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1. Introduction

Grossman and Katz have built a new calculus,
called non-Newtonian calculus, between years
1967-1970 as an alternative to classic calculus.
They have defined infinite family of calculus
consisting of classic, geometric, harmonic and
guadratic calculus, then they have created
bigeometric, biharmonic and biquadratic calculus
in this progress. Non-Newtonian calculus provides
a wide application area in science, engineering
and mathematics. Such as studied on can be
expressed as theory of elasticity in the economy,
the viscosity of the blood, computer science
including image processing and artificial
intelligence, biology, differential equations,
functional analysis and probability theory. Non-
Newtonian calculus is researched by various
researchers such as Grossman (1979); Cakmak
and Basar (2012, 2014a,b, 2015); Tirkmen ve
Basar (2012a,b); Tekin and Basar (2013); Kadak
and Ozliik (2014); Duyar and Ogur (2017); Duyar
and Sagir (2017); Erdogan and Duyar (2018);
Sagir and Erdogan (2019); Giingér (2020). One of
the most popular non-Newtonian calculus,
namely, bigeometric  calculus  which s
investigated especially by Volterra and Hostinsky
(1938); Grossmann (1983); Rybaczuk and Stopel
(2000) investigated the fractal growth in material
science by using bigeometric  calculus.
Aniszewska and Rybaczuk  (2005) used
bigeometric calculus on a multiplicative Lorenz
System. Cérdova-Lepe (2006) studied on measure
of elasticity in economics by aid of bigeometric
calculus. Boruah and Hazarika (2018a,b) named
Bigeometric calculus as G-calculus and
investigated basic properties of derivative and
integral in the sense of bigeometric calculus and
also applications in numerical analysis. Boruah et
al. (2018) researched solvability of bigeometric
differential equations by using numerical
methods.

Integral equations have used for the solution of
several problems in engineering, applied
mathematics and mathematical physics since 18th
century. The integral equations have begun to
enter the problems of engineering and other fields
because of the relationship with differential
equations which have wide range of applications
and so their importance has increased in recent
years. The reader may refer for relevant
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terminology on the integral equations to Smithies
(1958); Krasnov et al. (1971); Zarnan (2016);
Brunner (2017); Maturi (2019).

In this paper, we define Volterra integral
equations in bigeometric calculus by using the
concept of bigeometric integral and called BG -
Volterra integral equations. We prove Leibniz
formula in the sense of bigeometric calculus and
demonstrate the converting the BG-Volterra
integral equations to bigeometric differential
equations by aid of this formula. By defining the
bigeometric linear differential equations with
constant coefficients and variable coefficients, we
demonstrate that they are converted to BG-
Volterra integral equations.

A generator is one-to-one function « whose
domain is R the set of real numbers and whose
range is a subset of R. It is indicated by

R, ={a(x):xeR} the range of generator «.

o

o -arithmetic  operations are  descriped as
indicated, below:
a —addition x+y=ala™(x)+a(y)]

a —subtraction
o —multiplication
a —division

o —order

For x,yeR,. (R,,+x) is complete field. In

particular, the identity function 1 generates
classical arithmetic and the exponential function
generates geometric arithmetic. The numbers

x>0 are «-positive numbers and the numbers
x<0 are o -negative numbers in R,. a-zero
and « -one numbers are denoted by «(0)=0 and
a(1)=1, respectively. « -integers are obtained by
successive « -addition of 1 to 0 and succesive

o -subtraction of 1 from 0. Hence the a-
integers are as follows:

wa(-2),a(-1),a(0),a(1),a(2)....
For each integer n, we set n=c(n). If i isan

«a -positive integer, then it is n times sum of 1
(Grossman and Katz, 1972).
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Definition 1. The o -absolute value of x € R , determined by

x ,x>0
X, =4 0 ,x=0
0-x ,x<0

and this value is equivalent to a(‘a‘l(x)‘). For xeR,_, x™ =a{[a1(x)]p} and ¥x“ :a(p ofl(x))
(Grossman and Katz, 1972).

Definition 2. An open « -interval on R, expressed with
(r,Sj={XERa r<x<s) ={X€Ra :a‘l(r)<a‘1(x)<a‘l(s)}=a((a‘1(r),a‘l(s)))

Similarly, a closed « -interval on R, can be expressed (Grossman and Katz, 1972).

