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Abstract

In this paper, we define the generalized k-fractional integrals of a function with respect to the another function which generalizes many
different types of fractional integrals such as Riemann-Liouville fractional, Hadamard fractional integrals, Katugampola fractional integral,
(k,s)-fractional integral operators. Moreover, we obtain Hermite-Hadamard inequalities utilizing k-fractional integrals of a function with
respect to the another function. We also investigate trapezoid inequalities for the functions whose derivatives in absolute value are convex.
Finally, some special cases of these inequalities are given.
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1. Introduction

The Hermite-Hadamard inequality is one of the most well established inequalities in the theory of convex functions with a geometrical
interpretation and many applications. Numerous mathematicians have devoted their efforts to generalise, refine, counterpart and extend it for
different classes of functions such as using convex mappings.

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are very important in the literature (see, e.g.,[13, p.137],
[7]). These inequalities state that if f: I — R is a convex function on the interval / of real numbers and a,b € [ with a < b, then

f(a+b) Sbiia/ahf(x)dxﬁw~ (1.1

2

Both inequalities hold in the reversed direction if f is concave. We note that Hadamard’s inequality may be regarded as a refinement of
the concept of convexity and it follows easily from Jensen’s inequality. Hadamard’s inequality for convex functions has received renewed
attention in recent years and a remarkable variety of refinements and generalizations have been studied (see, for example, [3]-[5], [8]-[10],
[16]-[20).

In [6] Diaz and Pariguan have defined k -gamma function I'), that is generalization of the classical gamma. I'; is given by formula

1N I—1
T (x) = fim K00

k> 0.
n=ee (X nk

P

1

It has shown that Mellin transform of the exponential function e™ # is the k-gamma function, clearly given by
ok
I (o) := / e T 1% lar.
Jo

Obviously, T (x + k) = xT (x), T(x) = lim T (x) and I (x) = ki~ T(E).
—

The overall structure of the study takes the form of four sections including introduction. The remaining part of the paper proceeds as
follows: In Section 2, we introduce generalized k-fractional integrals of a function with respect to the another function which generalizes
different types of fractional integrals, including Riemann-Lioville fractional, Hadamard fractional integrals, Katugampola fractional integral,
(k,s)-fractional integral operators and many others. In section 3, the Hermite-Hadamard type inequalities for convex functions via generalized
k-fractional integrals of a function with respect to the another function are presented while in section 4 trapezoid type inequalities for
functions whose derivatives in absolute value are convex with this type fractional integral operators are obtained and we also provide some
corollary for theorems.
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2. New Generalized Fractional Integral Operators

In this section we present the concept of the generalized k-fractional integrals of a function with respect to the another function.
We first define the function

g0k L a O-(m) m . 7
PR = L iy oA Ok <),

where the coefficients ¢ (m) (m € Ny = NU{0}) is a bounded sequence of positive real numbers and % is the set of real numbers.

Definition 2.1. For k > 0, let g : [a,b] — R be an increasing and positive monoton function on (a,b), having a continuous derivative g'(x)
on (a,b) . The left and right sided generalized k-fractional integrals of f with respect to the function g on [a,b] are defined, respectively, as
follows:

ool (0= / ng)),_%? 3 [0 (ex) = g(0)P] f()dr, x>a, @1
and

b /
Ih ol (6) = / g—mﬂ‘;ﬁ 3 [@(e() = g(0))P] f(1)dt, x <b, 22)

_A
¢ (g)—g(x)' %
where A, p >0, ® € R.

The significant special cases of the integral operators (2.1) and (2.2) are mentioned below:
1) For k = 1, operator in (2.1) leads to generalized fractional integral of f with respect to the function g on [a,b]. This relation is given by

I el 0= | Wm”ff;’,l [0 (s(x) — 2(0)°] FO)dr, x> a

2) For g(r) = ¢, operator in (2.1) leads to generalized k-fractional integral of f. This relation is given by

X
A

I ol 0= /(x—z)rlf;ff [0 (x—1)°] f(1)dt, x> a.

a
3) For g(t) = Int, operator in (2.1) leads to generalized Hadamard k-fractional integral of f. This relation is given by
ok [ x\ i .y x\P dt
’%pp,i,aﬂwf(x) = / <ln7> Z oA [a) (ln;) ]f(l)77 x>a.

t

a
4)For g(t) = i%, s € R—{—1} operator in (2.1) leads to generalized (k, s)-fractional integral of f. This relation is given by
A_

k

X
A 1
It arol @ =+ )1 E [(r o)z [w (

a

o st

P
T ) ]f(z)dz, x>a.

