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Abstract

In this paper, we introduce new subclasses of analytic and bi-univalent functions connected with a q-
con�uent hypergeometric distribution by using the Horadam polynomials. Furthermore, we �nd estimates
on the �rst two Taylor-Maclaurin coe�cients |a2| and |a3| for functions in these subclasses and obtain
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1. Introduction

In [23] Srivastava presented and motivated about brief expository overview of the classical q-analysis
versus the so-called (p, q)-analysis with an obviously redundant additional parameter p. We also brie�y
consider several other families of such extensivelyand widely-investigated linear convolution operators as
(for example) the Dziok�Srivastava, Srivastava�Wright and Srivastava�Attiya linear convolution operators,
together with their extended and generalized versions. The theory of (p, q)-analysis has important role in
many areas of mathematics and physics. Our usages here of the q-calculus and the fractional qcalculus in
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geometric function theory of complex analysis are believed to encourage and motivate signi�cant further
developments on these and other related topics (see Srivastava and Karlsson [24, pp. 350�351], Srivastava
[21, 22]).
Let A denote the subclass of functions of the form

f(z) = z +
∞∑
k=2

akz
k, z ∈ ∆, (1)

and, let the function h ∈ A is given by

h(z) := z +

∞∑
k=2

ψkz
k z ∈ ∆. (2)

The Hadamard (or convolution) product of f and h is de�ned by

(f ∗ h)(z) := z +
∞∑
k=2

akψkz
k, z ∈ ∆.

De�nition 1.1. For f, g ∈ A, we say that f is subordinate to g, written f(z) ≺ g(z), if there exists a Schwarz
function w, which is analytic in ∆, with w(0) = 0 and |w(z)| < 1 for all z ∈ ∆, such that f(z) = g(w(z)),
z ∈ ∆. Furthermore, if the function g is univalent in ∆, then we have the following equivalence (see [4, 16]):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(∆) ⊂ g(∆).

The con�uent hypergeometric function of the �rst kind is given by the power series

F (b; c; z) = 1 +
b

c
z +

b (b+ 1)

c (c+ 1)

z2

2!
+ ...

=

∞∑
k=0

(b)k
(c)k (1)k

zk, (b ∈ C, c ∈ C \ {0,−1,−2, ...}) ,

where (b)k is the Pochhammer symbol de�ned in terms of the Gamma function by

(b)k =
Γ (b+ k)

Γ (b)
=

{
1, if k = 0,
b (b+ 1) ... (b+ k − 1) , if k ∈ N = {1, 2, ...} .

is convergent for all �nite values of z (see [20]). It can be written otherwise

F (b; c;m) =

∞∑
k=0

(b)k
(c)k (1)k

mk, (b ∈ C, c ∈ C \ {0,−1,−2, ...}) ,

is convergent for b, c,m > 0.
Very recently, Porwal and Kumar [19] introduced the con�uent hypergeometric distribution (CHD) whose
probability mass function is

P (k) =
(b)k

(c)k k!F (b; c;m)
mk, (b, c,m > 0, k = 0, 1, 2, ...) .

Porwal [18] introduced a series I(b; c;m; z) whose coe�cients are probabilities of con�uent hypergeometric
distribution

I(b; c;m; z) = z +

∞∑
k=2

(b)k−1m
k−1

(c)k−1 (k − 1)!F (b; c;m)
zk, (b, c,m > 0) , (3)
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and de�ned a linear operator Ω(b; c;m)f : A → A as follows

Ω(b; c;m)f(z) = I(b; c;m; z) ∗ f(z)

= z +
∞∑
k=2

(b)k−1m
k−1

(c)k−1 (k − 1)!F (b; c;m)
ak z

k, (b, c,m > 0) .

Srivastava [23] made use of various operators of q-calculus and fractional q-calculus and recalling the de�nition
and notations. The q-shifted factorial is de�ned for λ, q ∈ C and n ∈ N0 = N ∪ {0} as follows

(λ; q)k =

{
1 k = 0,

(1− λ) (1− λq) ...
(
1− λqk−1

)
k ∈ N.

By using the q-gamma function Γq(z), we get(
qλ; q

)
k

=
(1− q)k Γq (λ+ k)

Γq (λ)
, (k ∈ N0) ,

where (see [8])

Γq(z) = (1− q)1−z (q; q)∞
(qz; q)∞

, (|q| < 1) .

