high dimensional data is the 

archaeological glass vessels data, which is 

analyzed by (Janssens et al., 1998), from the 16𝑡ℎ  

and 17𝑡ℎ  century. The number of glass vessels 

isn = 180 and each of these glass vessels was 
analyzed by an electron-probe X-ray 

microanalysis (EXPMA) leading to p = 1920 

spectra for each vessel. The idea of taking the 

spectra in the range 15 to 500, which have 
highest frequencies, instead of taking all variables 

of size p = 1920 is used as in (Maronna, 2011). 

The resulting data set has n = 180 observations 

and p = 486 variables which have high 

multicollinearity. As response variable, we choose 

the oxide lead (PbO). 

 

Table 7. Glass Spectra data: number of 

components is determined as 𝑘 = 78 by GCV, 

and trimmed root mean squared prediction error 
from leave-one-out cross validation of the optimal 

models.  

 

Method Trimmed RMSPE 

pcaOLS 0.0091 

pcaMM 0.0077 

rpcaOLS 0.0116 

rpcaMM 0.0117 

 

 

Table 7 displays the performances of the 
discussed methods on the Glass Vessels data set. 

The number of PCs computed by GCV is 78. The 

pcaMM estimator yields a best performance, 

followed by the pcaOLS. The rpcaMM shows 
poorest performance.  

 

5.4. NCI Data 

 

The prediction ability of the discussed methods is 

done using training and test data sets generated 

according to the sampling schemes explained in 
Section 4.1 and 4.2. In order to fit the models, we 

used the training data and to evaluate the models, 

we used the test data. Each test data is generated 
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outlier free. The other example for high 

dimensional data is the cancer data, which 
measures 60 human cancer cell lines, from the 

National Cancer Institute (NCI). This data set is 

available in webpage 
http://discover.nci.nih.gov/cellminer/. It is known 

that the 40th observation includes all missing 

values. Therefore, we exclude it from calculation 

and the number of observations is n = 59. The 
gene expression data is obtained with an 

Affymetrix HG-U133A chip and normalized 

using the GCRMA method. The resulting data 

includes p = 22.283 predictors. As a response 

variable we choose one of the expression 

variables, which is ADPRT-6, which corresponds 

to 4th of them. In this data, 13th observation 
determined as an outlier (Alfons et al., 2013). 

 

In Table 8, we show the performances of the 
compared methods on a quite high dimensional 

data set. The number of PCs is determined as 9 at 

the beginning of the computation. Results show 

that the pcaMM outperforms for this data set and 
followed by pcaOLS. 

 

Table 8. NCI data: number of components is 

determined as 𝑘 = 13 by GCV, and trimmed root 

mean squared prediction error from leave-one-out 

cross validation of the optimal models.  
 

Method Trimmed RMSPE 

pcaOLS 1.8590 

pcaMM 1.2094 

rpcaOLS 5.6125 
rpcaMM 3.3342 

 

 
6. Conclusions 

 

PCA based methods are very attractive in many 

respects, especially for high dimensional data. By 
combining different scale measures as Projection 

Index, different types of PCA are introduced in 

literature. One important version of such different 
types is the RPCA. In this paper, we take into 

consideration RPCA using PP. Using the idea of 

PCR, we combine the PCA with MM besides the 
RPCA with OLS and MM, and thus we have 

obtained the pcaMM, the rpcaOLS and the 

rpcaMM estimators. These methods are compared 

throughout extensive simulation studies and real 
data examples. We consider the low/high 

dimensional and clean/contaminated data 

structures for different sizes in simulation studies. 
Four real data examples - two for low dimensional 

and two for high dimensional - are performed to 

illustrate the effectiveness of the methods.  
 

For low dimensional data examples (both 

simulations and real data) we also consider the 
classical OLS and MM estimators for 

comparisons. While the real data examples are 

resulting with best performances of the pcaMM 

estimators, simulation studies are resulting mostly 
with best performances of the pcaOLS and 

pcaMM. When the number of observations 

increased, the classical OLS (clean cases) and 
MM (contaminated cases) estimators have 

become better in low dimensional data examples. 

High dimensional real data examples yield to best 

results with the pcaMM.  
 

The performance of different estimation methods 

usually depends on the data set and therefore on 
the nature of data structure. Unluckily, there is no 

general rule or guideline for the choice of the 

method for both low and high dimensional data 
sets that is ideally convenient for the data at hand 

in the literature. But our extensive simulation 

studies and real data examples show using RPCA 

does not improve the results, but combining PCA 
with MM estimator provides very promising 

results. We deduce that the classical estimators, 

OLS and MM, can be preferred for low 
dimensional data. But for high dimensional data, 

the pcaMM works quite well. 
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