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Abstract
In this article, we introduce one new generalized topology and investigate its properties in a generalized
topological space. Also, we give various properties of some generalized topologies defined in a generalized
topological space. Finally, we analyze the nature of some special spaces.
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1. Introduction
The notion of a generalized topological space was introduced by Császár in [3]. Let X be any non-null set. A family

µ ⊂ exp(X) is a generalized topology [9] in X if /0 ∈ µ and
⋃

t∈T
Gt ∈ µ whenever {Gt | t ∈ T} ⊂ µ where exp(X) is a power

set of X . We call the pair (X ,µ) as a generalized topological space (GTS) [9]. If X ∈ µ , then the pair (X ,µ) is called a
strong generalized topological space (sGTS) [9]. Let Y ⊂ X . Then the subspace generalized topology [2] is defined by,
µY = {Y ∩U |U ∈ µ} and the pair (Y,µY ) is called as the subspace generalized topological space [2].

Let (X ,µ) be a GTS and A⊂ X . The interior of A [9] denoted by iA, is the union of all µ-open sets contained in A and the
closure of A [9] denoted by cA, is the intersection of all µ-closed sets containing A when no confusion can arise. The elements
in µ are called the µ-open sets, the complement of a µ-open set is called the µ-closed set and the complement of µ is denoted
by µ

′
. Denote {U ∈ µ |U 6= /0} by µ̃ [8] and denote {U ∈ µ | x ∈U} by µ(x) [8].

Throughout this paper, R,Z,Q and N denote the set of all real numbers, integers, rational numbers and natural num-
bers, respectively. The notations X3,X4,X5 and X6 are mean the sets {a,b,c},{a,b,c,d},{a,b,c,d,e} and {a,b,c,d,e, f},
respectively.

2. Preliminaries
In this section, we remember some basic definitions and lemmas which will be useful in the development of the next sections.
A subset A of a GTS (X ,µ) is said to be a µ-nowhere dense [6] (resp. µ-dense [6], µ-codense [7]) set if icA = /0 (resp.

cA = X , c(X −A) = X). A is said to be a µ-strongly nowhere dense set if for every V ∈ µ̃, there is U ∈ µ̃ such that U ⊂ V
and U ∩A = /0. Then A is said to be a µ-meager (or µ-first category) (resp. µ-s-meager (or µ-s-first category)) set [8] if
A =

⋃
n∈N An where An is µ-nowhere dense (resp. µ-strongly nowhere dense) for all n ∈ N.

In a GTS, every subset of a µ-strongly nowhere dense set is µ-nowhere dense and every subset of a µ-meager (resp.
µ-s-meager) set is µ-meager (resp. µ-s-meager) [8].

Let (X ,µ) be a GTS and A ⊂ X . Then A is said to be a µ-second category (µ-II category) (resp. µ-s-second category
(µ-s-II category)) set [8] if A is not µ-meager (resp. µ-s-meager). A is µ-residual (resp. µ-s-residual) [8] if X−A is µ-meager
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(resp. µ-s-meager).
A GTS (X ,µ) is said to be µ-II category (resp. µ-s-II category) if X is µ-II category (resp. µ-s-II category) as a subset. A

space X is called a Baire space (BS) [8] if each V ∈ µ̃ is of µ-II category in X . A space (X ,µ) is a strong Baire space (sBS) [8]
if V1∩V2∩ ...∩Vn is of µ-II category set for all V1,V2, ...,Vn ∈ µ such that V1∩V2∩ ...∩Vn 6= /0. Also, every sBS is a BS [8].

Define µ? = {
⋃

t(U
t
1 ∩U t

2 ∩U t
3 ∩ ...∩U t

nt ) |U
t
1,U

t
2, ...,U

t
nt ∈ µ} and µ?? = {A ⊂ X | A is of µ-II category set}∪{ /0} [8].

Then µ ⊂ µ? and µ ⊂ µ?? if (X ,µ) is a Baire space [8]. Also, µ? ⊂ µ?? if (X ,µ) is a sBS [11].
A space (X ,µ) is called hyperconnected [6] if every non-null µ-open subset of X is µ-dense in X . A GTS (X ,µ) is said to

be a generalized submaximal space [7] if every µ-dense subset of X is a µ-open set in X .
The following lemmas will be useful in the sequel.

Lemma 2.1. [8, Property 2.3] Let (X ,µ) be a GTS and A⊂ X be a µ-nowhere (resp. µ-strongly nowhere) dense set. Then the
closure of A and any subset of A are µ-nowhere (resp. µ-strongly nowhere) dense sets.

Lemma 2.2. [8, Property 2.5] Let (X ,µ) be a GTS and A⊂ X . Then the following hold.
(a) If A is s-meager then it is meager.
(b) If A is of II category then it is of s-II category.
(c) If A is s-residual then it is residual.

Lemma 2.3. [9, Proposition 4.7] Let (X ,µ) be a GTS. If Fn is a µ-meager set for each n ∈ N, then
⋃

n∈N Fn is a µ-meager set
in X .

Lemma 2.4. [9, Theorem 5.3] Let (X ,µ) be a GTS. The following are equivalent.
(a) X is Baire.
(b) If A 6= /0 is µ-residual in X , then A is µ-dense in X .
(c) If B 6= X is µ-meager in X , then B is µ-codense in X .
(d) Every U ∈ µ̃ is µ-II category in X .
(e) iF = /0, for every F is a µ-meager set in X .
(f) For every µ-closed set Fn with iFn = /0, i(

⋃
n∈N Fn) = /0.

Lemma 2.5. [12, Theorem 3.3] Let (X ,µ) be a GTS. Then the following hold.
(a) If Gn is µ-s-meager for each n ∈ N, then

⋃
n∈N Gn is µ-s-meager.

(b) If Fn is µ-s-residual for each n ∈ N, then
⋂

n∈N Fn is µ-s-residual.

3. Properties of Generalized Topology
In this section, we give some properties of generalized topologies defined in a generalized topological space. Also, we check

some families are either satisfied with the stack property or not.
We start the study of various types of generalized topologies in a generalized topological space by reminding the well-known

definitions in GTSs.
Let (X ,µ) be a GTS. A collection C of subsets of X is called a stack [10] if A ∈ C whenever B ∈ C and B⊂ A. A stack H

on X is called a p-stack [10] if A,B ∈H , then A∩B 6= /0.

Theorem 3.1. Let (X ,µ) be a GTS. Then µ̃?? is a stack.

Proof. Suppose B ∈ µ̃?? and B⊂ A⊂ X . Then B is of µ-II category set in X . Since subset of a µ-meager set is µ-meager, A is
of µ-II category set in X implies that A ∈ µ̃??. Therefore, µ̃?? is a stack.