Also, we note that

(λ; q)∞ =

∞∏
k=0

(
1− λqk

)
, (|q| < 1) ,

and, the q-gamma function Γq(z) is known

Γq(z + 1) = [z]q Γq(z),

where [k]q denotes the basic q-number de�ned as follows

[k]q :=


1−qk
1−q , k ∈ C,

1 +
k−1∑
j=1

qj , k ∈ N.
(4)

Using the de�nition formula (4) we have the next two products:
(i) For any non negative integer k, the q-shifted factorial is given by

[k]q! :=


1, if k = 0,
k∏

n=1
[n]q, if k ∈ N.

(ii) For any positive number r, the q-generalized Pochhammer symbol is de�ned by

[r]q,k :=


1, if k = 0,
r+k−1∏
n=r

[n]q, if k ∈ N.

It is known in terms of the classical (Euler's) gamma function Γ (z), that

Γq (z)→ Γ (z) as q → 1−.
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Also, we observe that

lim
q→1−

{(
qλ; q

)
k

(1− q)k

}
= (λ)k .

For 0 < q < 1, the q-derivative operator [13] (see also [1, 12]) for I(b; c;m; z) is de�ned by

Dq (Ω(b; c;m)f(z)) :=
Ω(b; c;m)f(z)− Ω(b; c;m)f(qz)

z(1− q)

= 1 +
∞∑
k=2

[k]q
(b)k−1m

k−1

(c)k−1 (k − 1)!F (b; c;m)
ak z

k−1, (b, c,m > 0, z ∈ ∆) ,

where

[k]q :=
1− qk

1− q
= 1 +

k−1∑
j=1

qj , [0, q] := 0. (5)

For λ > −1 and 0 < q < 1, we de�ned the linear operator Iλ,q(b; c;m)f : A → A by

Iλ,q(b; c;m)f(z) ∗ Nq,λ+1(z) = z Dq (Ω(b; c;m)f(z)) , z ∈ ∆,

where the function Nq,λ+1 is given by

Nq,λ+1(z) := z +

∞∑
k=2

[λ+ 1]q,k−1

[k − 1]q!
zk, z ∈ ∆.

A simple computation shows that

Iλ,q(b; c;m)f(z) := z +
∞∑
k=2

ψkak z
k (b, c,m > 0, λ > −1, 0 < q < 1, z ∈ ∆). (6)

where

ψk :=
(b)k−1m

k−1[k]q !

(c)k−1 (k−1)!F (b;c;m)[λ+1]q,k−1
. (7)

From the de�nition relation (6), we can easily verify that the next relations hold for all f ∈ A:

(i) [λ+ 1]q Iλ,q(b; c;m)f(z) = [λ]qIλ+1,q(b; c;m)f(z) + qλ z Dq

(
Iλ+1,q(b; c;m)f(z)

)
, z ∈ ∆; (8)

(ii)Mλ(b; c;m)f(z) := lim
q→1−

Iλ,q(b; c;m)f(z) = z +
∞∑
k=2

k(b)k−1m
k−1

(c)k−1 F (b;c;m)(λ+1)k−1
akz

k, z ∈ ∆. (9)

Remark 1.2. Putting b = c in the operator Iλ,q(b; c;m), we obtain the q-analogue of Poisson operator

Iλ,mq de�ned by El-Deeb et al. [7] as follows

Iλ,mq f(z) := z +

∞∑
k=2

mk−1

(k − 1)!
e−m · [k]q!

[λ+ 1]q,k−1
ak z

k, z ∈ ∆. (10)

Remark 1.3. The Horadam polynomials hn(x) are de�ned by the following recurrence relation (see [10])

hn(x) = ρxhn−1(x) + σhn−2(x), (x ∈ R; n ∈ N = {1, 2, 3, ...}) , (11)

with
h1(x) = α and h2(x) = βx,

for some real constants α, β, ρ and σ. The generating function of the Horadam polynomials hn(x) is given
as follows (see [11])