Remark 2.2. Similarly, all above special cases can also be seen for operator (2.2).

Remark 2.3. For k=1 and g(t) =t, operators in (2.1) and (2.2) reduce to the following generalized fractional integral operators defined
by Raina [14] and Agarwal et. al [1], respectively:

/p(fk_ﬂ+;wf(x):/X(x—l)l_]ﬁg‘l [0 (x—1)P] f(t)dt, x>a, (2.3)

a

b A-1
il @ = [ =0 FE, (00— f@)dr, x<b, 2.4)

X

Remark 2.4. One can obtain other new generalized fractional integral operators with different choices of g.

Remark 2.5. For A = a, 6(0) =1, w = 0 in Definition 2.1, then we have the generalized fractional operators defined by Akkurt et al. in
[2].

Remark 2.6. Let A = a, o(0) =1, w=0 in Definition 2.1.

1) Choosing k = 1, then we have fractional integrals of a function f with respect to function g. [11].
2) Choosing g(¢) = t, then we have k-fractional integrals [12].

3) Choosing k = 1 and g(¢) = Int, then we have Hadamard fractional integrals [11].
4) Choosing g(t) = £ seER- {—1}, then we have (k, s)-fractional integral operators [15].

+
s+10
st

5) Choosing k=1 and g(¢) = T SER- {—1}, then we have Katugampola fractional integral operators [10].

6) Choosing k = 1 and g(¢) = t, then we have Riemann-Lioville fractional integral operators [11].
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3. Hermite-Hadamard Inequalities for Generalized Fractional Integral Operators

In this part, we obtain Hermite-Hadamard inequalities for the generalized k-fractional integrals of a function with respect to the another
function.

Firstly, let us start with some notations given in [9]. Let f : I° — R be a function such that a,b € I° and 0 < a < b < eo. We suppose that
f € L”(a,b) in such a way that % of (x) and I} of (x) are well defined. We define the function

f&) = fla+b—x), x€a,b]

F(x) = f(x)+ f(x), x € [a,b].

In Definition 2.1, using the change of variable s = ﬂ’ we have
1
/
, x—a)g ((1—s)a+sx k
/pik_'§+;wf(x) :/ ( )& (( ) ) ﬂ;l [a) (g(x)—g((1 —s)a+sb))p] f(sx+(1—s)a)ds. 3.1

5 ls) —g((1—s)a+sx)] ¢

Similarly, using the change of variable s = =%, we have

1
o.k.g _ (b_x)g/((l_s)x+5b) 0.k p
of () = —F 0 |0 (g((1—s5)x+sb) —g(x)))?] f(sb+ (1 —s)x)ds (3.2)
P -O/[g«ls)xﬂb)g(xn‘k pal0e “]

Theorem 3.1. Let g : [a,b] — R be an increasing and positive monotone function on (a,b), having a continuous derivative g'(x) on (a,b). If
[ is a convex on [a,b], then the following Hermite-Hadamard type inequalities for generalized k-fractional integrals of f with respect to the
Sunction g on [a,b] hold:
a+b 1 a)+ f(b
f( 2 )g ok p [/P(if’lffw ()_‘—/Gfirw ()]Sf()Zf() (3.3)
4k (g(b) — g(a)) t T [0(8(b) —g(a)]

where A, p > 0, ® € R and the coefficients o (m) (m € Ng = NU{0}) is a bounded sequence of positive real numbers.