The below Corollary 3.2 directly follows from Theorem 3.1 so the proof is omitted.

Corollary 3.2. Let (X ,µ) be a GTS and A⊂ X . Then the following hold.
(a) If iµ??A 6= /0, then A ∈ µ??.
(b) If (X ,µ) is a BS and if iµ A 6= /0, then A ∈ µ??.
(c) If (X ,µ) is a sBS and if iµ?A 6= /0, then A ∈ µ??.
(d) If A ∈ µ??, then cµ A,cµ?A,cµ??A ∈ µ??.

The following Example 3.3, (a) shows that the generalized topology µ̃ is not a stack in a generalized topological space, (b)
proves that there exist a topology µ, in which µ̃ is not a stack and (c) proves that µ is not a topology even if µ̃ is a stack. The
generalized topology µ̃? is not a stack as shown by the below Example 3.4.
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Example 3.3. (a) Consider the generalized topological space (X ,µ) where X = R and µ is the Z forbidden generalized
topology on R, that is, µ = {U ⊂ R |U ⊂ R−Z}. Then µ̃ is not a stack. Because, if U = { n

n+1 | n ∈ N}, then U ∈ µ̃. Here
U ⊂Q. But Q /∈ µ̃.
(b) Consider the generalized topological space (X ,µ) where X = [0,5] and µ = { /0, [0,2),(1,2),(1,4], [0,4],X}. Then µ is a
topology. But µ̃ is not a stack. For, let G = [0,2) and H = [0,2]. Then G⊂ H and G ∈ µ̃. But H /∈ µ̃.
(c) Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{a, b,c},{a,b,d},{a,c,d},{b,c,d},X4}. Then µ̃

is a stack. But µ is not a topology.

Example 3.4. Consider the generalized topological space (X ,µ) where X = [0,5] and µ = { /0, [0,2),(1, 3
2 ),(1,4], [0,4]}. Then

µ? = { /0, [0,2),(1,4],(1, 3
2 ),(1,2), [0,4]}. Let A = (1,2) ∈ µ̃? and B = [1,2]. Then A⊂ B. But B /∈ µ̃?. Thus, µ̃? is not a stack.

Theorem 3.5. Let (X ,µ) be a GTS. Then (X ,µ??) is a hyperconnected space if and only if µ̃?? is a p-stack.

Proof. Suppose that (X ,µ??) is a hyperconnected space. By Theorem 3.1, µ̃?? is a stack. Let A,B ∈ µ̃??. Then A and B are
non-null µ??-open sets and so A and B are µ??-dense sets in X , by hypothesis. Therefore, A∩B 6= /0. Hence µ̃?? is a p-stack.
The reverse implication is directly follows from the definition of p-stack so the proof is omitted.

Example 3.6. Consider the generalized topological space (X ,µ) where X = [0,5] and µ = { /0, [0,2),(1,4], [0,4]}. Then
µ?? = { /0}∪{A,B ⊂ X | A ∈ exp((1,2))−{ /0},A ⊂ B} and so (X ,µ??) is not a hyperconnected space. Because, if we take
W = [0, 3

2 )∪(
3
2 ,5], then W ∈ µ?? and hence { 3

2} is a µ??-closed set but { 3
2} is a non-null µ??-open set in X . Let U = [0,1]∪{ 3

2}
and V = { 17

10}∪ [2,5]. Then U,V ∈ µ̃??. But U ∩V = /0. Thus, µ̃?? is not a p-stack.

Theorem 3.7. Let (X ,µ) be a BS. If every non-null µ-open set is a µ-residual set, then (X ,µ) is a hyperconnected space.

Proof. Let G ∈ µ̃. Then by hypothesis, G is µ-residual in X . By Lemma 2.4, G is a µ-dense set in X . Hence (X ,µ) is a
hyperconnected space.

Theorem 3.8. Let (X ,µ) be a BS and every non-null µ-open set is µ-residual in X . If (X ,µ) is a generalized submaximal
space, then the following hold.
(a) µ?? = µ.
(b) µ̃ is a stack.

Proof. It is enough to prove (a) only. Since (X ,µ) is a BS we have µ ⊂ µ??. Let B ∈ µ??. If B = /0, then there is nothing
to prove. Suppose B ∈ µ̃??. Then B is of µ-II category set and so B is not µ-meager so that B is not a µ-nowhere dense set.
Thus, iµ cµ B 6= /0. Take V = iµ cµ B. Then V ∈ µ̃. By hypothesis and Theorem 3.7, (X ,µ) is a hyperconnected space so that V is
µ-dense set in X . Then B is µ-dense set in X . Since (X ,µ) is a generalized submaximal space, B is a µ-open set. Therefore,
B ∈ µ̃ so that B ∈ µ. Thus, µ?? ⊂ µ. Hence µ?? = µ.

In Theorem 3.8, replace the condition “(X ,µ) be a BS” by the condition “(X ,µ) be a sBS”, we get µ = µ? = µ?? and then
µ̃? is a stack.

The following Example 3.9 shows that the necessary conditions are can not be dropped in Theorem 3.8.

Example 3.9. (a) Consider the generalized topological space (X ,µ) where X = [0,5] and µ = { /0, [0,2),(1, 3
2 ),(1,3], [0,3]}.

Then (X ,µ) is a BS and every non-null µ-open set is a µ-residual set in X . Let A = [1,4] be a subset of X . Then cµ A = X and
so A is a µ-dense subset of X . But A /∈ µ. Thus, (X ,µ) is not a generalized submaximal space. Here µ?? = { /0}∪{A,B⊂ X |
A ∈ exp((1, 3

2 ))−{ /0},A⊂ B}. Choose W = [1,2]. Then W ∈ µ??. But W /∈ µ. Hence µ?? * µ.
(b) Consider the generalized topological space (X5,µ) where µ = { /0,{a,b},{a, c},{a,d},{b,c},{a,b,c},{a,b,d},{a,b,e},
{a,c,d},{a,c,e},{a,d,e},{b,c,d},{b,c,e},{a,b,c,d},{a,b,c,e},{a,b,d,e},{a,c,d,e},{b,c,d,e},X5}. Therefore, (X5,µ)
is a generalized submaximal space and every non-null µ-open set is a µ-residual set in X5. But (X5,µ) is not a BS. For, if we
take A = {a,c,d} is a subset of X5. Now iµ cµ({a}) = iµ({a}) = { /0}; iµ cµ({c}) = iµ({c}) = { /0}; iµ cµ({d}) = iµ({d}) = { /0}.
Then {a,c,d} is a µ-meager set and so A is not a µ-II category set in X5. Here, µ?? = { /0}. Hence µ * µ??.
(c) Consider the generalized topological space (X5,µ) where µ = { /0,{a},{b},{a,b},{a,c},{a,b,c},{a,b,d},{a,b,e},{b,c,d},
{a,b,c,d},{a,b,c,e},{a,b,d,e},X5}. Then (X5,µ) is a BS and generalized submaximal space. Let A = {a} be a subset of X5.
Then X5−A = {b,c,d,e}. Consider, iµ cµ({b}) = iµ({b,d,e}) = {b} 6= /0. Thus, {b} is of µ-II category set in X5. Therefore,
X5−A is of µ-II category set in X5 so that X5−A is not a µ-meager set which implies that A is not a µ-residual set in X5. Thus,
there is a non-null µ-open set which is not a µ-residual set in X5. Here, µ?? = { /0}∪{A ⊂ X5 | either a ∈ A or b ∈ A}. Let
G = {a,c,d}. Then G ∈ µ??. But G /∈ µ. Hence µ?? * µ.