Υ(x, z) =

∞∑
n=1

hn(x)zn−1 =
α+ (β − αρ)xz

1− ρxz − σz2
. (12)
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Remark 1.4. By selecting the particular values of α, β, ρ and σ, the Horadam polynomial hn(x) reduces to
several known polynomials.
(i) Fibonacci polynomials Fn(x). If α = β = ρ = σ = 1;
(ii) Lucas polynomials Ln(x). If α = 2 and β = ρ = σ = 1;
(iii) Pell polynomials Pn(x). If α = σ = 1 and b = ρ = 2;
(iv) Pell-Lucas polynomials Qn(x). If α = β = ρ = 2 and σ = 1;
(v) Chebyshev polynomials Tn(x) of the �rst kind. If α = β = 1, ρ = 2 and σ = −1;
(vi) Chebyshev polynomials Un(x) of the second kind. If α = 1, β = ρ = 2 and σ = −1.

These polynomials, the families of orthogonal polynomials and other special polynomials, as well as their
extensions and generalizations, are potentially important in a variety of disciplines in many branches of
science, especially in the mathematical, statistical and physical sciences. For more information associated
with these polynomials (see [9, 10, 14, 15]).

The Koebe one-quarter theorem (see [5]) proves that the image of ∆ under every univalent function f ∈ A
contains a disk of radius

1

4
. Therefore, every function f ∈ A has an inverse f−1 that satis�es

f−1(f(z)) = z, (z ∈ ∆) ,

and

f(f−1(w)) = w,

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
,

where
f−1(w) = w − a2w

2 +
(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + . . . .

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are univalent in ∆. Let Σ denote

the class of bi-univalent functions in ∆ given by (1). Note that the following functions f1(z) =
z

1− z
,

f2(z) =
1

2
log

1 + z

1− z
, f3(z) = − log(1−z), with their corresponding inverses g1(w) =

w

1 + w
, g2(w) =

e2w − 1

e2w + 1
,

g3(w) =
ew − 1

ew
, respectively, are elements of Σ (see [6, 7, 25]). For a brief history and interesting examples

in the class Σ see, for example [2]. Brannan and Taha [3] (see also [25]) introduced certain subclasses of
the bi-univalent functions class Σ similar to the familiar subclasses S∗ (δ) and K (δ) of starlike and convex
functions of order δ (0 ≤ δ < 1), a function f ∈ A is said to be in the class S∗Σ (δ) of strongly bi-starlike
functions of order δ (0 < δ ≤ 1), if each of the following conditions is satis�ed:

f ∈ Σ, with

∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ < δπ

2
, z ∈ ∆,

and ∣∣∣∣arg
zg′(w)

g(w)

∣∣∣∣ < δπ

2
, w ∈ ∆,

where the function g is the analytic extension of f−1 to ∆, and is given by

g(w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + . . . , w ∈ ∆. (13)

The classes S∗Σ (α) and KΣ (α) of bi-starlike functions of order α and bi-convex functions of order α
(0 < α ≤ 1), corresponding to the function classes S∗ (α) and K (α), were also introduced analogously. For
each of the function classes S∗Σ (α) and KΣ (α), they found non-sharp estimates on the �rst two Taylor-
Maclaurin coe�cients |a2| and |a3| (for details, see [3] and [25]).

The object of the present paper is to introduce new subclasses of the function class Σ involving the
q−con�uent Hypergeometric function connected with Horadam polynomials hn(x) that generalize the previ-
ous de�ned classes, and �nd estimates on the coe�cients |a2|, and |a3| for functions in these new subclasses
of the function class Σ.
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De�nition 1.5. Let 0 ≤ γ ≤ 1, η ∈ C∗ = C\ {0} , b, c,m > 0, λ > −1, 0 < q < 1 and x ∈ R, then f ∈ Σ is

said to be in the class Kλ,qΣ (η, γ, b, c,m, x) if the following conditions are satis�ed:

1 +
1

η

(
γz2

(
Iλ,q(b; c;m)f(z)

)′′
+ z

(
Iλ,q(b; c;m)f(z)

)′
γz (Iλ,q(b; c;m)f(z))

′
+ (1− γ)Iλ,q(b; c;m)f(z)

− 1

)
≺ Υ(x, z) + 1− α, (14)

and

1 +
1

η

(
γw2

(
Iλ,q(b; c;m)g(w)

)′′
+ w

(
Iλ,q(b; c;m)g(w)

)′
γw (Iλ,q(b; c;m)g(w))

′
+ (1− γ)Iλ,q(b; c;m)g(w)

− 1

)
≺ Υ(x,w) + 1− α, (15)

where α is real constant and the function g is the analytic extension of f−1 to ∆, and is given by (13).