Proof. Since f is an convex mapping on [a, b], we have

(1g2) < 1) o
2 2
for x,y € [a,b]. Now, for s € [0,1], let x = sa+ (1 —s)b and y = (1 — s)a+ sb. Then we have
b 1 1
f(“; )§Ef(sa—f—(l—s)b)—i-if((l—s)a+sb). 3.5)
Multiplying both sides of (3.5) by
g ((1—s)a+sb) 0k

(b—

50) g (1 _sya sy 1o 08O sl =)

and integrating over (0, 1) with respect to s, we find that

1
atb g((1-s)atsh)  _ou ,
b—a J b)—g((1—s)a+sb ds 3.6)
f( > >( )O/[g(b) e (1 —s)at s P (@ (g(b) —g((1—5) »P]

<25 o g/(iz;s)?t_sbiﬂl FIE [0(g(b) - g((1 — ) 5))°] £ (sa-+ (1 —5)b)ds
o lg(b)—g((1—s)a+s x

1
+ g ((1—s)a+sb) — 7% [0 (g(b) — g((1—s)a+sb))P] £ (1 —s)a+sb)ds.
O/[g(b)_g((l_S)a—b—sb)]lk p,l[ 8 g ]

Using the change of the variable x = g(b) — g((1 —s)a -+ sb), we deduce that

¢ ((1=s)atsb) 71 [0(8(b) —g((1=s)a-+ b)) ds = : AL FZ K (o) ds 37
/ ) —syarso & PHL | o/ o
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Using the (3.1), we have

1
(b—a /[ 11 sa++SbZ)]1 T [0(glb) — (1 —s)a-+ s)P] £ (sa+ (1 —s)b)ds = #OLE, F(b)
0 g Sa S| k
and
; (1 —s)a+sb)
| G- s i E 7ra 0G0 =gt DI L1 (1=t sb)ds = 75 o0
0 g Sa S| k

Substituting the equalities (3.7)-(3.9) into (3.6), we find that

U(“*)mw*%mﬁﬂﬁww@@ ﬂ»]<‘/?iw()+cf%iw7)
That is

7 (“37) ()~ st FoL, [0(6(0) - )] < 5 SIS, O

Similarly, multiplying both sides of (3.5) by
g ((1—s)a+sb)
lg((1-s)a+sb) —ga)' "t °

and integrating over (0, 1) with respect to s, we find that

Ks

(b—a) T [0 (g((1=s)a+sb) —g()))’]

1
a+b - gl((lfs)a+sb) ok
f (b—a) Ay ! [(O( ((I_S)a+sb)— (a)))p}ds
( ’ ) O/[g((ls)a+sb)g(a)]lk P4 8 g

/ "((1=s)a+s
< 2 /[ ((lg ()(1+ 1)7)+ lg))}llﬂ:f [0(g((1—s)a+sb)—g(a))P] f(sa+(1—s)b)ds
o 18((1=s)a+sb)—g(a)]~ *

b a/ ((1—s)a+sb) T3 [0(g(1-s)atsb) —g(a))?] £ (1 - s)a-+sb)ds.
5 s)a+sb) —g(a)] ¥

Using the change of the variable x = g((1 —s)a+ sb) — g(b), we find that

p "((1—s)a+s A
I ()“+ ;* I(’))]Mﬁ;if [ (1 —s)a-+b) — g(a)))?}ds = - (5(b) ~ (@)t Z2F.., [0(5(6) ~ ()]
o 8((1—s)a+sb)—gla k
Using the (3.2), we have
1
b—a . g’((lfs)aJrsb) Zok 1—s)a+sb)—g(a)))P sa+ (1 —s)b)ds = adad fla
( )O/[g(us)mb)g(a)]li‘/ﬂ[“’(g(( Ja-+sb) —g(a))P] £ (sa+ (1= s)b)ds = 775 Fla)
and
1
(—a) [ —SZITED) ek g (1 —s)a+-sb) ~8(a)))?) S (1~ s)a+s)ds = FEEE (@)

) [2((1—s)a+sb) —g(a)] '~

Substituting the equalities (3.12)-(3.14) into (3.11), we find that

kf(a+b)(g(b)* (@) %, [0(eb) ~g@)P] < 5 /"ff Wf@+5 /"ff /(@)

which yields

b (752) 60 sta 5k los) -t < AL o)

Combining (3.10) and (3.15), we obtain

(l+b 1 ok Uk
! - Iy oF@)+ I8 F(b)|.
(5% (gb)—g(@)t FoE [0(elb) — (@)’ ][ b Lol 0]

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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Thus, the proof of first inequality is completed.
For the proof of the second inequality in (3.3), since f is convex, we have

f(sa+(1—s)b) <sf(a)+(1—s)f(D)

and

J((A=s)a+sb) < (1—s)f(a)+sf(b).