Theorem 3.10. Every collection of all non-null µ-residual sets in X is a stack where µ is a generalized topology on X .
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Proof. Let η = {A⊂ X | A is a non-null µ-residual set}. Suppose that V ∈ η and V ⊂U. Then V is µ-residual and so X−V
is µ-meager in X . Since V ⊂U,X−U ⊂ X−V so that X−U is a µ-meager set in X , since subset of a meager set is meager.
Thus, U is µ-residual in X . Therefore, U ∈ η . Hence η is a stack.

Theorem 3.11. Let (X ,µ) be a GTS and η = { /0}∪{A⊂ X | A is non-null µ-residual set}. Then η is a topology on X .

Proof. By Theorem 3.10, η is closed under arbitrary union. Also, η is closed under finite intersection, by Lemma 2.3. Let
A⊂ X be a non-null µ-residual set. Then /0 = (X−X)⊂ (X−A) and so X is a non-null µ-residual set. Thus, X ∈ η . Therefore,
η is a topology on X .

The below Theorem 3.12 (a) follows from the similar arguments in Theorem 3.10, Theorem 3.12 (b) follows from Lemma
2.5 (b) and the same considerations in Theorem 3.11 so the proof is omitted.

Theorem 3.12. Let (X ,µ) be a GTS. Then the following hold.
(a) Every collection of all µ-s-residual sets in X is a stack.
(b) If η = { /0}∪{A⊂ X | A is non-null µ-s-residual set}, then η is a topology on X .

Theorem 3.13. Let (X ,µ) be a GTS. Then every collection of all µ-dense sets in X is a stack.

Theorem 3.14. Let (X ,µ) be a generalized submaximal space. Then every collection of all µ-dense sets in X is a p-stack.

Proof. Let η = {A | A is µ-dense subset of X}. By Theorem 3.13, η is a stack. Let G,H ∈ η . Then G and H are µ-dense sets
in X . By hypothesis, G and H are non-null µ-open sets in X so that G∩H 6= /0. Hence η is a p-stack.

The following Example 3.15 shows that the condition “(X ,µ) be a generalized submaximal space” can not be dropped in
Theorem 3.14. Also, this example shows that the collection of all µ-codense sets in X is not a stack.

Example 3.15. Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{b,c},{a,b,c},{b,c,d},X4}. Here,
{b} is a µ-dense set. But {b} /∈ µ. Thus, (X4,µ) is not a generalized submaximal space. Take η = {A | A is µ-dense subset
of X4}. Then η = {{b},{a,b},{a,c},{b,c},{b,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},X4}. Take A = {a,c} and B = {b,d}.
Then A,B ∈ η . But A∩B = /0.
Take ζ is the collection of all µ-codense sets in X . Then ζ = { /0,{a}.{b},{c},
{d},{a,c},{a,d},{b,d},{c,d},{a,c,d},X4}. Choose A = {b,d} and B = {b,c,d}. Then A ∈ ζ and A⊂ B. But B /∈ ζ . Thus,
ζ is not a stack.

Next, Theorem 3.16 follows from Lemma 2.4 and Theorem 3.14 so the direct proof is omitted.

Theorem 3.16. Let (X ,µ) be a BS. If (X ,µ) be a generalized submaximal space, then η = {A⊂ X | A is a non-null µ-residual
set} is a p-stack.

The following Theorem 3.17 follows from the fact that “super set of a dense set is dense” and the trivial proof is omitted.

Theorem 3.17. Let (X ,µ) be a GTS and η = { /0}∪{A⊂ X | A is µ-dense}. Then η is a strong generalized topology on X .

The collection η defined on the above Theorem 3.17 is not closed under the finite intersection as shown by the following
Example 3.18.

Example 3.18. Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{b,d},{a,b,c},{a,b,d},{b,c,d},X4}.
Take η = { /0}∪{A⊂X4 |A is µ-dense set}. Then η = { /0}∪{{b},{a,b},{a,d},{b,c},{b,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},
X4}. Let A = {a,d} and B = {b,d}. Then A,B ∈ η . But A∩B = {d} /∈ η . Thus, η is not closed under the finite intersection.

Theorem 3.19. Let (X ,µ) be a GTS. Then µ?? 6= { /0} if and only if µ??? is a strong GT in X where µ??? = {
⋃
t
(W t

1 ∩W t
2 ∩

. . . .∩W t
nt ) |W

t
1 ,W

t
2 , . . . .,W

t
nt ∈ µ??} and hence it is a topology.

Proof. Suppose that µ?? 6= { /0}. Then there exists a non-null µ??-open set in X . Take G is the non-null µ??-open set in X . Then
G is of µ-II category set in X . Since subset of a µ-meager set is µ-meager, X is of µ-II category. Therefore, X ∈ µ?? and so
X ∈ µ??? . Hence µ??? is a strong generalized topology. Also, µ??? is closed under finite intersection. Hence µ??? is a topology.
Converse, follows from the definition of µ??? .

Theorem 3.20. Let (X ,µ) be a GTS. If µ̃ is a stack, then the following hold.
(a) µ is a strong GT.
(b) µ? is a topology.
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Proof. It is enough to prove (a) only. Suppose µ 6= { /0} and µ̃ is a stack. Then we can choose a non-null open set in µ. Take G
is a non-null µ-open set in X . If G = X , then there is nothing to prove. Assume that, G ⊂ X . By hypothesis, X ∈ µ̃ so that
X ∈ µ. Hence µ is a strong GT.

The converse implication of (a) in Theorem 3.20 is not true as shown by the following Example 3.21.

Example 3.21. Consider the generalized topological space (X ,µ) where X = [0,5] and µ = { /0, [0,2),(1,3],(1,5], [0,3],X}.
Then (X ,µ) is a strong generalized topological space. But µ̃ is not a stack. For, [0,2)⊂ [0,2]. Here [0,2) ∈ µ but [0,2] /∈ µ.