Definition 3. A point a is said to be an interior point of the subset Ac R, if there is an open « -interval,
contained entirely in the set A which contains this point :

ae(rs)cAca’(a)e a‘l((r,s)) =(a*(r).a(s))ca™(A).

According to this definition, a is an interior point of the subset Ac R, iff o™ (a) is an interior point of the
subset o' (A)cR. Ifasubset Ac R, whose all points are interior points, it is called o -open (Duyar and
Ogur, 2017).

Definition 4. Let (Ra,Ha) be non-Newtonian metric space and aeR,. If ('(a;g,airg)—{a})ﬂs #

for every ¢ 50 whereS R, then the point a is called « -accumulation point of the setS. The set of all
a -accumulation points of S is indicated by S .(Sagir and Erdogan, 2019).

Definition 5. Let (xn) be sequence and X be a point in the non-Newtonian metric space (Ra,|-|a). If for

every & >0, there exits Ny =n,(£)eN such that |x, = x| <& forall n>n, then it is said that the sequence

(x,) «-convergentand denoted by . limx, =x (Grossman and Katz, 1972; Cakmak and Basar, 2012).

n—o

Grosmann and Katz described the *-calculus with the help of two arbitrary selected generators. Let « and
[ are arbitrarily choosed generators and * is the ordered pair of arithmetic (« -arithmetic, S -arithmetic).

The following notions are used.
o —arithmetic g —arithmetic

Realm A(cR,) B(=R,)
Summation + F
Subtraction ~ =

Multiplication X %
Division I (or —a) I (or —p)

Order < <
If the generators « and S are choosen as one of | and exp, the following special calculus are obtained.
Calculus a yij
Classic I I
Geometric | exp
Anageometric exp I
Bigeometric exp exp.
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The ¢ (iota) which is an isomorphism from « -arithmetic to £ -arithmetic uniquely satisfying the following

three properties:
(1) 1 is one to one,
(2) rison A andonto B,
(3) Forany numbers u and v in A,

l(u +V)=z(u)3éz(v),
t(u=v)=r(u)=1(v),

It turns out that z(u)zﬂ{a‘l(u)} for every u in A.(Grossman and Katz, 1972).

2. Bigeometric Calculus

Throughout this study, we interest Bigeometric calculus that is the one of the family of non-Newtonian
calculus. As mentioned above, the bigeometric calculus is the *-calculus for whicha = f=exp. That is to

say, one uses geometric arithmetic on function arguments and values in the bigeometric calculus. Therefore,
we begin with presenting the geometric aritmetic and its necessary properties.
If the function exp from R to R* which gives o™ (x)=Inx is selected as a generator, that is to say that

a -arithmetic turns into geometric arithmetic. The range of generator exp is denoted by R, = {eX ‘X€ R} .

In x+ny)

geometric addition X®y= a[a
geometric subtraction XOy= a[a

geometric multiplication XQy= a[a

geometric division X0y=a|a

geometric order

() ()
(¥)

=Xy
x/y, y=0

J=¢
:' e (Inx=Iny)
):I e (InxxIny) ny

,1(X)/a—l(y)}:e(lnx+lny) :Xm, yil
X<go Yo (X)=Inx<a™(y)=Iny

(R ®, G)) is a field with geometric zero 1 and geometric identity €. The geometric positive real numbers

exp !

and geometric negative real numbers are denoted by R, = {XER x>1} and R, ={X€Rexp :x<1},

respectively. Now, we will give some useful and necessary relations between geometric and classical
arithmetic operations. The geometric absolute valued of xe R, defined by

X ,x>1
|x|exp: 1 ,x=1
U/x ,x<1

Thus |x|exp >1.Forall x,yeR

exp?
1

X®y =Xy X =g

InP1x

XOy=xly X = x

I =l Xy

XOy:XIny — yIn><

1
X 1
XOY Or —exp=x"Y e"Ox=Xx"
y

X =xOx=x" o |X|

exp

XOQe=Xx x®1l=x

1oeo(x0y)=yox

the following relations hold:

|X® ylexp | |exp ®|y|exp
|x@®y|

exp _EXP | |exp |y|exp

|X © y|e><p = |X|exp ®|y|exp

|X © ylexp 2e><P |X|exp ®|y|exp
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(Grossman and Katz, 1972; Grossman 1983; Tiirkmen and Basar, 2012a,b; Boruah and Hazarika, 2018a,b).
The geometric factorial notation !, denoted by n!, =e" ©e"* ©...0e* ©e=e" (Boruah and Hazarika,

2018a). For example,

€.