By adding these inequalities, we have

f(sa+(1—s)b)+ (1 —s)a+sb) < f(a)+ f(b). (3.16)
Multiplying both sides of (3.16) by
(b—a) g ((d=s)atsb) ﬁ,f,{‘ [ (g(b) —g((1—s)a+sb))P]

[8(b) — g (1 —s)a+sb)]'~

and integrating the resulting inequality with respect to s over (0,1), we have

1
- “/ ll_s);l+:bl)7)] 755 [0(s(0) = 8(1 = s)a+sb))P] f (sa+ (1= 5)b)ds G
0 —S5)a -+ S
‘ ((1—s)a+sb
/ 1_S;l :1)9)] T 75y [0(2(b) —g((1=s)a+sb))P] £ (1 =s)a+sb)ds
0 —§)a-—r+ S
l "((1—s)a+s
< @)+ ) (b—a) [ — ULzt 0 g(0) — (1 = 5)a-+58))°] as.

o [8(b)—g((1=s)a+sb)]'

Substituting the equalities (3.7)-(3.9) into (3.17), we find that

IS, o 0) S K@)+ £(5)] (5(6) — 8(a)
Similarly, multiplying both sides of (3.16) by

A
k

Z i 0(8(b) —g(@)P] . (3.18)

g/((lfs)aﬁﬂs‘b) yotk [a)((l—s)a-i—sb—g(a))p]

(b— A
lg(1—s)a+sb) —g@)]F P

and integrating the resulting inequality with respect to s over (0,1), we have

3
k

75 [0(e(b)—2(a)]. (3.19)

K,
S s oF (@) S k[f(a)+ £(b)] (g(b) —g(a))
Adding the inequalities of (3.18) and (3.19), we deduce that

IR GF@)+ 758 F(b) <2K[f(a)+ £(b)] (2(b) — g(a))

P70 ()~ g(a)P)

which yields
1 o.k,g o.k,g f(a)+f(b)
Ay a)+ / <= .
k p,Ab—; Aat; w
ak(3(b) ~ g(a)  F5 ., [0 (s(b) — g(a))"] | o) 2
The proof is completely completed. O

Corollary 3.2. If we choose k = 1 in Theorem 3.1, then we obtain following inequality for generalized fractional integrals with respect to
the another function

a+b 1
S <
(") 4(g(b) —gl@)* 7, [0 (g(h)—g(a»"ﬂ

where A, p > 0, ® € R and the coefficients 6 (m) (m € Ng = NU{0}) is a bounded sequence of positive real numbers.

j:’f’bfw ()+jpla+a) () Sw

Corollary 3.3. Ifwe choose g(t) =t in Theorem 3.1, then we obtain following inequality for generalized k-fractional integrals

a+b fla)+£(b)
(3 fe)+ 1)

1 o.k
% ok [/p,l,bfw ()+j /lu+w () = 2
where A, p >0, ® € R and the coefficients o (m) (m € Ng = NU{0}) is a bounded sequence of positive real numbers.

>_4k(b—a)

yp,;u-k [0 (b—a)]
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Corollary 3.4. If we choose g(t) = Int in Theorem 3.1, then we obtain following inequality for generalized Hadamard fractional integrals

f(a+b) 1 [%ﬂa,k F(a)+ 2% F(b) < fla)+ f(b)
4k< )

ok »\P pAb—0 p,Aa+;0 = 2
Zoawle(mg)’]

where A, p > 0, @ € R and the coefficients 6 (m) (m € Ny = NU{0}) is a bounded sequence of positive real numbers.

Corollary 3.5. If we choose g(t) = ¢ +1 , 8 € R—{—1} in Theorem 3.1, then we obtain following inequality for generalized (k,s)-fractional

integrals
A
a+b (s+1)* ok o Fla)+ f(b).
f( )— Z [‘/’ SF@ -+ 7% Fb)| <"
2 X k b+l _gs+1 \ P p.Ab—0 p.Aa+;0 5
4k (bsH ,aﬁl) k yzl+k [(D( er? ) ]

where A, p > 0, @ € R and the coefficients 6 (m) (m € Ny = NU{0}) is a bounded sequence of positive real numbers.
Remark 3.6. [f we choose k =1 and g(t) =t in Theorem 3.1, then we obtain following inequality for generalized fractional integral

a+b 1 fla)+ f(D)
f( 2 )Sz(ba)’tﬁ‘;{/l+1 [ (b—a)P] 2

[/”%’”;“’f B+ 52 p—of (“)] =

given by Yaldiz and Sarikaya in [20].