The following Theorem 3.22 is a direct consequence of the definition of the stack so the proof is omitted. If η ⊂ exp(X)−{ /0}
where X is a non-null set, µ ⊂ η ⊂ γ and if η is a stack, then neither γ nor µ is stack as shown by the following Example 3.23.

Theorem 3.22. Let X be a non-null set and η ⊂ exp(X). If η is a stack and generalized topology, then η is a strong GT.

Example 3.23. Consider the non-null space X4. Take η = {{a},{a,b},{a,c},{a,d},{a,b,c},{a,b,d},{a,c,d},X4}. Let γ =
{{a},{b},{a,b},{a,c},{a,d},{a,b,c},{a,b,d},{a,c,d},X4} and µ = {{a},{a,b},{a,c},{a,b,c},{a,b,d},{a,c,d},X4}.
Then µ ⊂ η ⊂ γ. Here η is a stack. But neither γ nor µ is stack. For, let A1 = {b},A2 = {a} and B1 = {b,d},B2 = {a,d}.
Then A1 ∈ γ,A2 ∈ µ and A1 ⊂ B1,A2 ⊂ B2. But B1 /∈ γ,B2 /∈ µ.

Moreover, µ? is a topology if µ̃? is a stack.

4. Nature of a New GT
In this section, we define a new generalized topology and give some of its properties in a generalized topological space.

First of all, we recall some definitions and facts for the development of this section.
A GTS (X ,µ) is said to be a weak Baire space (for short, wBS) [8] if for every U ∈ µ̃ is of µ-s-II category set in X . Also,

every BS is a wBS.
Let (X ,µ) be a GTS and A⊂ X . Then A is called µ-semi-open (resp. µ-α-open) if A⊂ ciA (resp. A⊂ iciA) [5].
In [8], Korczak - Kubiak et al. introduced a new generalized topology, namely µ??, defined by using µ-II category sets and

gave some properties of this generalized topology in a generalized topological space.
Motivated by this, we will introduce a new generalized topology, namely µV , (dependent on GT µ) in a generalized

topological space which will be a convenient tool for considerations in this section.
The GT µV defined as in the following way:

Definition 4.1. Let (X ,µ) be a GTS. Then µV = { /0}∪{A⊂ X | A is of µ-s-II category set}.

The family µV is a strong generalized topology if µV 6= { /0}. The converse implication is always true.
Let (X ,µ) be a GTS. If µ 6= { /0}, then X is of µ-s-II category and hence µV is a sGTS. Also, the reverse implication is true.
The following Example 4.2 shows that the family µV is not closed under the finite intersection.

Example 4.2. Consider the generalized topological space (X4,µ) where µ = { /0,{a},{a,d},{b,d},{a,b,c},{a,b,d},X4}.
Then µV = { /0}∪ {A ⊂ X4 | a ∈ A or b ∈ A or d ∈ A}. Here, {a,c} and {b,c} are of µ-s-II category subsets in X4. Take
A = {a,c}∩{b,c}= {c}. Then A is a µ-strongly nowhere dense set in X4 and so A is not µ-s-II category in X4 so that A /∈ µV .
Therefore, µV is not closed under the finite intersection.

Lemma 4.3. [8, Lemma 2.12] Let (X ,µ) be GTS and A⊂ X . Then

cµ??(A) =
{

X if A is µ-residual,
A if A is not µ-residual

Lemma 4.4. [8, Lemma 2.13] Let (X ,µ) be GTS, X be a µ-II category set and A⊂ X . If A is a µ??-nowhere dense set, then A
is a µ-meager set.

Theorem 4.5. Let (X ,µ) be a GTS. Then ˜µV is a stack.

Proof. Suppose A ⊂ B and A ∈ ˜µV . Then A is of µ-s-II category set and so B is of µ-s-II category set, since subset of a
µ-s-meager set is µ-s-meager. Therefore, B ∈ ˜µV . Hence ˜µV is a stack.

The following Corollary 4.6 follows from the similar arguments in Theorem 3.5 and so the proof is omitted.

Corollary 4.6. Let (X ,µ) be a GTS. Then ˜µV is a p-stack if and only if (X ,µV ) is a hyperconnected space.
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The following Proposition 4.7 directly follows from the definition of weak Baire space, strong Baire space and Lemma 2.2
(b) so the proof is omitted. Theorem 4.8 directly follows from Theorem 4.5, Proposition 4.7 so the trivial proof is omitted.

Proposition 4.7. Let (X ,µ) be a GTS. Then the following hold.
(a) If (X ,µ) is a wBS, then µ ⊂ µV .
(b) If (X ,µ) is a sBS, then µ? ⊂ µV .
(c) µ?? ⊂ µV .

Theorem 4.8. Let (X ,µ) be a GTS and A⊂ X . Then the following hold.
(a) If i

µV A 6= /0, then A ∈ µV .

(b) If (X ,µ) is a wBS and if iµ A 6= /0, then A ∈ µV .
(c) If (X ,µ) is a sBS and if iµ?A 6= /0, then A ∈ µV .
(d) If A ∈ µV , then cµ A,cµ?A,cµ??A,c

µV A ∈ µV .

Theorem 4.9. Let (X ,µ) be a wBS-sGTS and A⊂ X . Then the following hold.
(a) If A is µ-α-open, then A ∈ µV .
(b) If A is µ-semi-open, then A ∈ µV .

Proof. We will present the detailed proof only for (a). Suppose A is a µ-α-open set in X . Then A⊂ iciA. If A = /0, then there
is nothing to prove. Assume that, A 6= /0. Then iciA 6= /0 so that ciA 6= /0 which implies that iA 6= /0, since µ is a sGT. Thus,
iµ A 6= /0. By hypothesis and Theorem 4.8 (b), A ∈ µV .

By using Theorem 4.9, immediately we get two Observations as follows.

Observation 4.10. Let (X ,µ) be a wBS-sGTS. If A is a µV -dense subset of X , then the following hold.
(a) A∩U 6= /0 for every non-null µ-α-open set U.
(b) A∩V 6= /0 for every non-null µ-semi-open set V.

Observation 4.11. Let (X ,µ) be a wBS-sGTS and A⊂ X . If A is a µV -nowhere dense set in X , then the following hold.
(a) If G is a non-null µ-α-open set, then G * A.
(b) If H is a non-null µ-semi-open set, then H * A.

In Theorem 4.9, we replace the condition “wBS-sGTS” by “BS-sGTS” we get A ∈ µ??, by Corollary 3.2 (b). Theorem 4.9
is not reversible as shown in the following Example 4.12.