[ol}
0, =€ "=
1
1, =e =e
21, =e”=¢’

Definition 6. Let f:X cR,,  —R,, beafunctionand aeX®, beR,,. If forevery &>, 1 thereisa

number =5 (s)>,, 1 such that |f(x)ob| <, & forall xe X whenever 1<, [xcal, <,, &, then it

exp

BG
is said that the BG-limit function f at the point a is b and it is indicate by slim f (x)=b or f (x)—>b.

Here 1<,,[x0a], <., = % <x<ad and [f(x)o b|exp <o £ = b g (x)<be (Grossman and Katz,
&

1972; Grossman 1983; Boruah and Hazarika, 2018a).

Definition 7. If the sequence (f (xn)) exp -converges to the number b for all sequences which exp -
converges to pointa , then it is said that BG -limit of the function f at the point a is b and is denoted by
selim f (x) =b (Grossman and Katz, 1972; Grossman 1983).

Definition 8. Let ae X and f:X <R, —> R, be a function. If for every &> 1 there is a number

5=5(£)>,,1 suchthat |f(x)o f(a)

o0 oo e € TOrall xe X whenever 1<, |x@a|exp <ep 0, then it is
said that f is BG -continuous at point a e X . The function f is BG -continuous at the point a e X iff this
point @ is an element of domain of the function f and eclim f (x)=f (a) (Grossman and Katz, 1972;
Grossman 1983; Boruah and Hazarika, 2018a).

. . . . . . B i ¢
Remark 1. sclimf(x) and limInf(t) coexist, and if they do exist eclim f (x)_exp{ lim In f (e )}

t—>lna t—lna
Furthermore, f is BG-continuous at a iff In f is continuous at Ina (Grossman and Katz, 1972; Grossman
1983).

Definition 9. Let f :(r,s)c R, — R, beafunctionand ae(r,s). If the following limit

1

wlimfof@) "m{ﬂ}mx_ma

> XOa | T (a)

exists, it is indicated by f®(a) and called the BG-derivative of fat a and say that f is BG-
differentiable. If the function f is BG -differentiable at all points of the exp -open interval (r,s), then f is
BG -differentiable on (r,s) and BG -derivative of f identified as

1
f(x@h)o f(x) | f(hx) [mn
exp:llm —_—
f(x)
dBG
for helRexp and denoted by f8 or d?(Grossman and Katz, 1972; Grossman 1983; Boruah and
X

Hazarika, 2018a,b).

sclim
h—1 h h—1
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Remark 2. The derivatives f*(a) and (Inf(lna))' coexist, and if they do exist
f'(a)

f5(a)= exp{(ln f (e'”a))’} _e 1

Therefore the relation between the BG -derivatives and classical derivatives can be written as follows:
xf'(x)

f BG (X) —e ) _ ex(ln f(x))
(Grossman and Katz, 1972; Grossman 1983; Boruah and Hazarika, 2018a,b).

The second BG -derivative of f (x) is defined as

286 BG BG BG nh hx(In £ (hx)) [Inh
a1 o) () aolim OO (X)expnmr—(hx)} T —

dXZBG h—-1 h h—-1

=lim
h—1

=lim| e
h—1

, . f(hx) ﬁ ’
1 L[ f () lim [In . J
( x[h(lnf(hx))'-(lnf(x))'}J'”h |nh“' f(x)n { [f( )] ]
e =e
x| (In 88 (x)) X Ine () , , ,
—o {(I 2 ))] A (I ) :exz(lnf(x)) +x(In f(x)) .
Similarly, the n™ order derivative is

d Nge f N . f (n1)gg XD h e f (n1)gg X X (In f(nil)BG(X))’
v =f(BG)(X)=BG|hILT2 ( h) ( )exp=e{ }

x"(In f(x))(")+...+x(ln f(x))

=€

Theorem 1. If f,g:(r,s)cR,, >R, are BG -differentiable functions and ¢ is an arbitrary constant,

then
@ (f()@g(x)" =f(x)* @g(x)*
@ (f(xe9(x) =f(x)*og(x)*

@ (1) =(f(0*)

(Grossman and Katz, 1972; Grossman 1983; Boruah and Hazarika, 2018a,b).