Remark 3.7. Ifwe choose k=1,A = o, 6(0) =1, w=0in Theorem 3.1, then Theorem 3.1 reduces to Theorem 2.1 proved by Jleli and
Samet in [9].

Remark 3.8. Choosing A = o, 6(0) =1, w =0 in Corollary 3.3, Corollary 3.4 and Corollary 3.5, one can obtain new result.
4. Trapezoid Type Inequalities for Generalized Fractional Integral Operators

In this section, we establish trapezoid type inequalities for the mappings whose derivatives in absolute value are convex involving generalized
k-fractional integrals of a function with respect to the another function.

Lemma 4.1. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If f' € L|a,b], then the following equality holds:

f(a) +f(b) 1 o.k,g okg
! i ool O+ I3 ol (0)
T O s@)f 7, [06(0) —5(@)’] ol sl )
b 1
—a —~0,k
- % B0 (8)f (sa+(1—s)b)ds
4(g(b) —g(a)) f;fM [0(g(b) —g(a))P] 0/ phg

where :gl}i :[0,1] = R be a function defined by

>

(1]

ok ()= ga+ (1-5)b) —g (@) T ZIF,, [0(g(sa+(1-5)b) — g (@)?] ~[g(sb+ (1~ 5)a) ~ g (@)

>
>

—[g(b) —glsa+ (1=s)b)]* Z25 [0(g(b) —glsa+(1—5)b))P] +[g(b) —g(sb+ (1 —s)a)]t 5

p.A+k

Proof. Since relation (3.1), we have

l ! —385)a Y
S F )= -a) [(b)g(il Jatsh) 3ok (1 (g(b) — g((1 —s)a+ 5b))°] F (sb-+ (1 — s)a)ds.
) le

—g((1=s)a+sb)]' "%

Using integration by parts

FINE F(b) =K[g(b) — g (a)

>

FI% i [0 (e(b) — g(a)] F (a) 4.1

1

+(bfa)k/[g(b)fg((1fs)aJrsb)]k ﬁngrk[ (g(b)fg((lfs)aJrsb))p}F’ (sb+(1—s)a)ds.
0

Similarly, using (3.2), we have

1

. ((1—s)a+sb) ok
IS oF - Tk [0(g((1-s)a+ sb) — g(a)))P] F (sb+ (1 —s)a)ds.
phb- 0/ 1—sa+sb) gla)—t pal ]
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Using integration by parts
IS GF(@)=k[g(b) —g(@)]F FIA [0(s(b) —g(a)°] F (b) 42)
p.A+k

1
—(b—a)k/[g((l—s)a+sb)—g(a] ¥ Ok [ (g((l—s)a+sb)—g(a)))p]F’(sb—i—(l—s)a)ds.
0

Adding (4.1) and (4.2) and using the relation F (x) = f(x) + f(a+ b —x), we find that

4.3)
4(g(b) ~ (@) FIE, [0(2(0)~2@)?] [ f(a)+ f(0) 1 ok ok
’ - Hoaiof @+ I ol
b-a 2 ak(g(b)—g@)t FIE ., [0(3(b) ~2()] ik e 0)
] A
:/[g((l—s)a—i—sb)—g(a)}? f;’k+k[ (g((1—s)a+sb)—g(a)))P]|F' (sb+ (1 —s)a)ds
0
1 A
—/[g(b) g((1—s)a+sb)|* :-,f+k [0 (g(b) —g((1—s)a+sb))P|F' (sb+ (1—s)a)ds.
0
On the other hand, since F/(x) = f/(x) — f'(a+b —x), we have
F' (sb+(1—s)a) = f (sb+ (1 —s)a) — f (sa+ (1 —s)b).
Then we obtain,
1
/ ((1—=s)a+sb)—g(a )]% 9;f+k[ (g((1=s)a+sb)—g(a))P| F' (sb+ (1 —s)a)ds 4.4)
0
; A
:/ 1 —s)a+sb)—g(a)]* f;f+k [ (g((1—s)a+sb) —g(a)))p}f'(sb—i-(l —s)a)ds
0