Example 4.12. Consider the generalized topological space (X5,µ) where µ = { /0,{a,b},{b,c},{a,b,c}}. Then µV = { /0}∪
{A⊂ X5 | a ∈ A or b ∈ A or c ∈ A}.
Let U = {c,d}. Then U ∈ µV . But U is not a µ-α-open set in X5. For, iµ cµ iµU = iµ cµ({ /0}) = iµ({d,e}) = /0. Thus,
U 6⊂ iµ cµ iµU.
Let V = {a,d}. Then V ∈ µV . Here cµ iµV = cµ({ /0}) = {d,e}. Thus, V 6⊂ cµ iµV. Therefore, V is not a µ-semi-open set in X5.

Theorem 4.13. Let (X ,µ) be a GTS and A⊂ X . If A is a µV -nowhere dense set, then the following hold.
(a) If (X ,µ) is a wBS, then A is µ-codense.
(b) If (X ,µ) is a sBS, then A is µ?-codense.
(c) A is µ??-codense set in X .

Proof. It is enough to prove (b) only. Suppose (X ,µ) is a sBS and A is a µV -nowhere dense set. Then i
µV c

µV A = /0 and so
c

µV (X−A) = X . By hypothesis and Proposition 4.7 (b), cµ?(X−A) = X . Therefore, A is a µ?-codense set in X .

Proposition 4.14 and Proposition 4.15 are follows from the similar considerations in Lemma 4.3 and Lemma 4.4, respectively
so the proofs are omitted.

Proposition 4.14. Let (X ,µ) be a GTS and A⊂ X . Then

c
µV (A) =

{
X if A is µ-s-residual,
A if A is not µ-s-residual

Proposition 4.15. Let (X ,µ) be a GTS, X be a µ-s-II category set and A⊂ X . Then the following hold.
(a) If A is a µV -nowhere dense set, then A is a µ-s-meager set.
(b) If A is a µV -meager set, then A is a µ-s-meager set.
(c) If A is a µV -residual set, then A is a µ-s-residual set.
(d) If A is of µ-s-II category, then it is of µV -II category.
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Theorem 4.16. Let (X ,µ) be a wBS. Then every µ-strongly nowhere dense set is µV -nowhere dense in X .

Proof. Suppose (X ,µ) is a wBS. Let A be a µ-strongly nowhere dense set in X . Suppose i
µV c

µV A 6= /0. Then c
µV A contains

a non-null µV -open set in X and so c
µV A contains a µ-s-II category set in X . Thus, cµ A contains a µ-s-II category set in X ,

since µ ⊂ µV . But cµ A is a µ-s-meager set in X , by Lemma 2.1. Therefore, i
µV c

µV A = /0. Hence every µ-strongly nowhere
dense set is a µV -nowhere dense set in X .

The following Corollary 4.17 follows from Theorem 4.16 so the direct proof is omitted.

Corollary 4.17. Let (X ,µ) be a wBS and A⊂ X . Then the following hold.
(a) If A is µ-s-meager, then A is µV -meager in X .
(b) If A is of µV -II category, then A is of µ-s-II category in X .
(c) If A is µ-s-residual, then A is µV -residual in X .

Theorem 4.18. Let (X ,µ) be a GTS. If X is of µ-s-II category, then (X ,µV ) is a BS.

Proof. Let G ∈ ˜µV . Suppose G is a µV -meager set. Then by hypothesis and Proposition 4.15 (b), G is a µ-s-meager set, which
is a contradiction to G ∈ ˜µV . Therefore, G is of µV -II category in X . Hence (X ,µV ) is a BS.

The following Theorem 4.19 follows from the similar considerations in Theorem 3.19 so the easy proof is omitted.

Theorem 4.19. Let (X ,µ) be a GTS. Then µV 6= { /0} if and only if µV ?
is a strong GT in X where µV ?

= {
⋃
t
(W t

1 ∩W t
2 ∩ . . . .∩

W t
nt ) |W

t
1 ,W

t
2 , . . . .,W

t
nt ∈ µV } and hence it is a topology.

In the rest of this section, we give some relations between various types of generalized topology in a generalized topological
space.

First of all, we remember some Lemmas which is useful in the sequel.

Lemma 4.20. [14, Theorem 3.4] Let (X ,µ) be a sBS and A⊂ X . Then the following hold.
(a) If A is a µ-nowhere dense set, then A is a µ?-nowhere dense set.
(b) If A is a µ-meager set, then A is a µ?-meager set.
(c) If A is a µ?-II category set, then A is a µ-II category set.

Lemma 4.21. [14, Theorem 3.7] Let (X ,µ) be a BS and A⊂ X . Then the following hold.
(a) If A is a µ-nowhere dense set, then A is a µ??-nowhere dense set.
(b) If A is a µ-meager set, then A is a µ??-meager set.
(c) If A is a µ??-II category set, then A is a µ-II category set.

Here, µ??? = {
⋃
t
(W t

1 ∩W t
2 ∩ . . . .∩W t

nt ) |W
t
1 ,W

t
2 , . . . .,W

t
nt ∈ µ??} and µV ?

= {
⋃
t
(W t

1 ∩W t
2 ∩ . . . .∩W t

nt ) |W
t
1 ,W

t
2 , . . . .,W

t
nt ∈

µV }.
Now we define two generalized topologies and give some properties of these generalized topologies.
Define µ??? = { /0}∪{A⊂ X | A is of µ?-II category set} and µV ??

= { /0}∪{A⊂ X | A is of µV -II category set}.
It is easily seen that the families µ??? and µV ??

are generalized topologies. Also, these two generalized topologies are
satisfied with the stack property in a GTS.

Theorem 4.22. Let (X ,µ) be a generalized topological space. Then the following hold.
(a) µ̃??? is a stack.
(b) µ̃V ?

is a stack.

Proof. It is enough to prove (a) only. Suppose A⊂ B where A∈ µ̃??? . Then A =
⋃
t
(At

1∩At
2∩ . . . .∩At

nt ) where At
1,A

t
2, . . . .,A

t
nt ∈

µ??. Take Ak = Ak
1 ∩ Ak

2 ∩ . . . .∩ Ak
nk

such that Ak 6= /0 where Ak
1,A

k
2, . . . .,A

k
nk
∈ µ??. By hypothesis, Ak ⊂ B so that B =

Ak ∪ (B−Ak). Thus, B = (Ak
1 ∩Ak

2 ∩ . . . .∩Ak
nk
)∪ (B−Ak) where Ak

1,A
k
2, . . . .,A

k
nk
∈ µ?? which implies that B = (Ak

1 ∪ (B−
Ak))∩ (Ak

2∪ (B−Ak))∩ . . . .∩ (Ak
nk
∪ (B−Ak)) where Ak

1,A
k
2, . . . .,A

k
nk
∈ µ??. Since Ak

1,A
k
2, . . . .,A

k
nk
∈ µ̃?? we have Ak

1∪ (B−
Ak),Ak

2∪ (B−Ak), . . . .,Ak
nk
∪ (B−Ak) ∈ µ̃??, since µ̃?? is a stack. Therefore, B ∈ µ̃??? . Hence µ̃??? is a stack.