BG
BG

Now, we will give some standart BG -derivatives:

d ~ d 5 1 xcotx d B¢ —XSeCc XCsCX
dx®® (C)=1 dxBC (smx):e dXT(CO'[X)ze
FES (cf (x))= 5 (x) ﬁ(cosx)ze—xtanx i(secx)zem”x
dx®® dxB¢ dxB®

BG BG o
_;XBG (Xn):en dXT(tan X):exsecxcscx dXT(CSCX):e_XCOlX

(Boruah and Hazarika, 2018a,b).

Theorem 2. (Mean Value Theorem of BG -Calculus) If f is BG -continuous function on [r,s]cRexp and

BG -differentiable on (r,s), there is r <, c<,, s such that f®°(c) :Mexp (Grossman and Katz,
sor
1972; Grossman 1983; Kadak and Ozliik, 2014).

Definition 10. The BG -average of a BG -continuous positive function f on [r,s]c R, is defined as the

exp -limit of the exp -convergent sequence whose n™ term is geometric average of f(a,), f(a,)..... f(a,)
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BG
where a,8,,...,8, is the n -fold exp -partition of [r,s] and denoted by M; f . The BG -integral of a

BG

[in ]
BG -continuous function f on [r,s] is the positive number [Mff} and is denoted by

BGJ. f (x)dx®® (Grossman and Katz, 1972; Grossman 1983).

r

In(r)
is defined by

s )
Remark 3. If f is BG-continuous on [r,s]cR,,,, then BGJ.f(X)d —exp[f Inf(e dt], i.e., the

BG -integral of the function f isa BG -continuous positive function on [r.s]cR

exp
S
s In f(x)dx

BGI f(x)dx® =e
(Grossman and Katz, 1972; Grossman 1983; Boruah and Hazarika, 2018Db).

Theorem 3. If f and g are BG-continuous positive functions on [r,s]cRexp and c is an arbitrary
constant, then

(1) BGj.( f(x)®g(x BGj. f(x)dx* @ BG'S[ f(x )dXBG

r r

S S

2) BGJ.( f(x ( )@ g(x BGj.f dXBG @BGI f(x ( )dXBG

r

@ wef(1 () o0 [J e

r

r

S t

4) BGJ. BGJ. dXBG (—DBGJ.f( )dXBG where 1<, t<, s

exp
r r

(Grossman and Katz, 1972; Grossman 1983 Boruah and Hazarika, 2018b).

Now, we will give some standart BG -integrations:

Be_fldeG =C Bejex°°‘xdeG =sinx BeIe‘Xse°X°5°deBG =cotx
sej'e"deG =x" BGJ'e’”a”deBG =COSX Befe“a”deG =secx
BGJ.eXdXBG =g’ sejexs‘ms”dxBG =tanx aeje’xw“deG = CSCX

In? x

oIn?x
Be_[ X"dx5¢ =g 2

(Boruah and Hazarika, 2018b).

Theorem 4. (First Fundamental Theorem of BG-calculus) If f is BG-continuous function on

X

[r,s]cR,, and g(X)ZBGIf(t)dtBG for every xe[r,s], then 9° =f on [r,s](Grossman and Katz,

1972; Grossman 1983).

fBG

Theorem 5. (Second Fundamental Theorem of BG -calculus) If is BG -continuous function on

S
[r,s]c R, then BGI[ £ ](x)dx* = f (s)© f () (Grossman and Katz, 1972; Grossman 1983).

r
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Definition 11. An equation involving BG -differential coefficient is called a BG - differential equation, i.e,
the n™ order BG -differential equation is defined as G(x, Y, Yo,y e ynee (X)):l, (X, Y)ER o xRy
(Boruah et al., 2018).

3. BG -Volterra Integral Equations

The equation is called BG -integral equation where an unknown function appears under the BG -integral
sign. The equation

u(x)=f (x)@[ﬂ@ BGI‘K(X,t)QU(t)dtBGJ

where f(x) and K(x,t) are known functions, u(x) is unknown function and 1eR is said to be

BG -Volterra linear integral equation of the second kind. The function K (x,t) is the kernel gf BG -Volterra
equation. If f(x)=1 then the equation is reduced to the following form
u(x)= 2 @es K (x1) Ou(t)dt*
and it is called homogeneous BG -Volterra linear integral equation of the second kind. The equation
4 0es K (x)OU(t)dt™ = f (x)
a

where u(x) is unknown function is called BG -Volterra linear integral equation of the first kind.