1
—/[g((l—S)aJrsb)—g(a)} ZIt [0 ((1=s)a+sb) —g(@)P] £ (sa+(1—s)b)ds
0

1
= [le(=9)a+sa)=gl@)f 54, [0(s((1=9)b+50) ~g(@))] £ (sa-+ (1= 5)b)ds
0

1
— [le((1=s)a+sb) = g(@) Z7. [0(5((1 =s)a+55) = g(a)))P] £ sa+ (1 ~)b) ds.
0
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and

3
k

1
/[g(b) g((1—=s)a+sb)] :/1+k [@(g(b) —g((1—s)a+sb))P|F' (sb+ (1 —s)a)ds 4.5)
0

1;

[ le®) = ((1=5)a+sb)]F 5k, [0(6) = g((1=s)a-+35)°] £ (sb+ (1 =s)a) s
0

1
— [le(®) = (1 =sja+sb))F Z5, [0(5(0) — (1 = s)a+5))°] ' (sa-+ (1=5)b)ds
0
1
= [1s0) =g (1 =s)p+sa)lt Z75, [0(s(b) = (1= )b+ 5]/ (sa+(1—s)b)ds
0

((1—s)a+sb)|* ﬁ:f% [0(g(b) —g((1—s)a+sb))P] f' (sa+ (1 —s)b)ds.

O\H

If we substitute (4.4) and (4.5) into (4.3), we obtain desired result. O

Theorem 4.2. Let g be as the above. If f : |a,b] — R be a differentiable mapping on (a,b) with a < b and |f'|is an convex function on [a,D),
then we have the inequality

flel+ /) 1 ok.g okg
_ x / o ()Jrj g ()
P G —s@) 7Ty [0 sk) —g@) ][ phb- ol O)
Ia,k
= ap,lﬁk [If (@) +|f ®)]]-
4(b—a)(g(b) —g(a)* F5,, [0(s(b) —g(a))’]

where
ok _ ;0k o,k o,k
Ihe = Lo BD) 103 (ab) = L7% (ba) =17} (a.0)

and Lg;ﬁ (x,) is defined as

b
L% e = [ le—ullet) —g)lF F7%, [0]g) ~ gl du— [ lx—ullgly) - gu)|F 7% [0]6) - 8w du

4(s(6) ~ ()t FE_, [0(s(6) ~ 8(a))°] g o’

_ 7 /Gk ( )+/Gk§ Y ( ) (46)
: 4k(g(b)7g(a))fy/;f+k [0 (g(b) —g(a))P] [ p:hb Aat: ]
b 1
< —a —0.k |f sat+(1—s |ds
4(8(b)*g(a))¥ﬂ;’f+k [w(g(b)g(a))p]o/ p.Ag ‘

Here, we have

|

b
E:j§7g(s)‘ds: (bfa)z/( —u) ‘(Ppllg ‘dt
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where

95 (1) = g(w) —g(a)

A A
k k

Fo4 o (glatrb—u)—g(a))P]

Zo o) —g(@)] —[gla+b—u)—g(@)F Z75

A

~[g(6) —g(w)]* 7; e [0 (8 (b) —g@)] +[g(b) — gla+b—u)]

FFE L o(g(b) ~gla+b—u)P].

Since g is an increasing function, (p:;‘)]f < is a non-decreasing function on [a,b] . Additionally,

i
k

955 () =—2[g(b) —g(a)]

and

o,k a+b _
(pp,/l,g( 2 )70'