Corollary 4.23. Let (X ,µ) be a generalized topological space and µ̃ is a stack. Then µ̃? is a stack.

Obviously, µ?? ⊂ µ??? and µV ⊂ µV ?
. The reverse implications are true as shown by the following Theorem 4.24.
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Theorem 4.24. Let (X ,µ) be a generalized topological space. Then the following hold.
(a) If (X ,µ??) is a sBS, then µ??? ⊂ µ??.
(b) If (X ,µV ) is a sBS, then µV ? ⊂ µV .

Proof. (a) Suppose (X ,µ??) is a sBS. Let G ∈ µ??? . If G = /0, then there is nothing to prove. Assume that, G 6= /0. Then
G =

⋃
t
(Gt

1 ∩Gt
2 ∩ . . . .∩Gt

nt ) where Gt
i ∈ µ?? for i = 1,2, ...,nK . Take Gk = Gk

1 ∩Gk
2 ∩ . . . .∩Gk

nk
such that Gk 6= /0 where

Gk
1,G

k
2, . . . .,G

k
nk
∈ µ??. By hypothesis, Gk is of µ??-II category set in X so that Gk is of µ-II category set in X , by Lemma

4.21(c). Thus, G is of µ-II category set in X . Therefore, G ∈ µ??. Hence µ??? ⊂ µ??.
(b) It is follows from the similar arguments in above case and Corollary 4.17 (b).

The condition “(X ,µV ) is a sBS” is necessary in Theorem 4.24 (b) as shown by the following Example 4.25

Example 4.25. Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{a,b,c}}. Then µV = { /0}∪{A⊂ X4 |
either a ∈ A or b ∈ A}. Then (X ,µV ) is not a sBS. For, let U = {b,d};V = {a,d}. Then U,V ∈ µV . But U ∩V = {d} which
is a µV -nowhere dense set. Here µV ?

= exp(X). Thus, µV ? * µV .

Theorem 4.26. Let (X ,µ) be a generalized topological space. Then µ??? ⊂ µV ?
.

Proof. Follows from the fact that µ?? ⊂ µV .

Theorem 4.27. Let (X ,µ) be a wBS. Then µ? ⊂ µV ?
.

Proof. Let G ∈ µ?. If G = /0, then there is nothing to prove. Assume that, G 6= /0. Then G =
⋃
t
(Gt

1∩Gt
2∩ . . . .∩Gt

nt ) where

Gt
1,G

t
2, . . . .,G

t
nt ∈ µ. By hypothesis, µ ⊂ µV . Thus, G =

⋃
t
(Gt

1 ∩Gt
2 ∩ . . . .∩Gt

nt ) where Gt
1,G

t
2, . . . .,G

t
nt ∈ µV . Therefore,

G ∈ µV ?
.

Theorem 4.28. Let (X ,µ) be a GTS and X be a µ-s-II category set. Then µV ⊂ µV ??
.

Proof. Let B ∈ µV . Suppose B = /0. Then there is nothing to prove. Assume that, B 6= /0. Then B is of µ-s-II category set in X .
By hypothesis and Proposition 4.15 (d), B is of µV -II category set in X . Hence B ∈ µV ??

.

Theorem 4.29. Let (X ,µ) be a sBS. Then the following hold.
(a) µ??? ⊂ µ??? .
(b) µ??? ⊂ µV .

Proof. This follows from Lemma 2.2 and Lemma 4.20.

The following Example 4.30 shows that the reverse implications of Theorem 4.26, Theorem 4.27 and Theorem 4.29 (b) are
need not be true in a generalized topological space.

Example 4.30. Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{b,c},{a,b,c}}. Then µ? = { /0,{b},
{a,b},{b,c},{a,b,c}}; µ?? = { /0}∪{A ⊂ X | b ∈ A}; µV = { /0}∪{A ⊂ X | a ∈ A or b ∈ A or c ∈ A}; µ??? = { /0}∪{A ⊂ X |
b ∈ A}; µ??? = { /0,{b},{a,b},{b,c},{b,d},{a,b,c},{a,b,d},{b,c,d},X}; µV ?

= exp(X).
(a). Let A = {a}. Then A ∈ µV ?

. But A /∈ µ??? .
(b). Let B = {c}. Then B ∈ µV ?

. But B /∈ µ?.
(c). Let C = {a,d}. Then C ∈ µV . But C /∈ µ??? .

The reverse implications of Theorem 4.29 (a) is need not be true as shown by the following Example 4.31.

Example 4.31. Consider the generalized topological space (X4,µ) where µ = { /0,{a},{a,b},{b,c},{a,b,c}}. Then µ? =
{ /0,{a},{b},{a,b},{b,c},{a,b,c}}; µ?? = { /0}∪{A⊂X | a∈A or b∈A} and so µ??? = { /0}∪{B⊂X | a∈B or b∈B}; µ??? =
exp(X). Let G = {c}. Then G ∈ µ??? . But G /∈ µ??? .

Theorem 4.32. Let (X ,µ) be a BS-sGTS. If (X ,µ??) is a sBS, then µ??? ⊂ µV ??
.

Proof. Let A be a non-null µ??? -open set. Then A =
⋃
t
(At

1∩At
2∩ . . . .∩At

nt ) where At
1,A

t
2, . . . .,A

t
nt ∈ µ??. Take Ak = Ak

1∩Ak
2∩

. . . .∩Ak
nk

where Ak
1,A

k
2, . . . .,A

k
nk
∈ µ?? such that Ak 6= /0 for some k. By hypothesis, Ak is of µ??-II category set and so Ak is of

µ-II category set, by hypothesis and Lemma 4.21. Thus, A is of µ-II category set so that A is of µ-s-II category set. Hence
A ∈ µV . By Theorem 4.28, A ∈ µV ??

. Hence µ??? ⊂ µV ??
.
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5. Some Special Spaces
In this section, we analyze the nature of extremally disconnected and submaximal spaces in a generalized topological space.

Finally, we prove every µ-isolated point is a µ-II category set in a GTS.
A GTS (X ,µ) is called µ-extremally disconnected or simply, extremally-disconnected [4] if the µ-closure of every µ-open

set is µ-open.
A subset B of a generalized topological space (X ,µ) is said to be a µ-Gδ -set [1] if B =

⋂
n∈N

Bn where each Bn is a µ-open

set.
A generalized topological space (X ,µ) is said to be a generalized Gδ -submaximal space [1] if every µ-dense subset of X is

a µ-Gδ -set in X .