Example 1. Demonstrate that u(x):eX is a solution of the BG-Volterra integral equation

u(x)=(x®e)® BGI(X@I)@U(t)dtBG ,
1
Solution. Substituting the function e” in place of u(x) into the right side of the equation, then

Jx_ln[%Jlne‘ .
.el

t —Inx+x-1

=Xe-e

(x@e)@es[(xOt)Ou(t)dt™ =(xDe)@es[(xOt) Oe'dt™ =
1

P C— <

=e" =u(x).

3.1. The Relationship with BG -Differantial Equations
3.1.1. The Conversion of the BG -Volterra Integral Equations to BG -Diferential Equations

In this section, we demonstrate the method of converting BG -Volterra integral equations into BG -
differential equations. For this, we need Leibniz formula in Bigeometric calculus. Firstly, we will give some
necessary definition and theorems.

Definition 12. Let  be a bipositive function with two variables. Then, we define its BG -partial derivatives
as
o8¢ . f(x@hy)o f(xy)

fXBG(x,y)= = f(x,y):BGIher} h exp
and

o _f(xy@h)o f(xy)
f2°(xy)===5f (X y):selhlm r? ( o

From the definition of BG -partial derivative, we find its relation with classical partial derivative, as follows:
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1 f(hx,y) ﬁ
. f(x@h,y)o f(x [ f(hxy) e e Wiy f(xy)
gc lim ( y)o f( y)exp: lim (hx.y) —lime [f(”)} =lime inh
h—1 h h>1| f (X, y) h—1 h—1
—In f(hx,y)-In f(x,y) im Xf'(hx,y) Xfx’(x,y) bl
:eL'Tl nh zefwﬁlh f(hx,y) —e f(xy) :exalnf(x,y).
Therefore, we can also write the definition of BG -partial derivative as

BG BG yiln f(x,y)

0 x:—’}lnf(x, ) 0
12 (xy) =2 ge F(xy)=e™ " and e (y) =g fxy)=e”

Theorem 6. (BG-Chain Rule) Suppose that f has BG -partial derivatives of y and z with
BG -continuous where y=y(x) and z=z(x) are BG -differentiable functions of x. Then f(y(x),z(x))
is BG -differentiable function of x and

dee f (;’)E;(G)'Z(X)) :( fyBG (y(x),z(x))@ yBG)®( fZBG (y(x),z(x))@ ZBG) _
Proof. By using the definition of BG -derivative, we get
4= f (y(0).2(x) . F(y(x@h),2(x®n)o f(y(x),2(x))

=gclim
dx®® h—1 h o

y() 200

o1 (y(x)2(x)"

Theorem 7. Let Q be an exp -open set in R xR . Assume that f :QQ—[R_  be a function such that
the BG -partial derivative 2= (x,y), fi = (x,y) existsin Q and are BG -continuous, then

aBG aBG aBG aBG
W[W f(x, V)J ZW[&T f(x, y)] :

Proof. Fix x and y and we define F(hk) as

F(h,k)Z%expO%exp@[f (x@h,y®k)o f(x@hy)o f(x,y®k)® f (x,y)].

By using the mean value theorem in the sense of BG -calculus, we obtain that

822



Giingor | GUFBED 10(3) (2020) 814-829

1 1

F(h,k):ﬁeprKepr[(f(x@h,y@k)@f(x,y@k))@(f(x@h,y)@f(x,y))]
1 aBG
=Eexp®ﬁ(f(x@h,y@ﬂl©k)®f(x,y@A_@k))
o (f(x@hy® 4 0k)o f(x,y® 4 0k)
_ayBG h exp
¢ (f(x®,0hy®0k)of(x®1,0hyd 4 0k)
:ayBG h exp
aBG aBG
and
F(h,k)Z%expG%epr[(f(X@h,y@k)@f(X@h,y))@(f(X,y@k)@f(X,y)):'
1 aBG
=EeXp®W(f(x®ﬂ3©h,y®k)©f(x@@@h,y))
% (f(x®40hydk)o f(x®40hy)
T ox k o
% (f(x®@40hyd 4 0k)o f(x®4 0hyd 1, Ok)
T X k exp
aBG aBG
for some 1<, 4,4, 4,4, <., € whichall of them depend on X,y,h,k . Therefore,
aBG aBG aBG 8BG
ayBG aXBG f(X@%@h,y@%@k)zﬁﬁf(X@%Oh,y@lﬂ'@k)
forall h and k . Taking the BG-limit h—~1 and k —1 and using the assumed BG -continuity of both