Remark 1.6. (i) For q → 1− we obtain that lim
q→1−

Kλ,qΣ (η, γ, b, c,m, x) =: HλΣ (η, γ, b, c,m, x), whereMλ
Σ (η, γ, b, c,m, x)

represents the functions f ∈ Σ that satis�es (14) and (15) for Iλ,q(b; c;m) replaced with Mλ(b; c;m) (see
(9)).

(ii) For b = c, we obtain the class Rλ,qΣ (η, γ,m, x), that represents the functions f ∈ Σ that satis�es (14)

and (15) for Iλ,q(b; c;m) replaced with Iλ,mq (see (10)).

Lemma 1.7. [17, p. 172] If w is a Schwarz function, so that w(z) =
∞∑
k=1

pkz
k, z ∈ ∆, then

|p1| ≤ 1, |pk| ≤ 1− |p1|2, k ≥ 1.

2. Coe�cient bounds for the function class Kλ,q
Σ (η, γ, b, c,m, x)

Unless otherwise mentioned, we shall assume in the reminder of this paper that 0 ≤ γ ≤ 1, η ∈ C∗ =
C\ {0} , b, c,m > 0, λ > −1, 0 < q < 1 and x ∈ R, the powers are understood as principle values.

Theorem 2.1. Let the function f given by (1) belongs to the class Kλ,qΣ (η, γ, b, c,m, x), then

|a2| ≤
|βηx|

√
|βx|√∣∣([2ηβ2x2(1 + 2γ)ψ3 − (γ + 1)2 (ηβ + ρ)ψ2

2

]
βx2 − σα(γ + 1)2ψ2

2

)∣∣ ,
and

|a3| ≤
|η| |βx|

2(2γ + 1)ψ3
+
|η|2 (βx)2

(γ + 1)2 ψ2
2

,

where ψk, k ∈ {2, 3}, are given by (7).

Proof. Let f ∈ Kλ,qΣ (η, γ, b, c,m, x). Then there exist U and V , two analytic functions in ∆ with U(0) =
V (0) = 0, and |U(z)| < 1, |V (w)| < 1 for all z, w ∈ ∆, given by

U(z) =
∞∑
k=1

ukz
k and V (w) =

∞∑
k=1

vkw
k, z, w ∈ ∆,

from Lemma 1.7 we have
|uk| ≤ 1 and |vk| ≤ 1, k ∈ N. (16)

From (14) and (15), we have

1

η

(
γz2

(
Iλ,q(b; c;m)f(z)

)′′
+ z

(
Iλ,q(b; c;m)f(z)

)′
γz (Iλ,q(b; c;m)f(z))

′
+ (1− γ)Iλ,q(b; c;m)f(z)

− 1

)
= Υ(x, U(z))− α, (17)
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and
1

η

(
γw2

(
Iλ,q(b; c;m)g(w)

)′′
+ w

(
Iλ,q(b; c;m)g(w)

)′
γw (Iλ,q(b; c;m)g(w))

′
+ (1− γ)Iλ,q(b; c;m)g(w)

− 1

)
= Υ(x, V (w))− α. (18)

Since

1

η

(
γz2

(
Iλ,q(b; c;m)f(z)

)′′
+ z

(
Iλ,q(b; c;m)f(z)

)′
γz (Iλ,q(b; c;m)f(z))

′
+ (1− γ)Iλ,q(b; c;m)f(z)

− 1

)
=

1

η

[
(γ + 1)ψ2a2z +

[
2(2γ + 1)ψ3a3 − (γ + 1)2ψ2

2a
2
2

]
z2 + . . .

]
,

1

η

(
γw2

(
Iλ,q(b; c;m)g(w)

)′′
+ w

(
Iλ,q(b; c;m)g(w)

)′
γw (Iλ,q(b; c;m)g(w))

′
+ (1− γ)Iλ,q(b; c;m)g(w)

− 1

)
=

1

η

[
−(γ + 1)ψ2a2w +

[
2(2γ + 1)ψ3

(
2a2

2 − a3

)
− (γ + 1)2ψ2

2a
2
2

]
w2 + . . .