Lemma 5.1. [1, Lemma 3.7] Let (X ,µ) be a GTS. If (X ,µ) is a generalized submaximal space, then (X ,µ) is a generalized
Gδ -submaximal space.

Lemma 5.2. [13, Theorem 3.2] Let (X ,µ) be a GTS. Then the following hold.
(a) µ?? 6= { /0} if and only if (X ,µ??) is a sGTS.
(b) If (X ,µ) is a BS, then µ?? 6= { /0}.

Theorem 5.3. Let (X ,µ) be a GTS. If either (X ,µ) is a BS or µ?? 6= { /0}, then (X ,µ??) is a µ??-extremally disconnected
space.

Proof. We will present the detailed proof only for the case, µ?? 6= { /0}. Then µ?? is a sGTS, by Lemma 5.2. Let G ∈ µ??. If
G = /0, then cµ??G = G and so cµ??G ∈ µ??. Suppose that G 6= /0. Then G is of µ-II category set in X . Since G⊂ cµ??G and
subset of a µ-meager set is µ-meager we have cµ??G is of µ-II category set in X . Thus, cµ??G ∈ µ??. Hence (X ,µ??) is a
µ??-extremally disconnected space.

The following Example 5.4 shows that the condition “either (X ,µ) is a Baire space or µ?? 6= { /0}” can not be dropped in
Theorem 5.3.

Example 5.4. Consider the generalized topological space (X ,µ) where X = [0,3] and µ = { /0, [0,2),(1,3], [0,1]∪ [2,3],X}.
Then (X ,µ) is not a BS and µ?? = { /0}. Choose G ∈ µ??. Then G = /0 and so cµ??G = X . But X /∈ µ??. Thus, cµ??G /∈ µ??.
Hence (X ,µ??) is not a µ??-extremally disconnected space.

Theorem 5.5. Let (X ,µ) be a GTS. Then the following hold.
(a) If µ̃ is a stack, then (X ,µ) is a µ-extremally disconnected space.
(b) If µ̃ is a p-stack, then (X ,µ) is a µ-extremally disconnected space.

Proof. It is enough to prove that (a) only, since every p-stack is a stack. Suppose that, µ̃ is a stack. Then (X ,µ) is a sGTS. Let
U ∈ µ. If U = /0, then cµU = /0, since µ is a sGT. Thus, cµU ∈ µ. Assume that, U 6= /0. Since U ⊂ cµU and µ̃ is a stack we
have cµU ∈ µ. Then (X ,µ) is a µ-extremally disconnected space.

Next, Example 5.6 shows that the condition “µ̃ is a stack” can not be dropped in the above Theorem 5.5 (a). The reverse
implications of Theorem 5.5 is need not be true as shown by the below Example 5.7.

Example 5.6. (a) Consider the generalized topological space (X ,µ) where X = [0,3] and µ = { /0, [0,1), [0,2),(1,3], [0,1)∪
(1,3], [0,2)∪ [ 5

2 ,3],X}. Let A = (1,3] and B = [1,3] be subsets of X . Here A ∈ µ̃ and A⊂ B. But B /∈ µ̃. Thus, µ̃ is not a stack.
Take G = [0,1). Then G ∈ µ and cµ G = [0,1]. But cµ G /∈ µ. Hence (X ,µ) is not a µ-extremally disconnected space.
(b) Consider the generalized topological space (X6,µ) where µ = { /0,{a,b},{b,c},{a,b,c}}. Let A= {a,b} and B= {a,b,c,d}
be subsets of X6. Here A ∈ µ̃ and A⊂ B. But B /∈ µ̃. Thus, µ̃ is not a stack. Take G = { /0}. Then G ∈ µ and cµ G = {d,e, f}.
But cµ G /∈ µ. Hence (X6,µ) is not a µ-extremally disconnected space.

Example 5.7. (a) Consider the generalized topological space (X5,µ) where µ = { /0,{a,c},{b,c},{a,b,c},X5}. Then (X5,µ)
is a µ-extremally disconnected space. Let A = {a,c} and B = {a,b,c,d} be subsets of X5. Here A ∈ µ̃ and A⊂ B. But B /∈ µ̃.
Thus, µ̃ is not a stack.
(b) Consider the generalized topological space (X4,µ) where µ = { /0,{a},{b},{a,b},{a,c},{a,d},{b,c},{b,d},{a,b,c},{a,b,d},
{a,c,d},{b,c,d},X4}. Then (X4,µ) is a µ-extremally disconnected space. But µ̃ is not a p-stack. For, let A = {a} and
B = {b,c,d} be subsets of X4. Here A ∈ µ̃ and B ∈ µ̃. But A∩B = /0.

The following Theorem 5.8 is directly follows from the fact that subset of a µ-s-meager set is µ-s-meager and the converse
part is trivial so the proof is omitted.
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Theorem 5.8. Let (X ,µ) be a GTS. Then µV 6= { /0} if and only if (X ,µV ) is a µV -extremally disconnected space.

Theorem 5.9. Let (X ,µ) be a hyperconnected sGTS. Then (X ,µ) is a µ-extremally disconnected space.

Proof. This is a direct consequence of the definition of the hyperconnected space.

By Lemma 2.1, immediately we get the following two observations so the proofs are omitted.

Observation 5.10. Let (X ,µ) be a GTS and µ = { /0}∪{A⊂ X | A is a µ-nowhere dense set}. If µ is a GT, then (X ,µ) is a
µ-extremally disconnected space.

Observation 5.11. Let (X ,µ) be a GTS and µ = { /0}∪{A ⊂ X | A is a µ-strongly nowhere dense set}. If µ is a GT, then
(X ,µ) is a µ-extremally disconnected space.

Moreover, every GTS (X ,µ) is both µ??-extremally disconnected space and µV -extremally disconnected space.

Lemma 5.12. Let (X ,µ) be a GTS and A⊂ X . Then the following hold.
(a) If A is a µ??-dense set in X , then A ∈ µ??.
(b) If A is a µV -dense set in X , then A ∈ µV .

Proof. We will present the detailed proof only for (a). Let A be a µ??-dense subset of X . Then A∩Bi 6= /0 for all Bi ∈ µ̃??.
Case 1: First we prove this result for a singleton set in µ̃??. Assume that, each Ci is a singleton set in µ̃??. Since A∩Ci 6= /0
for all Ci ∈ µ̃?? we have Ci ⊂ A for all Ci ∈ µ̃??. Therefore, A is of µ-II category set in X , since subset of a µ-meager set is
µ-meager.
Case 2: Now we prove this result for other set in µ̃??. Assume that, each Bi having more than one element. Then each Bi
contains a non-null singleton set which is of µ-II category set in X . By Case 1, A is of µ-II category set in X .