aBG BG 6BG aBG
partial derivatives, it gives W@Xﬁ f (X, y)=ﬁﬁ f (X, y).

Theorem 8. (BG-Leibniz Formula) Let A,1 be exp-open set and f be a BG -continuous function on
Axl into R, . If f2° exists and is BG-continuous on AxI u(x),v(x) are BG-continuously
differentiable functions of A into |, then

as (00 09
:IXBG {BG f f(X,t)dtBG]=BG (fXBG(x,t))dtBG@[f(x,v(x))@vfG]@[f(x,u(x))@uXBG]

u(x)

BG
Proof. Take f(xt)= % F(x,t)=F"®(xt). Hence we find
v(x) v(X) ABG

0
ge | F(x,1)dt? =ss | —=F(x,1)dt®® =F(x,v(x))o F(x,u(x)).
Therefore, we obtain

d BG v(x) be d BG d BG d BG
v Beu(jx)f (x,t)dt> |= 0 (F(xv(x)oF(xu(x))) :deF(X'V(X))deTF(X’U(X)) (1)
by using the properties of BG - derivative. We can write as
BG
(;jXT F (x,u (x)) =F*(xu (x)) ® FU?XG) (x,u(x)) oue (2)
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and

d BG
deF(X v(x))=F(x ,v(x))@FV?f)(x,v(x))@vXBG ©)
from BG -chain rule. Hence by using Theorem 7, we get

BG v(x)
d [BG | f(x,t)dtBsz F2° (x.v(x))o FXBG(x,u(x))@[Fv?f)(x,v(x))@vfe]@[Fﬁ%(x,u(x))@ufﬂ

BG
dx ()

v(¥) /" ~BG
= 8o Z[ [ F2e (x,t)jdtBG ®[ f(xv(x))ov® ol f(xu(x)ou*]
(x

v(x) BG

=BG ( )[aaxBG F°° (X,t)jdtBG @[f (x,v(x))@vfeje[f (x,u(x))@ufGJ
v(x)

= )( £ (x,1))dt™ @ f(xv(x)ove® Jo f(xu(x)ou ]

from the expressions (1), (2) and (3).

Example 2. Show that the BG-Volterra integral equation U(X)=SinX@BGI€X®U(t)dtBG can be
1

transformed to BG -differential equation.
Solution. If we consider the equation and differentiate it by using BG -Leibniz formula, we obtain

dBG dBG dBG
v u(x)= s =SinX® —= v (BGIU [o): dtBGj

UB xcoth_Dij dtBG(—B( ( )OGX@XEG)@(U(].)OEX@]-SG)

1

u® (x)=e* " @ BGJ‘EdtBG ®(u(x)oe)
1

u* (x) =" @x@(u(x)oe).
Thus the BG-Volterra integral equation is equivalent to the BG-differential equaiton
UBG(X) ( ( )@e ) xcotx®x

3.1.2. The Conversion of the BG -Linear Diferential Equations to BG -Volterra Integral Equations

In this part, we prove that it is converted to BG-Volterra integral equations by defining BG- linear
differential equation with constant coefficients and variable.

Definition 12. The equation of the form

Y= ®a,(x)0y" = @--®a,,(x)0y* e, (x)0y = f(x)

where f is a blposmve function, is called n™ order BG -linear differential equation. If the coefficients
an(x) are constants, then the equation is called as BG- linear differential equation with constant
coefficients; if not it is called BG -linear differential equation with variable coefficients.