]
,

and
Υ(x, U(z))− α = h2(x)u1z +

(
h2(x)u2 + h3(x)u2

1

)
z2 + . . . ,

Υ(x, V (w))− α = h2(x)v1w +
(
h3(x)v2 + h3(x)v2

1

)
w2 + . . . .

Now, equating the corresponding coe�cients of z and w in (17) and (18), we get

(γ + 1)

η
ψ2a2 = h2(x)u1, (19)

1

η

[
2(1 + 2γ)ψ3a3 − (γ + 1)2ψ2

2a
2
2

]
= h2(x)u2 + h3(x)u2

1, (20)

−(γ + 1)

η
ψ2a2 = h2(x)v1, (21)

1

η

[
2(1 + 2γ)ψ3

(
2a2

2 − a3

)
− (γ + 1)2ψ2

1a
2
2

]
= h2(x)v2 + h3(x)v2

1. (22)

From (19) and (21), we obtain
u1 = −v1. (23)

If we square (19) and (21), then adding the new relations wehave

2(γ + 1)

η2

2

a2
2ψ

2
2 = h2

2(x)
(
u2

1 + v2
1

)
, (24)

adding (20) and (22) we have

2

η

[
2(1 + 2γ)ψ3 − (γ + 1)2ψ2

2

]
a2

2 = h2(x) (u2 + v2) + h3(x)
(
u2

1 + v2
1

)
.

We can rewrite (24) as

u2
1 + v2

1 =
2(γ + 1)

η2h2
2(x)

2

a2
2ψ

2
2.

Using the above equation, we get

2
[
2η(1 + 2γ)h2

2(x)ψ3 − (γ + 1)2
(
ηh2

2(x) + h3(x)
)
ψ2

2

]
a2

2 = η2h3
2(x) (u2 + v2) ,

it follows that

a2
2 =

η2h3
2(x) (u2 + v2)

2
[
2η(1 + 2γ)h2

2(x)ψ3 − (γ + 1)2
(
ηh2

2(x) + h3(x)
)
ψ2

2

] . (25)
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Then taking the absolute value to the above equation and from (11) and (16), we obtain

|a2| ≤
|η| |βx|

√
|βx|√∣∣([2ηβ2x2(1 + 2γ)ψ3 − (γ + 1)2 (ηβ + ρ)ψ2

1

]
βx2 − σα(γ + 1)2ψ2

2

)∣∣ ,
which gives the bound for |a2| as we asserted in our theorem.

Also to �nd the bound for |a3|, if we subtract (22) from (20), we �nd that

4

η
(1 + 2γ)ψ3

(
a3 − a2

2

)
=
[
h2(x) (u2 − v2) + h3(x)

(
u2

1 − v2
1

)]
. (26)

Form (26), (23) and (24), we obtain

a3 =
ηh2(x) (u2 − v2)

4(1 + 2γ)ψ3
+
η2h2

2(x)
(
u2

1 + v2
1

)
2 (γ + 1)2 ψ2

2

. (27)

Using (11) and (16), we get

|a3| ≤
|η| |βx|

2(2γ + 1)ψ3
+
|η|2 (βx)2

(γ + 1)2 ψ2
2

.

Putting q → 1− in Theorem 2.1 we obtain the following corollary:

Corollary 2.2. If the function f given by (1) belongs to the class HλΣ (η, γ, b, c,m, x), and η ∈ C∗, then

|a2| ≤
|βηx|

√
|βx|√∣∣∣([6η(βmx)2(1+2γ)(b)2

(c)2(λ+1)2F (b;c;m) −
4(bm(γ+1))2(ηβ+ρ)

(c(λ+1)F (b;c;m))2

]
βx2 − 4σα(bm(γ+1))2

(c(λ+1)F (b;c;m))2

)∣∣∣ ,
and

|a3| ≤
|η| |βx| (c)2 (λ+ 1)2 F (b; c;m)

6m2(2γ + 1)(b)2
+
|η|2 (βxc(λ+ 1)F (b; c;m))2

4 (bm(γ + 1))2 .