The reverse implication of Lemma 5.12 need not be true as shown by Example 5.13.

Example 5.13. (a) Consider the generalized topological space (X ,µ) where X = [0,3] and µ = { /0, [0,2),(1,3], [0,1)∪
(1,3], [0,2)∪ [ 5

2 ,3],X}. Then µ?? = { /0}∪ {A,B ⊂ X | A ∈ exp((1,2))−{ /0},A ⊂ B}. Let A = { 3
2} be a subset of X . Then

A ∈ µ??. But A is not a µ??-dense set in X .
(b) Consider the generalized topological space (X6,µ) where µ = { /0,{a,b},{a,b,c},{a,b,d},{a,b,c,d},{a,b,c,e}{a,b,c,d,e}}.
Then µV = { /0}∪{A⊂ X6 | either a ∈ A or b ∈ A}. Let G = {a,d} be a subset of X6. Then G ∈ µV . But G is not a µV -dense
set in X6.

Theorem 5.14. Let (X ,µ) be a GTS. Then µV 6= { /0} if and only if (X ,µV ) is a generalized submaximal space.

Proof. Let A be a µV -dense set in X . Then A is a µV -open set in X , by Lemma 5.12(b). Therefore, (X ,µV ) is a generalized
submaximal space. Converse implication is trivial.

Corollary 5.15 is directly follows from Lemma 5.1 and Theorem 5.14 so the proof is omitted.

Corollary 5.15. Let (X ,µ) be a GTS. Then µV 6= { /0} if and only if (X ,µV ) is a generalized Gδ -submaximal space.

Theorem 5.16. Let (X ,µ) be a GTS. Then µ?? 6= { /0} if and only if (X ,µ??) is a generalized submaximal space.

Corollary 5.17. Let (X ,µ) be a GTS. Then µ?? 6= { /0} if and only if (X ,µ??) is a generalized Gδ -submaximal space.

In the rest of this section, we analyze the nature of an isolated point in a GTS. First of all, we remind the definition for
isolated point in a generalized topological space.

Let (X ,µ) be a generalized topological space. Then x ∈ X is called µ-isolated [1] if {x} is µ-open. If every point of X is
µ-isolated, then X is called µ-discrete [1].

Theorem 5.18. Let (X ,µ) be a GTS and x ∈ X . If x is a µ-isolated point, then the following hold.
(a) {x} ∈ µ??.
(b) {x} ∈ µV .
(c) X is of µ-II category.
(d) X is of µ-s-II category.
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Proof. (a) Let x ∈ X . Suppose x is a µ-isolated point in X . Take A = {x}. Then A is a µ-open subset of X and so A is not a
µ-nowhere dense set. Thus, A is not a µ-meager set so that A is of µ-II category set in X . Therefore, {x} ∈ µ??.
(b) Since µ?? ⊂ µV we have {x} ∈ µV , by (a).
(c) Superset of a µ-II category set is of µ-II category so that X is of µ-II category.
(d) Since every µ-s-meager set is µ-meager we have X is of µ-s-II category.

Theorem 5.19 immediately follows from Theorem 5.18 so the trivial proof is removed. The reverse implications of the
Theorem 5.19 is not true in general as shown in the below Example 5.20.

Theorem 5.19. Let (X ,µ) be a GTS and A⊂ X . Then the following hold.
(a) If X is µ-discrete, then (X ,µ) is a sBS.
(b) If A contains a µ-isolated point, then A ∈ µ?? and hence A ∈ µV .

Example 5.20. Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{b,c},{a,b,c},X4}. Then (X4,µ) is
a sBS. But X4 is not a µ-discrete space. For, let a ∈ X4. Then {a} is not µ-open and so a is not a µ-isolated point in X4.

Theorem 5.21. Let (X ,µ) be a GTS and A⊂ X . Then A is of µ-II category set in X if and only if it has a µ??-isolated point in
X .

The following Example 5.22 proves that X is not µ-discrete even if X is µ??-discrete.

Example 5.22. Consider the generalized topological space (X4,µ) where µ = { /0,{a,b},{c,d},X4}. Here {x} ∈ µ?? for all
x ∈ X4. Therefore, X4 is µ??-discrete. But X4 is not a µ-discrete space. For, let b ∈ X4. Then {b} is not µ-open and so b is not a
µ-isolated point in X4.

Lemma 5.23. [14, Theorem 4.3] Let (X ,µ) be a hyperconnected space. If X is of µ-II category, then (X ,µ) is a BS.

Theorem 5.24. Let (X ,µ) be a GTS and µ̃ is a p-stack. If X is of µ-II category, then (X ,µ) is a BS.

Proof. Suppose µ̃ is a p-stack. Then (X ,µ) is a hyperconnected space. By Lemma 5.23, (X ,µ) is a BS.

References
[1] M. R. Ahmadi Zand and R. Khayyeri, Generalized Gδ -submaximal spaces, Acta Math. Hungar., 149 (2) (2016), 274 - 285.
[2] S. Al Ghour, A. Al-Omari and T. Noiri, On homogeneity and homogeneity components in generalized topological spaces,

Filomat, 27 (2013), 1097 - 1105.
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[5] Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar. 106 (1 - 2) (2005), 53 - 66.
[6] E. Ekici, Generalized hyperconnectedness, Acta Mathematica Hungarica, 133 (1 - 2) (2011), 140 - 147.
[7] E. Ekici, Generalized Submaximal Spaces, Acta Math. Hungar., 134 (1 – 2) (2012), 132 - 138.
[8] E. Korczak - Kubiak, A. Loranty and R. J. Pawlak, Baire generalized topological spaces, generalized metric spaces and

infinite games, Acta Math. Hungar., 140 (2013), 203 - 231.
[9] Z. Li and F. Lin, Baireness on generalized topological spaces, Acta Math. Hungar., 139 (4) (2013), 320 - 336.

[10] W. K. Min, On weak neighborhood systems and spaces, Acta Math. Hungar., 121 (3) (2008), 283 - 292.
[11] V. Renukadevi and S. Vadakasi, On lower and upper semi-continuous functions, Acta Math. Hungar., 160 (2020), 1 - 12.
[12] S. Vadakasi and V. Renukadevi, Properties of nowhere dense sets in GTSs, Kyungpook Math. J., 57 (2017), 199 - 210.
[13] S. Vadakasi and V. Renukadevi, Special functions on GTSs, Communicated.
[14] S. Vadakasi and V. Renukadevi Two classes of functions, Communicated.


	Introduction
	Preliminaries
	Properties of Generalized Topology
	Nature of a New GT
	Some Special Spaces
	References