Theorem 9. If n is a positive integer and a € R,,, with x>, a, then we have

Bj Beju at™ - dt™ =" o0 e (x O t) " Ou(t)dt®®

(n —1) o 4

Proof. Take
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= sef (X0 1) Qu(t)d™ @

a

Ifitis taken F(x,t)=(xot)" = ou(t), we write

BG BG X
Oc'j—BL_j BG[BGJF (x.t) dtBGJ
X
BG

:BGE;BG (F(x.1)dt™ ®(F(x,x)ox®)o(F(xa)0a®)

X XF’(th)
= BGJ‘e PO gtBe ®)
a
(n-2) Inu(t) 2
In[ X In| = Inu(t)
by using BG -Leibniz rule. Since F (x, t):(x@t) o @u( )= (%j( U =(%j[ (t)) ,
, 1 x )" .
FX(x t)= X(n 1)F (x,t)lnu(t)(ln(?D . Therefore we find
d®el ) X (nfl)lnu(t)(ln(fn(niz) X (m(l)j(m) u(ef" X (m(i]](n’z)
TBG']ZBGJ‘G PO geBe =se.[e Y dt®e = I e ! dt® = seje U ou(t) P dtee
N
) e
=BGIe ‘ oe' dtBG =BGI e oel™ ( )dtBG
X X o
=eo e 0 (xot)" ™ Qu(t)dt™ =(BGJ(XOt)(n_3)EXp @u(t)dtBGj
z(lnfl)m) =e" 0 s
from the equation (5). Hence we get
dBGI X o
S|y outae | o, o

forn>1. Since Ilzae_fu(t)dtBG for n=1, then we write

a

dBGI dBG X
T = BG[BGju t dtBG] u(x). (7)

If it is taken BG -derivative of the equation (6) by using BG -Leibniz formula, then

dZBGI dBG X (n-1) . X aBG 5
dxzﬂe =— je o(xot)" = ou(t)dt® ZBGIaXBG (e( Do(xot)" e ou(t ))dt ©

a
(3)

seefe T M e 06 o (x0t)" - ou(ar =e 0 o1,

By proceedmg similarly, we get

d(nfl)BG In (n-1 n-2 1 n-1)!

dx(n—_l)BG:e )Qe( )®®e ®|1=e( )Qllz(n—l)!exp(bll_
Hence we write

dmel,

dx"es :(n _1)!e><p®u(x)
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from the equation (7). Now, we will take BG -integral by considering the above relations. From the equation

), |1(X)=BGIU(X1)dxiBG . Also, we have

l,(x)=¢e'® Be'fll(xl)dfo =e0 BGIBGfU(Xl)dxlBGdXEG

where x, and x, are parameters. By proceeding likewise, we get
X3 X

1L (x)=e"" 0o Bejesf .. BGJ. Bej u(x )dxedxsC ...dxS5dx>e

= (n —1)!exp® BGJBGJH...BG.f BGJZ U(Xl)deGdeG ...de_‘ideG
where x;, X,, ..., X, are parameters. If we write the equation (4) instead of the statement 1, then we find
BGJ.(X @t)("’l)“p ou(t)dt® =(n-1)L, 0 Bejsef . BGJ. BGJ. u(x,)dx Cdx;°...dx 5dx .
a a a a

a

Ifit is taken x=x, =x, =---=X,, then we obtain

oo (X1 ©U(E)dE* = (n—1)L,, @ o-..(n)..o0[u(t)dt ..t
Tthefore, we get : a
BGE...(n)...BGEu(t)dtBG ™ =mm@ BGE(xot)‘"‘”w ou(t)de*

and this completes the proof.

Let n" order BG -linear differential equation

y™ @a,(x)O YV @ ... a,,(x)oy* @a,(x)0y=f(x) (8)
given with the initial conditions
(D)=, ¥ (D) =cpee, Y (D) =0, ©)

This n™ order BG -linear differential equation can be reduced to a BG -Volterra integral equation. Hence the
solution of (8)-(9) may be reduced to a solution of some BG -Volterra integral equation.