Putting b = c in Theorem 2.1 we obtain the following corollary:

Corollary 2.3. If the function f given by (1) belongs to the class Rλ,qΣ (η, γ,m, x), and η ∈ C∗, then

|a2| ≤
|βηx|
√
|βx|√√√√√

∣∣∣∣∣∣
η(mβx)2(1+2γ)e−m[3]q !

[λ+1]q,2
−

(me−m [2]q !(γ+1))
2
(ηβ+ρ)

[λ+1]2q

βx2−σα(me−m [2]q !(γ+1))
2

[λ+1]2q

∣∣∣∣∣∣
,

and

|a3| ≤
|η| |βx| [λ+ 1]q,2

m2(2γ + 1)e−m [3]q!
+
|η|2

(
βx [λ+ 1]q

)2

(
me−m [2]q! (γ + 1)

)2 .

3. Fekete-Szeg® problem for the function class Kλ,q
Σ (η, γ, b, c,m, x)

Theorem 3.1. If the function f given by (1) belongs to the class Kλ,qΣ (η, γ, b, c,m, x), and η ∈ C∗, then∣∣a3 − µa2
2

∣∣ ≤ |η||βx| (|M +N |+ |M −N |) , (28)
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where

M =
(1− µ) η(βx)2

2
[(

2η(2γ + 1)ψ3 − (γ + 1)2 (ηβ − 2ρ)ψ2
2

)
βx2 − (γ + 1)2 ψ2

2σα
] , (29)

and

N =
1

4(2γ + 1)ψ3
,

where µ ∈ C, and ψk, k ∈ {2, 3}, are given by (7).

Proof. If f ∈ Kλ,qΣ (η, γ, b, c,m, x). As in the proof of Theorem 2.1, from (23) and (26), we have

a3 − a2
2 =

ηh2 (u2 − v2)

4(2γ + 1)ψ3
, (30)

and multiplying (25) by (1− µ) we get

(1− µ) a2
2 =

(1− µ) η2h3
2 (u2 + v2)

2
[(

2η(2γ + 1)ψ3 − ηψ2
2(λ+ 1)2

)
h2

2 − (λ+ 1)2 ψ2
2h3

] . (31)

Summing (30) and (31) leads to

a3 − µa2
2 = ηh2 [(M +N)u2 + (M −N) v2] , (32)

where M and N are given by (29), and taking the absolute value of (32), from (16) we obtain the inequality
(28).

Remark 3.2. A simple computation shows that the inequality |M | ≤ N is equivalent to

|µ− 1| ≤

∣∣∣∣∣∣
2ηβx

[(
2η(2γ + 1)ψ3 − (γ + 1)2 (ηβ − 2ρ)ψ2

2

)
βx2 − (γ + 1)2 ψ2

2σα
]

4 (2γ + 1) η2 (ρβx2 + ασ)ψ3

∣∣∣∣∣∣ ,
therefore, from Theorem 3.1 we get the next result:

If the function f given by (1) belongs to the class Kλ,qΣ (η, γ, b, c,m, x), and η ∈ C∗, then∣∣a3 − µa2
2

∣∣ ≤ |η| |βx|
2(2γ + 1)ψ3

,

where µ ∈ C, with

|µ− 1| ≤

∣∣∣∣∣∣
2ηβx

[(
2η(2γ + 1)ψ3 − (γ + 1)2 (ηβ − 2ρ)ψ2

2

)
βx2 − (γ + 1)2 ψ2

2σα
]

4 (2γ + 1) η2 (ρβx2 + ασ)ψ3

∣∣∣∣∣∣ ,
and ψk, k ∈ {2, 3}, are given by (7).

Putting q → 1− in Theorem 3.1 we obtain the following corollary:

Corollary 3.3. If the function f given by (1) belongs to the class HλΣ (η, γ, b, c,m, x), and η ∈ C∗, then∣∣a3 − µa2
2

∣∣ ≤ |η||βx| (|M +N |+ |M −N |) ,

where
M = (1−µ)η(βx)2

2

[(
6ηm2(2γ+1)(b)2

(c)2(λ+1)2F (b;c;m)
−4
(

bm(γ+1)
c(λ+1)F (b;c;m)

)2
(ηβ−2ρ)

)
βx2−

(
bm(γ+1)

c(λ+1)F (b;c;m)

)2
σα

] ,
and

N =
(c)2 (λ+ 1)2 F (b; c;m)

12m2(2γ + 1) (b)2

,

where µ ∈ C.