Consequently, we get

Zr i lo(g(b)—ga)P] <0

ok i atb
(Pp,/l,g(”) <0 ifa<u<9

o5 ) >0 if 2 <u<h

Therefore, we have

1

(bfa)z/s

0

=h+hL+5L+1L

—0.k
Hp,l_g(s)‘ds—/ ‘(pplg

where

b=— [ (b-u)lsw) -s@]* F5f,, [0(sw) g (@)"] du+ / ) [g(w) ~g(@)]* FIF [0 (g(w) ~ g (@)P] du= ~L§ (b,a),
a;b
b= [-wlsatb-w-g@]f 775, [o(satb-w) - g(@))du
b
= [ e-wsla+b-w - gla)t FTL, [0(glatb—u) (@) du= L7} (a.a).
and
#
Iy=— / (b—u)[g(b) — gla+b—u)]t FIH, [0 (g(b) — g la+b—u)P] du
b
+ / (b—u)[g(b) ~gla+b—w)t FOF, [0(s(b) g (a+b—w)P]du=LI% (a.b).
atb
Thus, from the previous equalities it follows that
! Lo (bb)+L b)Y — L% (b,a)— L™
/s Egﬁ,g(S)‘dsz pig0?) Plg(a(b)a)gﬂ»g( @) P7L (a, a). .7
0
Similarly, it is clear that
1 k k
/(1,S) B0k (s)(dzng’A'g(b DL “g(b’a)ng’”*g(a’a). 38)
p.r8 (bfa)

0
If we substitute equalities (4.7) and (4.8) in (4.6), we obtain the desired result. O
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Corollary 4.3. If we choose k =1 in Theorem 4.2, then we obtain following inequality for generalized fractional integral with respect to the
function

fla)+f(b) 1 o
2 k(g —g@)t 7, [0(3(b) —g(@)] Ao af @F sl ©)
IG
= - S @[+ o]

Z
4(b—a)(g(b)—ga)* 75, ,, [o(g(b) —g(a)’]
where A, p >0, ® € R and the coefficients ¢ (m) (m € Ng = NU{0}) is a bounded sequence of positive real numbers.

Corollary 4.4. If we choose g(t) =t in Theorem 4.2, then we obtain following inequality for generalized k-fractional integrals

fla)+£(b) !
- z I b ()+/ arof (B)
2 4k(b—a)t FOF, [0(b—a)f ][ s havf O
b 17 @|+17 @]
< g : a)|+
4(b—a)f+1§;f+k [@(b—a)P]

where A, p > 0, ® € R and the coefficients o (m) (m € Ny = NU{0}) is a bounded sequence of positive real numbers.

Corollary 4.5. If we choose g(t) = Int in Theorem 4.2, then we obtain following inequality for generalized Hadamard fractional integrals

fla)+1(b) ! A WF @+ AT SF®)
2 4k(]n§)?9;'/{‘+k[a)<ln%>p] [ pAb—w p.Aa+:o }
IO',k
< P [/ @]+ 17 @]

4(b—a) (ln §> ; y;:f+k [w (mZ)P}

where A, p >0, ® € R and the coefficients 6 (m) (m € Ng = NU{0}) is a bounded sequence of positive real numbers.

Corollary 4.6. If we choose g(t) = %, s € R—{—1} in Theorem 4.2, then we obtain following inequality for generalized (k,s)-fractional
integrals
A
f(a)+f(b) (S-Q—])? |:s o.k K o.k
- roF @+ 77 F(b ]
2 4k (bH —at1) T gok [w (bx-l_am >P] Zpab—of @) P )
pA+k s+1
= Alh— bs+1 el g-[o'k ® s+l _gst+l p
(b—a) ( “ ) pA+k s+1

where A, p >0, ® € R and the coefficients o (m) (m € Ny = NU{0}) is a bounded sequence of positive real numbers.

Corollary 4.7. If we choose k =1 and g(t) = t in Theorem 4.2, then we obtain following inequality for generalized fractional integrals

fla)+f(b) 1
2 26-a)* 73, [w(b—a)’]

(7830l @+ I a0l ®)]

<(b—a)

A 2Pl - b=a\P
P78 b—a) =75, v (%) ] @ o]
78 wb—a)f] 2
where A, p >0, ® € R and the coefficients 6 (m) (m € Ng = NU{0}) is a bounded sequence of positive real numbers.

Remark 4.8. If we choose A = o, 6(0) =1, w =0 in Corollary 4.7, then Corollary 4.7 reduces to Theorem 3 proved by Sarikaya et. al in
[16].

Remark 4.9. Ifwe choose k=1, =, 6(0) =1, w=0 in Theorem 4.2, then Theorem 4.2 reduces to Theorem 2.5 proved by Jleli and
Samet in [9].

Remark 4.10. Choosing A = o, 6(0) = 1, w =0 in, Corollary 4.4, Corollary 4.5 and Corollary 4.6, one can obtain new result.
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