BG
Taking y™ =u(x), we can write (;jXT y"Heo (x)=u(x).By BG -integrating both sides of this equality,
BGId BG (y(rH)BG ) = BG_[U (t)dtBG
1 1
y" e (x) 0y e (1) = BGIU (t)dt®

y" e (x)=c,, @ BGIU (t)dt®e
1

By proceeding similarly, we find
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BGj(‘dBG(y(n e ) BG')I(.( - 1<‘DBGJU tBGJdtBG
1 1

y(" Zee (x)o y("Pes (1)= BGJ‘CnfldtBG @ BGI ec [ u(t)dt>°dt®
1

1

P C—

y("fz)BG (x) =C,,®C, ,OXD BGI BGJU (t)dt BGgtBe
101

Yy =, ®c,0x®--@c, , 0x" I @ BGJ."'(n —1)"'BGJ.U(t)dtBG --dt®e.
1 1
Therefore, we obtain,

y=C,®COXBC,OX @ ®c  OX" @ BGJ‘-'-(H)"-BGIU(t)dtBG --dt®e
1 1
If we take into account the above expressions, the BG -linear differential equation is written as follows

u(x)@ai(x)c)(cnl ® Bc;ju(t)dt%]@az(x)@[cnz ®C,, OX® BGIBGIu(t)dtBGdtBGj@
1 1

@an(x)Q(co@)cl@x@cZ@xz””@---@c“@x( l)”@BGj seju ---dtBGsz(x)
1
u(x)®a,(x)o Beju(t)dtBG ®a,(x)0 BGJBGJU t)dt®dt> @---@a, (x) OBGJ (n)-- BGIU edt®® =
1 1 1 1
f(x)@[(al(x)@az(x)@x---eaan(x)@xn e ")OCn1@( (x)®a, (x)ox®--®a, (x)ox"* ) L@
- @a, (X)Oc, | (10)
If we set

al(x)eaaz(x)Oxm@an(x)@x(”fl)“" =f..(x)
az(x)eaag(x)@x@m@an(x)@x(”’z)exD =f,,(X)

3, (x) =5 (x)

and

F(x)=f(x)of_(x)oc,,0f_,(x)0c,, 00 f(X)Oc,
Then, one can see that the equation (10) is in the following form:

( )6381 @BGIU dt®e @aZ(X)@BGIBGIU(t)dtBGdtBG (‘B--'(‘Ban(x)@BGI"'(”)"'BGJU(t)dtBG"'dtBG
1 1 1 1
=F(x).
By using Theorem 9, we get

U(X)@ai(X)OBGJ.U(t)dtBG @az(X)QJ-'ieXPQBGJ.(X@t)leXD ou(t)dt™ @...@an(x)o(n i)l o) Bej(xet)("’l)“’ ou(t)dt™
1 “exp a ) exp a
=F(x).

If we edit this equation as
u()@ssfu(t)o)| 2, ()@
and set 1

K(xt)=a,(X)® o0 a,(X) O(xOt)™ ®--®

e
1, 2 (n-1)L,,

as the kernel function, then the equation (8) is turned into

® w08, (X)O(xot) @0 w0 (x0t) " 0a, (x) |dt® = F (x)

&
1, (n-1)L,,

1)

expO(X@t) P @a ( )
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u(x)® BGj(-U(t)@ K(xt)dt> =F(x)

1

which is a BG -Volterra integral equation of the second kind.

equation

BG

corresponding to the  BG -differential

y®® =u(x), then we write

Example3. Find BG-Volterra integral
y ®@x0y™ ®y=e’ with the initial conditions y(1)=e, y®* (1)=1.
. dZBG . 2p
Solution. Let =y% =u(x).Since ——=——
dXZBG y ( ) dXZBG

X

Bej-dBG (yBG ) = BGJU(t)dtBG
1 1

y*e (x)oy* (1) = BGIU(t)dtBG

1

Y (x) = seiu(t)dtBG

Therefore, we find

BGId oy = BGJ‘ BG u(t)dtBGdtBG
1 101

y(x)oy()= 1le o) BGJ(‘(XOt)@U(t)dtBG

“exp 1

fmsfsono ot

1

dX BG

If we replace the findings above into the given BG -differential equation, we obtain

u(x)(Jax@Bc;ju(t)dtBG @e@(e@Bej(xot)eu(t)dt%j:ez
1 1

X

From this, we get BG -Volterra integral equation as u(x) =e @ BGJ-(XZ @t) ou(t)dt®™ .

4. Conclusion

In this paper, the Volterra integral equations are
defined in the sense of bigeometric calculus by
using the concept of bigeometric integral. The
Leibniz formula is proved in bigeometric calculus
and aid of this the bigeometric Volterra integral
equations are converted to bigeometric differential
equations. By defining the bigeometric linear
differential equations with constant coefficients
and variable coefficients, they are converted to
bigeometric Volterra equations is proved.
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