S.M. El-Deeb, B.M. El-Matary, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 82�93. 91

Putting b = c in Theorem 3.1 we obtain the following corollary:

Corollary 3.4. If the function f given by (1) belongs to the class Rλ,qΣ (η, γ,m, x), and η ∈ C∗, then∣∣a3 − µa2
2

∣∣ ≤ |η||βx| (|M +N |+ |M −N |) ,

where
M = (1−µ)η(βx)2

2

[(
ηm2(2γ+1)e−m[3]q !

[λ+1]q,2
−
(
me−m(γ+1)[2]q !

[λ+1]q

)2

(ηβ−2ρ)

)
βx2−

(
me−m(γ+1)[2]q !

[λ+1]q

)2

σα

] ,
and

N =
[λ+ 1]q,2

2m2(2γ + 1)e−m [3]q!
,

where µ ∈ C.

For η = 1 and γ = 1. Therefore, from Theorem 2.1 and Theorem 3.1

Example 3.5. Let the function f given by (1) belongs to the class Kλ,qΣ (1, 1, b, c,m, x), then

|a2| ≤
|βx|

√
|βx|√∣∣([6β2x2ψ3 − 4 (β + ρ)ψ2

2

]
βx2 − 4σαψ2

2

)∣∣ ,
|a3| ≤

|βx|
6ψ3

+
(βx)2

4ψ2
2

,

and ∣∣a3 − µa2
2

∣∣ ≤ |βx| (|M +N |+ |M −N |) ,

with

M =
(1− µ) (βx)2

2
[(

2ψ3 − (ηβ − 2ρ)ψ2
2

)
βx2 − ψ2

2σα
] and N =

1

12ψ3
,

where ψk, k ∈ {2, 3}, are given by (7).

For η = 1 and γ = 0. Therefore, from Theorem 2.1 and Theorem 3.1

Example 3.6. Let the function f given by (1) belongs to the class Kλ,qΣ (1, 0, b, c,m, x), then

|a2| ≤
|βx|

√
|βx|√∣∣([2β2x2ψ3 − (β + ρ)ψ2

2

]
βx2 − σαψ2

2

)∣∣ ,
|a3| ≤

|βx|
2ψ3

+
(βx)2

ψ2
2

,

and ∣∣a3 − µa2
2

∣∣ ≤ |βx| (|M +N |+ |M −N |) ,

with

M =
(1− µ) (βx)2

2
[(

6ψ3 − 4 (ηβ − 2ρ)ψ2
2

)
βx2 − 4ψ2

2σα
] and N =

1

4ψ3
,

where ψk, k ∈ {2, 3}, are given by (7).

For η = ζ cos θeiθ
(
0 < ζ ≤ 1, |θ| < π

2

)
. Therefore, from Theorem 2.1 and Theorem 3.1
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Example 3.7. Let the function f given by (1) belongs to the class Kλ,qΣ

(
ζ cos θeiθ, γ, b, c,m, x

)
, then

|a2| ≤
|βx|
√
|βx|ζ cos θ√

|([2ζ cos θeiθβ2x2(1+2γ)ψ3−(γ+1)2(βζ cos θeiθ+ρ)ψ2
2]βx2−σα(γ+1)2ψ2

2)|
,

|a3| ≤
|βx|ζ cos θ

2(2γ + 1)ψ3
+

(βζx cos θ)2

(γ + 1)2 ψ2
2

,

and ∣∣a3 − µa2
2

∣∣ ≤ |η||βx| (|M +N |+ |M −N |) ,

where
M = (1−µ)(βx)2ζ cos θeiθ

2[(2ζ cos θeiθ(2γ+1)ψ3−(γ+1)2(βζ cos θeiθ−2ρ)ψ2
2)βx2−(γ+1)2ψ2

2σα]
, N = 1

4(2γ+1)ψ3
,

where ψk, k ∈ {2, 3}, are given by (7).

Remark 3.8. We mention that all the above estimations for the coe�cients |a2|, |a3|, and Fekete-Szeg®

problem for the function class Kλ,qΣ (η, γ, b, c,m, x) are not sharp. To �nd the sharp upper bounds for the
above functionals remains an interesting open problem, as well as those for |an|, n ≥ 4.
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